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Fusing Code Searchers
Shangwen Wang, Mingyang Geng, Bo Lin, Zhensu Sun, Ming Wen, Yepang Liu, Li Li,

Tegawendé F. Bissyandé and Xiaoguang Mao

Abstract—Code search, which consists in retrieving relevant code snippets from a codebase based on a given query, provides
developers with useful references during software development. Over the years, techniques alternatively adopting different
mechanisms to compute the relevance score between a query and a code snippet have been proposed to advance the state of the art
in this domain, including those relying on information retrieval, supervised learning, and pre-training. Despite that, the usefulness of
existing techniques is still compromised since they cannot effectively handle all the diversified queries and code in practice. To tackle
this challenge, we present Dancer, a data fusion based code searcher. Our intuition (also the basic hypothesis of this study) is that
existing techniques may complement each other because of the intrinsic differences in their working mechanisms. We have validated
this hypothesis via an exploratory study. Based on that, we propose to fuse the results generated by different code search techniques
so that the advantage of each standalone technique can be fully leveraged. Specifically, we treat each technique as a retrieval system
and leverage well-known data fusion approaches to aggregate the results from different systems. We evaluate six existing code search
techniques on two large-scale datasets, and exploit eight classic data fusion approaches to incorporate their results. Our experiments
show that the best fusion approach is able to outperform the standalone techniques by 35% - 550% and 65% - 825% in terms of MRR
(mean reciprocal rank) on the two datasets, respectively.

Index Terms—Code Search, Information Retrieval, Data Fusion.
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1 INTRODUCTION

Software programming is often redundant: a given func-
tionality usually already has a number of implemented code
available in codebases in the wild [1]. Developers therefore
tend to refer to or directly reuse existing code snippets
during development to increase their productivity [2], [3].
As reported by prior studies, overall developers can spend
about 20% of their time searching for relevant code ex-
amples [4], [5]. Code search is an active research field in
software engineering that aims at facilitating the code reuse
activities of practitioners [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15]. Typically, code search techniques consider a natu-
ral language query by a developer describing the intended
functionality, and employ retrieval mechanisms to identify
code snippets that are relevant to that functionality within a
large-scale codebase collected from real-world repositories.
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Existing code search techniques can generally be classi-
fied into three categories according to the mechanisms that
they develop for computing the relevance score between the
query and a given code snippet [16], [17], [18]. In the first
category, techniques rely on traditional information retrieval,
where they focus on the proportion of overlapping tokens
between the query and the code snippet [19], [20], [21],
[22]. In the second category, supervised learning is leveraged
where models are trained on a labeled dataset to capture the
semantic relationship between the query and the code [23],
[24], [25], [26]. In the third category, researchers explore pre-
training, which utilizes self-supervised techniques to pre-
train models on an unlabeled dataset that is usually much
larger than those used by the second category, expecting
that the huge-amount data can help capture the connection
between the query and code [27], [28], [29], [30]. Beyond
this categorisation, it is noteworthy that techniques from the
same category may also have different focuses. For instance,
while DeepCS [23] and DeGraphCS [31] both implement
supervised learning, they differ in the information that they
leverage for modeling code semantics: the former focuses
on the token sequences of programs while the latter focuses
on the data flow and control flow.

Over the years, the performance of state-of-the-art code
search techniques has been improved continuously by con-
structing more complex models [24], [32] or leveraging
more advanced deep learning techniques [33]. Nevertheless,
due to the diversity of the queries and code in practice,
standalone techniques inevitably work effectively on some
queries but fall short on others, which compromises their
usefulness [16], [17]. To address this limitation, our intuition,
which is also the basic hypothesis of this study, is that
existing techniques may complement each other due to
the intrinsic differences among their working mechanisms.
That is to say, queries which are not effectively handled
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by a given code search technique may be successfully han-
dled using another technique. We first propose to validate
this hypothesis by performing an exploratory study on the
complementarity of code search techniques. This study is
conducted from two perspectives: the complementarities
among techniques from different categories (which we refer
to as inter-category complementarities) and the complementar-
ities among techniques in the same category (which we refer
to as intra-category complementarities). Specifically, we select
three example techniques across different categories for the
inter-category experiment and three techniques from the
supervised learning based category (i.e., the most widely-
studied category so far [16]) for the intra-category experi-
ment. We evaluate these techniques on a dataset containing
more than 22K queries and then investigate the distributions
of the queries whose corresponding code snippets (referred
to as the oracle code) are ranked at top positions. Results
show that for the three inter-category techniques, there are
totally 16,227 queries whose oracle code can be ranked at
the first position by at least one of them, 66% of which
(i.e., 10,720) can only be effectively handled by a unique
technique. Similarly, this percentage is 44% for the three
intra-category techniques. Such a result indicates the com-
plementarity of existing code search techniques and thus
validates our hypothesis.

Motivated by the above observation, in this paper, we
propose to boost the effectiveness of code search by leverag-
ing the complementarity of existing techniques. We were
inspired by noting the work of group decision support
systems [34]. Specifically, such systems take input from
multiple decision-makers simultaneously, bring together the
produced ideas, and finally arrive at a best decision. There-
fore, we postulate that effectiveness enhancement could
be achieved for code search if the results from multiple
techniques can be fused. Based on that, we propose a DAta
fusioN based Code searchER, Dancer, which uses data
fusion approaches to combine search results from different
code search techniques. Data fusion is widely studied in
the information retrieval domain [35], [36], [37], and is con-
sidered as an effective way to combine multiple sources of
information into a single one [38], [39], [40]. Specifically, we
treat each code search technique as a retrieval system and
use both rank-based and score-based data fusion methods
to combine the results from each system.

To evaluate the effectiveness of our fusion approach, we
perform extensive experiments on two large-scale datasets
from CodeSearchNet [41], i.e., the CSN-Python and CSN-
Java. We use six state-of-the-art code searchers as standalone
techniques, among which one is based on information re-
trieval, three are based on supervised learning, and the
remaining two are based on pre-training techniques. We
first evaluate each of the standalone techniques and then
the fusion results generated by eight different fusion ap-
proaches. Results show that both the rank-based and the
score-based fusion approaches can significantly boost the
code search effectiveness compared with the standalone
techniques. Specifically, the score-based fusion approach,
DancerCombSUM , achieves the highest Mean Reciprocal
Rank (MRR) value on the CSN-Python dataset, which is
0.922. Such a value exceeds that of each standalone tech-
nique by 35% - 550%. On the CSN-Java dataset, the rank-

TABLE 1: The data fusion approaches we use and their cate-
gories.

Category Approaches

Rank based
Borda count [38],

Reciprocal rank [42],
Condorcet criterion [43]

Score based CombMIN [35], CombMAX [35],
CombSUM [35], CombANZ [35], CombMNZ [35]

based fusion approach, DancerBorda count, has the most ef-
fective performance with its MRR being 0.878. Such a value
outperforms standalone techniques by 65% - 825%. We also
estimate the average response time of Dancer for a given
query and we consider the result (i.e., around 0.2 second) as
affordable. Further in-depth investigation shows that fusing
the results of three code search techniques can already gain
significant effectiveness enhancement compared with stan-
dalone techniques, which demonstrates the practicality of
our approach in a computation resource restricted situation.

To summarize, our study makes the following contribu-
tions:

❶ We perform an exploratory study, which demonstrates
the substantial complementarities among existing code
search techniques. This observation can open a novel
direction for code search researches.

❷ We devise a data fusion based approach for code search,
named Dancer, which builds on the complementarities
of existing code search techniques. Dancer exploits
off-the-shelf data fusion approaches to integrate results
from multiple code searchers.

❸ We extensively evaluate the effectiveness of Dancer
and achieve promising results. Specifically, in terms
of MRR, the best fusion approach outperforms the
standalone techniques by 35% - 550% and 65% - 825%
respectively on two large-scale datasets.

2 BACKGROUND

2.1 Data Fusion

Data fusion, i.e., combining multiple ranked answer lists
into a single one, is a widely-studied problem in the domain
of Information Retrieval (IR). Typically, for an information
retrieval system (where given a query, relevant documents
are expected to be retrieved from a database of candidate
documents), the query representation and the document
representation are two critical components. The key idea
of data fusion is thus the document and/or query repre-
sentations of each IR system may differ from the others
and enhanced retrieval results may be provided if multiple
sources of information could be combined [35], [36], [37].
Such a strategy has achieved impressive achievements in the
web search. For instance, results from multiple independent
search systems are combined into a single ranking in meta-
search [38], and results in different languages can also be
combined [39].

Data fusion approaches can be broadly grouped into
two types, i.e., the rank-based ones and the score-based
ones [44], [45]. In our study, we explore the combination
of different code search techniques using both types of data
fusion approaches, and Table 1 lists the eight approaches
we utilize in this study. We next briefly introduce each of
them. The rank-based ones rely on the rank position of a
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TABLE 2: The code search techniques we investigate and their
categories.

Category Techniques
Information retrieval based BM25 [46]

Supervised learning based
Self-attention [41],

DeGraphCS [31],
Multi-modal [24]

Pre-training based CodeBERT [27],
GraphCodeBERT [28]

retrieved document. The well-known approaches include
the Borda count [38] where each document receives a score
determined by how many other documents are ranked
lower than it, and the score is summed across all input lists;
the Reciprocal rank [42] which sorts the documents accord-
ing to the reciprocal of their rankings; and the Condorcet
criterion [43] where the rank of a document is based on the
pairwise comparison with all other candidates.

The score-based ones use the relevance score of a re-
trieved document, which represents the likelihood of the
document being relevant to the query. Fox and Shaw [35]
proposed several basic fusion approaches including: Comb-
MIN, a document’s final relevance score is the minimum
of its individual relevance scores, aiming at minimizing the
probability that a non-relevant document would be highly
ranked; CombMAX, a document’s final relevance score is
the maximum of its individual relevance scores, aiming at
avoiding the cases where relevant documents are poorly
ranked; CombSUM, a document’s final relevance score is
the summation of its individual relevance scores, aiming
at comprehensively considering the document’s similarity
scores instead of simply attempting to select a single similar-
ity value from a set of result lists; CombANZ, a document’s
final relevance score is the value of CombSUM divided
by the number of non-zero relevance scores, aiming at
punishing the documents that occur in the list but with low
scores; and CombMNZ, a document’s final relevance score
is the value of CombSUM multiplied by the number of non-
zero relevance scores, aiming at promoting a document that
occurs in multiple lists.

2.2 Code Search
Many code search approaches have been proposed during
the years to advance this common activity in software devel-
opment practices [2], [9], [11]. Given a natural language (NL)
query from the developer, code search approaches search for
the code snippets from a large-scale code corpus and return
the relevant ones to serve as references for developers’
implementations. Based on the methods to calculate the
relevance score between the query and the code, existing ap-
proaches can be broadly grouped into three categories [16],
[17]. Table 2 summarizes the code search techniques which
are selected as our study subjects and their corresponding
categories. In the following content, we briefly introduce
each category and the representative techniques that are
selected as our study subjects. Readers can refer to the
survey [16] for more details about code search techniques.

The first category represents the traditional IR-based
techniques, which mainly rely on the keyword mapping
between the query and the code. Such techniques focus on
the textual overlapping relations to calculate the relevance
scores. For instance, Lu et al. [19] augmented the query with

the synonyms obtained from WordNet and then performed
keyword matching. Lv et al. [47] propose to combine tex-
tual similarity and API matching into an extended Boolean
model. In our study, we choose to use a state-of-the-art
IR approach, the BM25 algorithm [46], to calculate the
relevance score for each code snippet. It is a TF-IDF-like
function and it ranks a set of code snippets based on the
query tokens appearing in each code snippet, regardless of
their proximity within the code.

A fundamental problem faced by the first category is its
inability to capture the correlation between the semantics
of the query and the code. To overcome this limitation,
researchers later propose to use supervised learning tech-
niques to embed the query and code into a shared vector
space, where the relevance is calculated as the similarity
between the query vector and the code vector. Therefore,
such techniques differ with each other in how they repre-
sent the semantics of the code. For instance, DeepCS [23]
considers code snippets as token sequences and embeds the
code using a recurrent neural network (RNN). Wan et al. [24]
proposed MMAN which uses an attention model to aggre-
gate different types of code information including the token
sequence, the AST structure, and the graph-based semantic
information. In our study, we select three state-of-the-art
techniques as our study subjects, which are Self-attention
[41], DeGraphCS [31], and Multi-modal [24]. These tech-
niques have been used as baselines for a number of follow-
up studies [5], [25], [27], [48]. The Self-attention model also
treats code as token sequences but it uses a Transformer to
embed the sequence, which is expected to outperform the
RNN on dealing with sequential data and thus can build
a more qualified baseline than DeepCS. DeGraphCS utilizes
the variable-based flow graph to depict data and control
flows in the program. It is expected to outperform the
original graph based component of MMAN which merely
considers control flow information. We implement our own
Multi-modal approach by using the above two approaches
to replace the original components in MMAN which target
the token sequence and program graph information and
keeping the original component that captures AST structure
information, i.e., the Tree-LSTM [49]. Information from each
component is also fused through an attention mechanism
and with more advanced components, our Multi-modal is
expected to build a more state-of-the-art baseline than the
original MMAN. Note that for all of these three approaches,
the query is embedded by a Transformer-based encoder [50].

The second category of techniques, however, require
large-scale labeled data for training, which is hard to obtain
in practice. With the blooming of pre-training techniques
in the natural language processing (NLP) field, researchers
also propose to design pre-trained models for programming
tasks. The core idea of such pre-training techniques is to
utilize the huge-amount readily-available code-comment
pairs for capturing the semantic connection between natural
language (NL) and programming language (PL). To this
end, different pre-trained models with diverse pre-training
objectives have been proposed. For instance, CodeBERT
[27], the first NL-PL pre-training technique, uses the Masked
Language Modeling task in which the model is trained
to predict the randomly masked tokens, and the Replaced
Token Detection task in which the model is trained to
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determine if a token is replaced. To address the limitation
of CodeBERT that the program structure is ignored, Graph-
CodeBERT [28] designs specialized tasks in the pre-training
phase to make the model structure-aware, such as the edge
prediction, in which the model learns to predict which
program tokens contain data flow relations. In our study, we
select these two techniques as our study subjects since the
previous study has shown that they are the most effective
ones in program understanding tasks including code search
among all the pre-training techniques [51].

Typically, code search techniques rank candidate code
snippets in a descending order based on their relevance
scores with the query. That is to say, with executing a code
search technique, both the rank and the relevance score
of each candidate code snippet can be obtained. Hence,
both rank-based and score-based fusion approaches can be
applied to aggregate the results from different code search
techniques and in our study we explore both directions.

3 HYPOTHESIS VALIDATION

As we have introduced, existing code search techniques can
be mainly classified into three categories according to their
working mechanisms. Additionally, even techniques from
the same category may have different focuses. For instance,
Self-attention and DeGraphCS differ in how to embed the
semantics of code, while CodeBERT and GraphCodeBERT
have different pre-training objectives. Given that, our hy-
pothesis in this study is that different code search techniques
complement each other, i.e., they may work effectively on different
queries. To validate the existence of such a complementarity,
we conduct an exploratory experiment to investigate if the
existing code search techniques indeed work effectively
on different queries. We define a metric uniqueness de-
gree here to quantitatively assess such a complementarity,
which is calculated as the number of queries effectively
handled by a unique technique divided by the number of
queries effectively handled by at least one technique. The
uniqueness degree values range from 0 to 1. Intuitively,
higher uniqueness degrees mean that more queries can be
effectively addressed only by specific techniques, and thus
there exists a higher degree of complementarity among the
techniques.

Our experiment focuses on two perspectives: the inter-
category complemantarity (i.e., the complemantarity of
techniques from different categories) and intra-category
complementarity (i.e., the complemantarity of techniques
from the same category). To achieve the first target, we
select the most effective technique from each category to
serve as representatives. The effectiveness comparison is
based on the previous studies [24], [51], [52] and finally
BM25, Multi-modal, and GraphCodeBERT are selected. For the
second target, we explicitly focus on the supervised learning
category since techniques in this category are the most pop-
ularly studied [16]. Specifically, three state-of-the-art tech-
niques in this category (i.e., Self-attention, DeGraphCS, and
Multi-modal), which are also our study subjects, are used.
We then train and evaluate them on the CodeSearchNet-
Python dataset [41], which will be detailed in Section 5.
Specifically, we investigate the distributions of the queries

whose corresponding code snippet can be ranked at top-
k positions by each code search technique. The results are
shown in Figure 1 where k = 1, 5, and 10.

From the figure, we note that each technique can work
effectively on a certain number of unique queries from
the inter-category perspective. For instance, GraphCodeBERT
can uniquely rank the oracle at the first position for 7,420
queries, and the number for Multi-modal and BM25 are 2,981
and 319, respectively. Totally, there are 16,227 queries whose
corresponding code snippets can be ranked at the first po-
sition by at least one of the code search techniques. Among
them, 10,720 queries are effectively handled by a standalone
technique uniquely (only one specific technique can rank
its oracle at top-1), leading to a uniqueness degree of 66%.
While the uniqueness degree decreases with respect to the
top-10 results, different techniques still perform effectively
on certain queries exclusively. Specifically, GraphCodeBERT
and Multi-modal uniquely rank the oracle at the top-10
position for a large amount of queries (5,352 and 1,758,
respectively). Totally, the three techniques uniquely rank the
oracle at top-10 for 7,201 queries, still occupying 34% of the
queries whose oracle code can be ranked at top-10 by at
least one technique (7,201/21,176). We also observe similar
phenomenon from the intra-category perspective. Take the
top-1 results as an example: the oracle code of 11,298 queries
can be ranked at top-1 by at least one technique, among
which 4,970 are effectively handled by a unique technique,
leading to a uniqueness degree of 44%.

Our results indicate the complementarity of existing
code search techniques: different techniques (whether they
are from the same category or not) effectively handle dif-
ferent queries. The validation of the existence of such a
complementarity motivates our study, where data fusion
approaches are leveraged to combine results from different
code search techniques into a single result list for effective-
ness enhancement.

We also note that in this figure, different areas have
different shades. The darker the area, the more queries
are located in it. We find that the inter- and intra-category
results demonstrate different patterns: for the former, the
area of GraphCodeBERT is much darker than those of the
other techniques; while for the latter, the areas of the three
techniques are in similar shades. This is because techniques
from different categories have diverse effectiveness while
such difference is not that significant for techniques from
the same category (details will be analyzed in Section 6).

4 METHODOLOGY

In this section, we present our fusion based approach that
incorporates retrieval results from different code searchers.

4.1 Overview

The overall workflow of our fusion approach is illustrated
in Figure 2. Given a natural language query and a code-
base, our approach first applies off-the-shelf code search
techniques to generate their standalone search results. Then,
for the candidate code snippets, both their ranks in the
result list and their relevance scores produced by each code
search technique are recorded. Finally, according to the
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(a) Top-1 results of inter-category (b) Top-5 results of inter-category (c) Top-10 results of inter-category

(d) Top-1 results of intra-category (e) Top-5 results of intra-category (f) Top-10 results of intra-category

Fig. 1: The distributions of the queries whose oracles can be ranked at top positions by different code search techniques.

Codebase

Code search
techniques

Standalone
results

Rank/Score-based
data fusion

Final
results

Query

Fig. 2: The workflow of our fusion approach.

recorded data in the last step, the rank/score-based data
fusion approach is applied to re-rank the candidate code
snippets and the output of this step is considered as the
final result.

4.2 Executions of Standalone Code Search Techniques
Given a query and a codebase to search for the relevant code
snippets, we execute the six code search techniques listed in
Table 2 respectively. The mechanisms of our study subjects
have been introduced in Section 2.2. We briefly review how
each technique calculate the relevance score here.

For the IR based BM25 algorithm, the relevance score
of each candidate code snippet is calculated based on
the number of query tokens appearing in it. For the su-
pervised learning based models, the code snippet and
query are embedded as vectors separately and the sim-
ilarity of the vectors is considered as the relevance
score. For the pre-training techniques, during fine-tuning,
the query and source code are concatenated as the se-
quence input (e.g., {[CLS],W, [SEP ], C} for CodeBERT

and {[CLS],W, [SEP ], C, [SEP ], V } for GraphCodeBERT),
where W denotes the query segment, C denotes the source
code segment, V denotes the variables in the source code,
[CLS] is a special token in front of these segments, and
[SEP ] is a special token to split two kinds of data. The
representation of the [CLS] token is considered as the
aggregated sequence representation and it will be connected
with a softmax layer to output the relevance score.

4.3 Data Fusion

In this work, we leverage eight well-known data fusion
approaches listed in Table 1. Each of them can serve for our
Dancer. Recall that we have briefly introduced their work-
ing mechanisms in Section 2. We give formal definitions to
them in the following paragraphs.

4.3.1 Rank-based data fusion
Given a set of code snippets to be ranked C and a set of
rankings R returned by different code search techniques,
where each r ∈ R is a permutation on 1 . . . |C|, Borda count
works as follows:

BCscore(c ∈ C) =
∑
r∈R

(|C| − r(c))

where r(c) denotes the rank of the code snippet c in the
permutation of r, and thus |C|−r(c) means how many code
snippets are ranked lower than c in this permutation. Then,
each c ∈ C is re-ranked according to its BCscore value in
a descending order. Suppose two code snippets a and b, the
intuition behind is that a should be ranked higher than b
in the final result if the number of code snippets that are
ranked lower than a is more than that of b, according to all
the rankings in R.
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Reciprocal rank works as follows:

RRscore(c ∈ C) =
∑
r∈R

1

r(c) + k

where r(c) denotes the same meaning as above and
the constant k, which is used to mitigate the impact of
high rankings to non-relevant code, is empirically fixed
to 60 according to the existing study [42]. Then, each c
is also re-ranked in a descending order according to the
RRscore value. The rationale of this approach is utilizing
the aggregated reciprocal value to provide a holistic view
for each code snippet’s relevance.

Condorcet criterion works as follows:

CCscore(c ∈ C) =
∑

c′∈C,c̸=c′

MV (c, c
′
, R)

where MV (c, c
′
, R) denotes the majority voting result

of the code snippet pair (c and c
′
) on the ranking set R. It

returns 1 if c is ranked higher than c
′

on more than half of
the rankings and 0 otherwise. After that, each c is re-ranked
in a descending order according to the CCscore value. The
behind intuition of this approach is that the code snippet
which achieves the highest number of wins in such pairwise
comparisons should be ranked at the top position.

4.3.2 Score-based data fusion

As we have introduced before, different code search tech-
niques use different ways to calculate relevance scores.
Consequently, the relevance scores from different techniques
may have different scales. One essential step before calculat-
ing the overall result is normalizing the scores so that scores
produced by different techniques can be compared with
one another. In this study, we use the Linear Normalization
strategy to normalize the scores. Such a strategy is to re-scale
the scores into a fixed scale (i.e., [0, 1] in our study) and thus
help alleviate the scale bias. It has been demonstrated to be
effective by a number of previous studies [40], [53], [54].

Given a set of code snippets to be ranked C and a set
of rankings R returned by different code search techniques,
where each r ∈ R assigns a relevance score RS(c, r) to each
code snippet c ∈ C . The relevance score of a retrieved code
snippet is first normalized by the maximum range of the
scores:

NRS(c, r) =
RS(c, r)−Minr

Maxr −Minr

where Maxr and Minr denote the maximum and mini-
mum relevance scores in the list returned by the ranking r.
After that, the number of non-zero relevance score of the
code snippet c (denoted as NNZ(c)) can be calculated.

Then, for each code snippet c, its final relevance score
(FRS) with respect to the CombMIN, CombMAX, Comb-
SUM, CombANZ, and CombMNZ is calculated as:

FRSmin(c) = MIN(NRS(c, r1), . . . , NRS(c, r|R|))

FRSmax(c) = MAX(NRS(c, r1), . . . , NRS(c, r|R|))

TABLE 3: The statistics of our evaluation datasets.
Dataset Training Validation Test

CSN-Python 412,178 23,107 22,176
CSN-Java 394,471 15,328 26,909

FRSsum(c) =
∑
r∈R

NRS(c, r)

FRSanz(c) =
FRSsum

NNZ(c)

FRSmnz(c) = FRSsum ×NNZ(c)

where MIN (MAX) is the function to return the min-
imum (maximum) value from a list of data. Finally, all the
code snippets are re-ranked based on their final relevance
scores in a descending order.

5 EXPERIMENT SETTINGS

5.1 Dataset
We choose to use the CodeSearchNet (CSN) dataset [41] as
the benchmark for our experiments. CSN is a large-scale
dataset for semantic code search and has been widely used
upon released [48], [55], [56]. It extracts millions of code
functions and their corresponding comments from GitHub
for totally six programming languages (PLs) including Go,
Java, JavaScript, PHP, Python, and Ruby. In our study, to
increase the generalizability of our results, we use two
mostly-used datasets (i.e., the CSN-Python and CSN-Java).

The CSN dataset is split into three parts: the training/-
validation/test sets. The detailed statistics of our evaluation
dataset are listed in Table 3. In our experiments, the code
comment is used as query and its corresponding code is
expected to be retrieved. The training and validation sets are
used to train the three supervised learning based techniques
(i.e., Self-attention, DeGraphCS, and Multi-modal) as well as
fine-tune the two pre-trained models (i.e., CodeBERT and
GraphCodeBERT), while the test set is used to evaluate the
effectiveness of each technique. The BM25 algorithm does
not require a training phase so that we directly apply it
on the test set. Note that for each query, we search for
code snippets from the whole test set, which mimics the
real-world scenario where a huge amount of information is
provided by the web and an effective code search technique
is supposed to accurately identify the needed code snippets.

5.2 Research Questions
In our study, we seek to answer the following research
questions (RQs):
RQ1: How effective are existing code search techniques
on the large-scale dataset? In this first RQ, we aim to
investigate the effectiveness of each standalone technique.
The necessity of such an evaluation is twofolds. First, since
some of our study subjects have not been evaluated on
our selected datasets (e.g., the BM25 and DeGraphCS), the
literature lacks a comprehensive comparison among existing
techniques on the large-scale dataset. Such a comparison can
understand the advantages and disadvantages of existing
studies, and thus facilitate future code search researches.
Second, the experiment results also pave the way for this
study since we need to compare with each standalone tech-
nique to evaluate the effectiveness of our fusion approach.
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RQ2: Can data fusion help boost the effectiveness of
code search? In this RQ, we aim to investigate can Dancer
that combines search results from all our study subjects
outperform each standalone technique. We investigate both
the rank-based and the score-based data fusion approaches.
RQ3: To what extent do different code search techniques
contribute to the final fusion results? The hypothesis of
our study is that different code search techniques work
effectively on different queries and thus all the study sub-
jects could contribute to the final fusion results to different
degrees. Although we have illustrated the complementarity
of existing code search techniques through our exploratory
study, we in this RQ seek to quantitatively assess the contri-
bution of each involved technique.
RQ4: What is the response time of Dancer for a given
query? To deploy the fusion approach to real-world sce-
narios, it is important to understand the response time for
a given query. In this RQ, we investigate such a question
through analyzing the time cost of Dancer on the test sets.

5.3 Evaluation Metrics

We adopt two widely-used metrics to measure the effective-
ness of code search techniques, i.e., Mean Reciprocal Rank
(MRR) and SuccessRate@k [23], [24], [47].

MRR is the average of the reciprocal ranks for the results
of a set of queries Q. MRR provides a holistic perspective
for evaluating the overall effectiveness and is calculated as:

MRR =
1

|Q|
∑
q∈Q

1

Rankq

where |Q| is the size of the query set, and Rankq is the
rank of the code snippet which corresponds to the query q.
Generally, the higher the MRR value is, the better the code
search effectiveness is.

SuccessRate@k measures the percentage of queries for
which the corresponding code snippet could exist in the
top k ranked results. It is an important metric because it
can measure how many returned results could be manually
checked by the developers before finding the relevant one.
This metric is calculated as:

SuccessRate@k =
1

|Q|
∑
q∈Q

δ(Rankq ≤ k)

where |Q| and Rankq denote the same meanings as above,
δ(·) is a function which returns 1 if the input is true and
returns 0 otherwise. Generally, the higher the SuccessRate
value is, the better the code search effectiveness is. The
values of k are set to 1, 5, and 10 respectively, following
a number of previous studies [1], [23], [24].

5.4 Implementation Details

All our experiments are performed on a server which
possesses 8 interconnected NVIDIA Tesla V100 with 32GB
memory. Our implementation of the BM25 algorithm is
reused from the open-accessed GitHub repository. 1 As for
the other five deep learning models, their implementations
are all open sourced. We therefore reuse all the source code

1. https://github.com/SpringMagnolia/Bm25Vectorizer

and hyper-parameters to avoid replication bias. Note that
DeGraphCS uses the Intermediate Representation of pro-
grams to extract the graph information. Their approach was
originally implemented for C language. To apply it on Java
and Python, we exploit JLang 2, and the Dis module 3 to ac-
quire the Intermediate Representations for Java and Python
languages respectively. After that, the original source code
can process the obtained Intermediate Representations and
the graph information can be constructed. Note that in our
study we do not reuse any previously-reported effectiveness
of our study subjects. Instead, we re-train and re-evaluate all
of them on our own server to avoid replication bias [51]. The
data fusion approaches are implemented by ourselves.

6 EXPERIMENT RESULTS

6.1 RQ1: The Effectiveness of Standalone Techniques

The effectiveness of standalone code search techniques is
shown in the first part of Table 4. We note that generally,
pre-training based techniques achieve the best performance
among all the techniques. For instance, the MRRs of Graph-
CodeBERT and CodeBERT on the CSN-Python dataset are
0.682 and 0.669 respectively, exceeding those of the rest tech-
niques to a large extent (e.g., GraphCodeBERT outperforms
Self-attention, the most effective one from the rest techniques
whose MRR is 0.444, by around 55%). In contrast, the IR-
based technique, BM25, achieves the lowest performance
with its MRR being 0.140 and 0.095 on the two datasets. This
result reflects the rationale of recently-proposed code search
techniques to focus more on the semantic information rather
than the textual information. Such significant effectiveness
differences among diverse categories also explain our ob-
servation in Figure 1 that the shade of GraphCodeBERT is
much darker than those of the others. We also note that
supervised learning based techniques can outperform pre-
training based ones under certain settings. Specifically, on
the CSN-Java dataset, the SuccessRate@10 of DeGraphCS is
the highest among the six techniques, even slightly exceed-
ing that of GraphCodeBERT (0.742 vs. 0.721).

Several techniques such as DeGraphCS and CodeBERT
have different performances on the two datasets (e.g., the
MRRs of DeGraphCS are 0.307 and 0.489 on the Python and
Java datasets respectively). This may be caused by the pro-
gramming language differences: previous studies that eval-
uate on multiple PLs also observe such a phenomenon [27],
[28]. Besides, we use the official released hyper-parameters
in our experiments. As observed by Zeng et al. [51], the
optimal hyper-parameters for different datasets may be
different. We also note that combining information from
multiple modals (i.e., the Multi-modal technique) does not
necessarily provide better performance compared with its
individual components that utilize more advanced tech-
niques than the original ones. For instance, Self-attention
achieves an MRR of 0.444 on the CSN-Python dataset, which
is slightly higher than that of Multi-modal, i.e., 0.434. Recall
that the original Multi-modal technique is evaluated on 1k
queries for C language. Our results illustrate the threats to

2. https://polyglot-compiler.github.io/JLang/
3. https://pypi.org/project/dis/

https://github.com/SpringMagnolia/Bm25Vectorizer
https://polyglot-compiler.github.io/JLang/
https://pypi.org/project/dis/
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TABLE 4: The effectiveness of standalone code search techniques and fusion approaches on our evaluation datasets.

Category Technique CSN-Python CSN-Java
MRR SR@1 SR@5 SR@10 MRR SR@1 SR@5 SR@10

Standalone

BM25 0.140 0.097 0.182 0.223 0.095 0.068 0.122 0.150
Self-attention 0.444 0.343 0.566 0.639 0.436 0.312 0.579 0.683
DeGraphCS 0.307 0.202 0.421 0.522 0.489 0.361 0.642 0.742
Multi-modal 0.434 0.331 0.559 0.631 0.486 0.359 0.639 0.737
CodeBERT 0.669 0.563 0.802 0.857 0.522 0.420 0.646 0.707
GraphCodeBERT 0.682 0.577 0.812 0.865 0.534 0.432 0.659 0.721

Rank-based Fusion
DancerBorda count 0.913 0.881 0.955 0.969 0.878 0.844 0.919 0.939
DancerReciprocal rank 0.822 0.755 0.894 0.947 0.743 0.656 0.835 0.905
DancerCondorcet criterion 0.856 0.794 0.936 0.966 0.751 0.670 0.850 0.911

Score-based Fusion

DancerCombMIN 0.135 0.075 0.198 0.256 0.148 0.064 0.233 0.314
DancerCombMAX 0.518 0.287 0.855 0.917 0.418 0.210 0.742 0.826
DancerCombSUM 0.922 0.894 0.956 0.968 0.872 0.839 0.913 0.936
DancerCombANZ 0.802 0.727 0.893 0.930 0.805 0.744 0.882 0.906
DancerCombMNZ 0.917 0.889 0.952 0.967 0.850 0.819 0.888 0.909

its external validity: different PLs and large-scale query sets
may incur effectiveness difference.

Pre-training based techniques are generally the most effective
ones while the IR-based has the lowest effectiveness. Supervised
learning based techniques could achieve the optimum perfor-
mance under certain settings.

6.2 RQ2: The Effectiveness of Fusion Approach
The effectiveness of the eight fusion approaches is listed in
the second and third parts of Table 4. We note that generally,
both rank-based fusion approach and score-based fusion
approach can provide promising fusion results. For instance,
the MRRs of DancerReciprocal rank and DancerCombANZ

always reach around 0.8 on the CSN-Python and CSN-Java
datasets. The optimal performances of the rank-based and
score-based approaches, as highlighted in the table, can
be even better. Specifically, DancerCombSUM achieves the
best performance on the CSN-Python dataset with its MRR
reaching 0.922. It outperforms the most effective standalone
technique, GraphCodeBERT, by around 35% (0.922 vs. 0.682),
and the least effective technique, BM25, by around 550%
(0.922 vs. 0.140). The SuccessRate@1 of DancerCombSUM is
nearly 0.9, indicating that for around 90% of the queries,
it can rank the oracle code at the first position. Further-
more, the SuccessRate@10 of DancerCombSUM is nearly
0.97, which means that for almost all the queries, their
corresponding code can be ranked at top-10 positions. As
for the CSN-Java dataset, DancerBorda count achieves the
best performance with its MRR being 0.878, which is slightly
higher than that of DancerCombSUM (0.872). Such an MRR
exceeds those of GraphCodeBERT (0.534) and BM25 (0.095)
by around 65% and 825% respectively. The SuccessRate@1
and SuccessRate@10 of DancerBorda count reach 0.87 and
0.94 respectively, which are also extremely high values.

We also note that two fusion approaches (i.e.,
DancerCombMIN and DancerCombMAX ) do not obtain
promising results. The effectiveness of such fusion ap-
proaches is even not as good as standalone techniques.
For instance, the MRR of DancerCombMIN on the CSN-
Python dataset is 0.135, lower than that of BM25 (0.140).
Such results may indicate that these fusion approaches
are not suitable for combining different code searchers.

TABLE 5: Effectiveness of variants of DancerCombSUM on our
evaluation datasets.

Fused techniques CSN-Python CSN-Java
MRR ↓ (%) MRR ↓ (%)

-BM25 0.919 0.3 0.865 0.8
-Self-attention 0.902 2.2 0.831 4.7
-DeGraphCS 0.875 5.1 0.823 5.6
-Multi-modal 0.904 2.0 0.823 5.6
-CodeBERT 0.827 10.3 0.794 8.9
-GraphCodeBERT 0.826 10.4 0.792 9.2
DancerCombSUM (6 techniques) 0.922 0.872

We investigate the queries whose oracle can be ranked
at top-k positions by at least one standalone tech-
nique but are unsuccessfully handled by DancerCombMIN .
The numbers of such queries when k=1/5/10 are
16,851/16,996/16,111 (18,834/18,791/17,426) respectively
on the CSN-Python (CSN-Java) dataset. Similarly, the
numbers for DancerCombMAX are 12,149/2,432/1,463
(14,911/5,097/3,670) respectively. Such results reveal that
both approaches could be easily affected by scores inaccu-
rately assigned to non-relevant code snippets. For instance,
if a non-relevant code snippet obtains a high score from
a code search technique, it is likely to be ranked at top
positions when using DancerCombMAX . In contrast, all
the other six approaches fuse the results from a holistic
perspective and thus can alleviate the effects of such inaccu-
rate values. For instance, DancerCombSUM adds the scores
returned by all the systems for a code snippet and thus
the effects of inaccurate values will be mostly eliminated.
In theory, an alternative way to address the impact of an
inaccurate code search technique is to increase the number
of employed code search techniques. Our study selects six
representative code search techniques as study subjects and
future studies could involve more for further evaluation.

Data fusion approaches can help boost the code search effective-
ness significantly. In terms of MRR, the most effective fusion
approach can bring 35% - 550% and 65% - 825% effectiveness
enhancement compared with standalone techniques on the two
datasets respectively.

6.3 RQ3: Contributions of Each Standalone Technique

To dissect the contribution of each standalone technique to
the final fusion results, we remove one technique at each
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TABLE 6: Effectiveness of variants of DancerBorda count on our
evaluation datasets.

Fused techniques CSN-Python CSN-Java
MRR ↓ (%) MRR ↓ (%)

-BM25 0.911 0.2 0.876 0.2
-Self-attention 0.895 2.0 0.870 0.9
-DeGraphCS 0.895 2.0 0.862 1.8
-Multi-modal 0.897 1.8 0.862 1.8
-CodeBERT 0.812 11.1 0.812 7.5
-GraphCodeBERT 0.811 11.2 0.802 8.7
DancerBorda count (6 techniques) 0.913 0.878

time and evaluate the effectiveness achieved by the remain-
ing five techniques. We focus on the DancerCombSUM and
DancerBorda count since according to our results in the last
RQ, they are the most effective fusion approaches.

In this RQ, we investigate the degradation of the MRR
metric, since it reflects the overall effectiveness. Results
are shown in Table 5 and Table 6. We note each stan-
dalone technique contributes to the final results, which also
demonstrates the rationale of our hypothesis. Such results
suggest that in practice, it is beneficial to incorporate a
wide range of code search techniques for fusion in order
to achieve optimal results, regardless of the category to
which each technique belongs. In particular, if we have
a suite of code search tools, it may not be necessary to
exhaustively test all possible combinations of them. Instead,
the optimal approach could be achieved by merging the
results obtained from all the tools. Regarding to the quan-
titative analysis, we find a consistent trend across differ-
ent datasets for both fusion approaches: the pre-training
based techniques contribute the most to the final results
while the IR based one contributes the least. Specifically,
on the CSN-Python dataset, the MRR of fusion results will
drop to 0.826/0.811 without GraphCodeBERT, a decrease of
10.4%/11.2% for the DancerCombSUM/DancerBorda count

approach. In contrast, under the same setting, the fusion
effectiveness will only experience a decrease of 0.2% - 0.3%
if BM25 is excluded, an order of magnitude lower than the
decrease experienced without GraphCodeBERT. We also note
the contribution of each of the supervised learning based
technique is considerable, but is not the most significant. For
instance, on the CSN-Java dataset, the MRR of the results
of DancerCombSUM will decrease by 5.6% if DeGraphCS or
Multi-modal is excluded. Such a trend correlates to the ef-
fectiveness of each standalone technique: the most effective
technique contributes the most to the fusion results while
the least effective one contributes the least.

Generally, each involved technique contributes to the fusion per-
formance. The contribution from the most effective standalone
technique, GraphCodeBERT, is an order of magnitude higher
than that from BM25, which contributes the least.

6.4 RQ4: The Time Cost of Dancer
We first introduce how we calculate the time cost of each
standalone technique. Usually, each deep learning model
has a parameter named batch size. For a model with the
batch size of BS, it means that during testing, the number
of BS queries are handled simultaneously. We suppose that
in practice, the “first come first served” principle is adopted,
which means each query will be handled individually.
Therefore, to approximate the time cost under real-world

scenarios, we set the batch size to 1 for each deep learning
model and record their time cost on the test sets. Suppose
a model spends T seconds on the test set, and the total
number of queries is denoted as Q, the average time cost of
the model for a given query (t) is calculated as the following:
t = T

Q . Since we may not have enough computation resource
in practice, we also assume that each standalone technique is
executed sequentially. As a result, the overall response time
of Dancer for a given query is estimated by summing up
the time costs of each standalone technique and the fusion
algorithm.

Table 7 illustrates the time costs of each standalone
technique. We first note that all the involved techniques
are generally efficient, i.e., they generally spend less than
0.01s dealing with a query. For instance, GraphCodeBERT,
the least efficient one among the learning based techniques,
spends less than 0.05 searching for candidate code snippets
for a given query on the CSN-Python dataset. On average,
the IR-based technique BM25 has the highest time cost for
a given query on the two datasets, i.e., 0.081s and 0.133s,
respectively. This can be explained by the fact that other
techniques are executed on GPU, which is more powerful
for numeric calculation than CPU. We also observe that
on average, a technique spends more time dealing with
queries from the CSN-Java dataset compared with those
from the CSN-Python dataset. Through in-depth analysis,
we find that it is because queries from the CSN-Java dataset
are generally more complex. Specifically, the average token
numbers of the queries from the CSN-Java and CSN-Python
datsets are 21.2 and 15.3 respectively.

By summing up the time costs of each standalone tech-
nique, we can obtain the overall time cost for the six
standalone techniques to generate their search results for a
given query, which is 0.151s on the CSN-Python dataset and
0.210s on the CSN-Java dataset. We have also investigated
the time cost of using the data fusion approaches to generate
the final ranking results. The results show that all the eight
fusion approaches take less than 5 milliseconds to combine
the results, which is negligible compared with that spent on
generating the results of standalone techniques. To summa-
rize, in practice, the response time for a given query would
be around 0.2s, which is affordable. Table 7 also illustrates
the time costs of training each model. We note that training
is much more time-consuming than test. For instance, on the
CSN-Python dataset, it takes 30,888/30 seconds to train/test
Self-attention, the former being around 5000X larger than the
latter. Totally, it takes 610,506 seconds (≈ 7 days) to train
these models while only 3,340 seconds (less than 1 hour)
to obtain the test results, on the CSN-Python dataset. This
also indicates that once trained, these models can be com-
paratively efficiently queried. As for training, Multi-modal
is the most time-consuming technique, which is within our
expectation since it needs to combine three modals and the
gradient descending could be comparatively slow.

In practice, the response time of Dancer for a given query
would be around 0.2s, which is an affordable time cost.

7 DISCUSSION
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TABLE 7: The time cost of Dancer on two test sets.

Technique
CSN-Python (Query: 22176) CSN-Java (Query: 26909)

Training (s) Test (s) Time/query (s) Training (s) Test (s) Time/query (s)
BM25 - 1,786 0.081 - 3,573 0.133
Self-attention 30,888 30 0.001 29,686 44 0.002
DeGraphCS 164,800 98 0.004 157,722 132 0.005
Multi-modal 317,296 186 0.008 303,666 264 0.010
CodeBERT 8,640 160 0.007 8,304 179 0.007
GraphCodeBERT 88,882 1,080 0.049 85,069 1,458 0.054
Total 610,506 3,340 0.151 584,447 5,650 0.210

TABLE 8: A test query and its corresponding code which is
successfully ranked at top-1 by our fusion approach but failed
by each standalone technique. The numbers refer to the ids of
different candidate code snippets.

Query:
Generate integers from start to (and including!) stop.

Code:
def iseq(start=0, stop=None, inc=1):

if stop is None:
stop = start
start = 0
inc = 1

return arange(start, stop+inc, inc)

BM25 14345 21841 11997 7549 7584 7583 12026 1052 12028 12695
Self-attention 19239 459 21841 4719 16685 460 15407 18888 875 9510
DeGraphCS 7108 21841 6979 4520 17155 13642 5284 15160 20641 19645
Multi-modal 11997 21841 14345 21818 7548 12695 3117 7549 16399 19139
CodeBERT 9265 7108 21841 2935 367 5047 13642 17155 697 19645
GraphCodeBERT 9265 2935 21841 7108 367 12414 19645 17155 5047 21772
DancerCombSUM 21841 7108 17155 19645 13642 697 11997 16891 9265 5284

7.1 Case Analysis

To deeply understand the success of our fusion ap-
proach, we investigate the queries whose corresponding
code snippets cannot be ranked at top-k positions by
any standalone technique but are successfully handled by
our DancerCombSUM fusion approach. Totally, the num-
bers of such queries when k=1/5/10 are 2,422/354/108
(3,454/567/188) respectively on the CSN-Python (CSN-
Java) dataset. Table 8 gives a concrete example from the
CSN-Python dataset. The first part of the table demonstrates
the query and the code. The intention of this query is to
generate an integer array whose range is detailed, and the
corresponding code fulfills this functionality by calling the
arange API from the Numpy package. The second part of
the table illustrates the ids of the code snippets that are
ranked at top-10 by each standalone technique and the
fusion approach. The id of the oracle code is 21841.

From the results, we note that none of the existing tech-
nique can successfully rank the oracle code at top-1 position:
they are disturbed by other candidate code snippets in
the codebase to varying degrees. For instance, the BM25
technique ranks the 14345th code snippet higher than the
oracle. By in-depth analysis, we find that this code snippet
shares high token similarities with the oracle code: they both
contain two overlapped tokens with the query, i.e., start and
stop. Moreover, the token start appears for six times in that
code snippet, which exceeds the number of the oracle (i.e.,
four) and thus leads to a higher term frequency value. As
we have introduced in Section 2, the BM25 technique is a
TF-IDF-like algorithm and hence that code snippet obtains
a relevance score higher than that of the oracle, leading to
the inaccuracy ranking results. We also observe that dif-
ferent techniques are disturbed by different candidate code
snippets. For instance, unlike BM25 which prioritizes a code

snippet with high textual similarity to the oracle, CodeBERT
and GraphCodeBERT both rank another code snippet (i.e.,
the 9265th) at the top position. This code snippet has high
structure similarity to the oracle since it also contains an
if-else structure. However, this code snippet is not within
the top-10 results from any other standalone technique.
Fortunately, the oracle is always ranked at top-3 by all
the standalone techniques. Therefore, after combining the
results from all the techniques, the oracle is successfully
ranked at top-1.

This example shows that different standalone techniques
have unique weaknesses on searching for the correct code,
and fusing the results from different techniques have poten-
tial to alleviate the inaccuracy of each standalone technique.
This is the reason for the success of our fusion approach.

7.2 Comparison with Another Fusion Approach
Besides the data fusion approach, another widely-used ap-
proach in the IR domain for fusion is learning to rank [57],
which typically relies on training a machine learning model
for a ranking task. To further compare the effectiveness of
these two approaches on fusing code search techniques, we
perform another experiment where we use a well-known
learning to rank model, i.e., rankSVM [58], to combine the
six studied techniques by assigning different techniques
with different weights. By conducting this experiment, we
are able to address the question of whether we can assign
different weights to various rankers in order to mitigate the
negative impact brought by underperforming code search
tools. Specifically, each code snippet c is associated with
a vector Scores(c) =< NRS(c, r1), . . . , NRS(c, r6) >,
where NRS(c, ri) denotes the normalized relevance score
of the retrieved code snippet by the ith technique. After that,
this vector is projected to a high-dimension vector space by
a kernel function. Finally, a linear function is used to output
the final score for the code snippet c based on the projected
vector, and it is learned during the training process. The
training goal is to rank the oracle code snippet at the top
position (i.e., with the highest output score).

Following the previous study [59], we perform a 10-fold
cross validation on the evaluation set and sum up the result
in each fold as the final result on the test set. The comparison
between data fusion and learning to rank is shown in
Table 9. From the results, we observe that the learning to
rank model has slightly lower performance compared with
the two most effective data fusion approaches. For instance,
on the CSN-Python dataset, the MRR of the learning to rank
model is 0.909, lower than that of DancerCombSUM , which
is 0.922. Similarly, on the CSN-Java dataset, the MRR of
the learning to rank model is 0.863, still lower than that of
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DancerBorda count, which is 0.878. Such results indicate that
(1) combining different code search techniques is promis-
ing, since both fusion approaches outperform standalone
techniques significantly; and (2) the data fusion approach
outperforms the learning to rank approach on combining
different code search techniques, which demonstrates the
rationale of our approach.

Table 10 illustrates a concrete example. The oracle code
snippet first checks the output (i.e., message) of a function
and then writes the message into an argument. BM25 suc-
cessfully ranks the oracle code at top-1 because there are a
number of overlapped tokens between the query and the
code such as message and key. Relying on the score returned
by BM25, DancerCombSUM also ranks the oracle code at
top-1. In contrast, rankSVM ranks the 4777th candidate
code snippet at the first position, which is ranked at top
positions by CodeBERT (the 5th) and GraphCodeBERT (the
2nd). This case indicates that the weights assigned by the
learning to rank model tend to favor the scores from more
effective standalone techniques (e.g., GraphCodeBERT), but
such incline will not always be appropriate and may lead to
the inaccuracy of the ranking results.

7.3 The Trade-Off between the Effectiveness and the
Computation Resource

In our experiments, we show that by fusing totally six
different code search techniques, the effectiveness can be
enhanced to a large extent compared with each standalone
technique. The majority of the involved techniques are
learning based, which require adequate training before they
can be used. Therefore, one may not have the enough
computation resource if he/she would like to apply our
approach in practice. To address this limitation, we inves-
tigate the question that can we gain significant effectiveness
enhancement against the standalone techniques but use as
few techniques as possible at the same time. To this end,
we design a strategy where each time we select the most
effective one from techniques that are not fused yet and
combine it with those already fused. We then calculate
the effectiveness achieved at each time. This experiment
differs from RQ3: in RQ3, we always fuse five techniques
to dissect the contribution of the excluded one; while here
we fuse different numbers of techniques and investigate the
achieved effectiveness.

We use DancerCombSUM as the fusion approach to
perform such an experiment and the results are shown
in Table 11. We find that when involving the first three
techniques, the effectiveness of the fusion approach already
exceeds that of the standalone techniques to a large extent.
Specifically, on the CSN-Python dataset, if we combine
GraphCodeBERT, CodeBERT, and Self-attention via the Comb-
SUM approach, the obtained MRR will be 0.874, exceeding
that of GraphCodeBERT by around 30%. Also, such a value
already reaches 95% of the upper-bound effectiveness of
combining totally six techniques (0.874/0.922). Similarly, on
the CSN-Java dataset, such a strategy can achieve an MRR
of 0.765, exceeding that of GraphCodeBERT by around 45%.
We also observe that if we combine four or more techniques,
the obtained effectiveness enhancement is significantly less
than that obtained when three techniques are used.

Such results indicate that in practice, one could only
select to use three of the best-performing techniques if
the computation resource is restricted. Then, the obtained
effectiveness is still significantly better than that of the
standalone techniques.

7.4 The Effect of Score Normalization
In our approach, we apply a score normalization step before
applying score-based data fusion approaches, aiming at
alleviating the scale bias of different code search techniques.
To investigate the effect of the score normalization step,
we disable this step and evaluate the effectiveness of the
resultant DancerCombSUM approach, which is the most
effective score-based approach in our experiment.

Results are shown in Table 12. We find that after remov-
ing this step, the effectiveness of the DancerCombSUM ap-
proach experiences a systematic decrease on all the metrics.
For instance, the MRR decreases from 0.922 to 0.888 on the
CSN-Python dataset and from 0.872 to 0.790 on the CSN-
Java dataset, a degree of 3.7% and 9.4% on the two datasets
respectively. Similar trends are observed when it comes to
the SuccessRate metrics. Specifically, the three SuccessRate
metrics will be degraded by 3.4% - 4.0% on the CSN-Python
dataset and by 9.5% - 10.4% on the CSN-Java dataset. Such
results show that our score normalization step contributes to
the final performance of the score-based fusion approaches
significantly, and thus our design decision is reasonable.

7.5 Implications
Evaluating Code Search Techniques. Traditionally, code
search techniques are often used and evaluated individually.
Our work shows that it is easy to combine different code
search techniques. We recommend that users should try to
combine multiple techniques, if the computation resource is
allowed. This further implies that, for tool makers proposing
a new code search technique in the future, they should not
only evaluate the performance of the technique in isolation
but also understand how the technique contributes when
combining with existing techniques.

Efficiency. In the existing evaluation of code search
techniques, efficiency often receives less attention than effec-
tiveness. Our study reveals that state-of-the-art code search
techniques are generally efficient, e.g., on average, our study
subjects usually spend less than 0.1 second dealing with a
single query. This suggests that efficiency should be taken
into consideration when evaluating newly-proposed code
search techniques: a newly-proposed approach should be
efficient to make the time cost of combining it with existing
techniques in a reasonable limit.

Methods for Combining Approaches. Our study uses
a classical approach from the information retrieval domain,
i.e., data fusion, to combine different code search techniques.
Our results show that such a simple combination can out-
perform standalone techniques significantly. However, our
combination approach may have limitation. Specifically, we
treat each technique as a black box and only combine their
results (i.e., the scores and ranks of code snippets). This
strategy misses the opportunity to utilize the intermediate
results produced during the calculation, and one may won-
der whether deeper features rather than scores would have
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TABLE 9: The comparison between the data fusion and learning to rank approaches on our evaluation datasets.

Technique CSN-Python CSN-Java
MRR SR@1 SR@5 SR@10 MRR SR@1 SR@5 SR@10

DancerBorda count 0.913 0.881 0.955 0.969 0.878 0.844 0.919 0.939
DancerCombSUM 0.922 0.894 0.956 0.968 0.872 0.839 0.913 0.936
Learning to rank 0.909 0.883 0.941 0.953 0.863 0.827 0.905 0.932

TABLE 10: A test query and its corresponding code which is
successfully ranked at top-1 by our fusion approach but failed
by the learning to rank model.

Query:
Check for message and write the message with key “mes-
sage”.

Code:
def poke(self, context):

message = self.pubsub.get_message()
if message and message['type'] == 'message':

context['ti'].xcom_push(key='message', value=message)
self.pubsub.unsubscribe(self.channels)
return True

return False

BM25 307 17340 10204 6996 18048 2337 10203 11931 11932 11933
Self-attention 9066 21245 12866 17778 18401 5455 9696 4538 9226 3991
DeGraphCS 13373 21290 2196 15773 17857 11972 7380 13575 18284 7477
Multi-modal 13020 10141 18874 13675 17923 21674 1187 6337 20759 15430
CodeBERT 22009 307 14369 4539 4777 14376 14044 8423 20259 14609
GraphCodeBERT 20454 4777 21266 20103 307 22015 15733 22009 20259 9571
DancerCombSUM 307 4777 22009 20454 14369 8423 14376 20259 14044 15733
rankSVM 4777 307 20454 22009 8423 14369 14376 20259 14044 15733

TABLE 11: Effectiveness achieved by DancerCombSUM when
fusing different numbers of code search techniques.

Step Involved techniques MRR (CSN-Python) MRR (CSN-Java)
1 GraphCodeBERT 0.682 0.534
2 + CodeBERT 0.699 0.546
3 + Self-attention 0.874 0.765
4 + Multi-modal 0.900 0.858
5 + DeGraphCS 0.919 0.865
6 + BM25 0.922 0.872

In each step, the listed technique is combined with those used in
the last step for fusion.

made a difference. Therefore, more novel ways to combine
different code search techniques are left to be explored in the
future. Similarly, we only explore using the scores and ranks
from six techniques as the feature vectors for the learning to
rank model. Constructing more advanced features that take
into consideration the real information about the query and
the oracle code deserves in-depth exploration in the future.

Technique Categorization. Our study demonstrates for
the first time the complementarity of existing code search
techniques from the perspectives of both the inter- and intra-
categories. This observation suggests that future technical
improvement within any of the three categories should
be appreciated since it holds potential to boost the fusion
effectiveness.

7.6 Threats to Validity

External Validity. All our results and findings may be re-
stricted to the CodeSearchNet dataset. However, this dataset
is the largest and most popular dataset in the code search
domain [1], [32], [60]. As we have shown in Table 3, the
test set of this dataset usually contains tens of thousands
of queries. Such a large-scale ensures the diversity of the
test set and we consider performing experiments on other
benchmarks as our future work. Also, our study focuses
on the Java and Python programming languages since they
are widely-studied languages in the code search domain

[1], [5], [7], [10] and there exist well-maintained program
analysis tools for these languages. We recall that some of our
investigated approaches need to parse the code snippets into
tree structures, obtain the intermediate representations, or
build graph structures (e.g., DegraphCS and Multi-modal).
Therefore, to evaluate datasets for other languages, one
should consider whether appropriate tools are readily avail-
able for reproduction. Nevertheless, we will explore such
evaluations in future research.

Internal Validity. We totally include six code search tech-
niques in this study. To avoid replication bias, we reuse the
source code released by the authors of each technique. The
data fusion approaches are implemented by ourselves. To
ensure there is no implementation errors, the authors care-
fully checked the code. Furthermore, all the code and results
of this study are open accessed at our online repository. In
the evaluation, we mimic the real world application scenario
of code search by matching the comment to its correspond-
ing code snippet. A related concern is the similarity between
the comment and the actual query used by the developers.
The rationale of such a setting is that the comment usually
summarizes the main functionality of the code, making the
code-comment pair close to actual use scenarios. This can be
supported by previous studies [23], [47], where the authors
showed that common queries from developers are similar to
the comments (i.e., either being identical to the comment or
by slightly prepending the comment with “how to”/“how
do I”). The collection of code-comment pairs from open-
source projects enables large-scale evaluations to compre-
hensively assess a technique’s effectiveness, and thus such a
setting has been adopted by many existing studies [5], [10],
[12], [24], [31], [33], [60]. Therefore, we follow this setting by
using a well-established benchmark (i.e., CodeSearchNet).
User study under the real world application scenario is left
as our future work.

8 RELATED WORK

8.1 Combinations via Data Fusion
As an effective approach in the IR domain, data fusion
has been utilized by researchers to address software engi-
neering (SE) tasks. Fusion Localizer [40] tries to combine
fault localization results from different techniques using
five classic data fusion approaches such as the CombSUM
and Borda count. Revelle et al. [61] applied data fusion to
feature location, which is to identify the source code that
implements specific functionality in software. They fused
program textual information, dynamic execution features,
and dependency relations. Rahman et al. [62] provided
actionable insights for avoiding non-reproducible bugs by
combining the analyses from multi-modal studies. Moti-
vated by these studies, we propose to apply data fusion
approaches to improve code search effectiveness. To our best
knowledge, we are the first to explore this direction.
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TABLE 12: The effectiveness of DancerCombSUM with and without score normalization.

Variant CSN-Python CSN-Java
MRR ↓ (%) SR@1 ↓ (%) SR@5 ↓ (%) SR@10 ↓ (%) MRR ↓ (%) SR@1 ↓ (%) SR@5 ↓ (%) SR@10 ↓ (%)

DancerCombSUM w/o normalization 0.888 3.7 0.858 4.0 0.923 3.5 0.935 3.4 0.790 9.4 0.759 9.5 0.820 10.2 0.839 10.4
DancerCombSUM w/ normalization 0.922 0.894 0.956 0.968 0.872 0.839 0.913 0.936

8.2 Combinations via Learning to Rank

As another widely-used technique in the IR domain, learn-
ing to rank has also been utilized by researchers to address
various SE tasks. Xuan and Monperrus [63] explored to
combine different spectra-based fault localization (SBFL)
formulae with a learning to rank model. Later, Zou et al. [59]
showed that all the fault localization formulae, including
the spectra-based ones and those built upon other types of
information such as the stack trace and program slicing, can
be combined through a learning to rank model. Ye et al. [64]
utilized a learning to rank model to recommend relevant
files for bug reports in which features encoding domain
knowledge such as the API documentation and code change
history are fused.

8.3 Other Specially-Designed Combinations

Beyond leveraging off-the-shelf IR algorithms, researchers
also proposed specially-designed strategies to fuse infor-
mation from differetn sources. Benton et al. [65] utilized
the patches generated by different automated program re-
pair techniques to help refine the fault localization results
through specially-designed heuristics. Fang et al. [66] fused
the syntax and semantic features of code for detecting
functional code clones through a joint code representation
model. Wang et al. [67] proposed that the effectiveness
for assessing patch correctness can be boosted through
combining the results from different techniques, using the
majority voting strategy. Lin et al. [68] combined heuristics
with a learning-based model by predicting which technique
to use for better comment update results. These studies also
motivate us to explore the combination of different code
search techniques.

9 CONCLUSION

We study code search techniques from the literature and
show, through an explorative investigation, that various
approaches proposed so far are complementary. We then
propose Dancer, a fusion-based approach for enhancing
code search effectiveness. Our approach fuses the search
results obtained by existing code search techniques in a
manner that enables to leverage their complementarity in
order to achieve substantially higher performance. Our ex-
periments investigated six state-of-the-art code search tech-
niques and explored eight classic data fusion approaches.
Applied on two large-scale datasets, the off-the-shelf data
fusion approaches significantly outperform each state-of-
the-art technique. Future studies in code search domain
could devote to explore more specially-designed fusion
approaches for further effectiveness enhancement, which is
a promising direction. Availability: For open science, we re-
lease our artifact at: https://doi.org/10.5281/zenodo.7016108,
including the source code and results of both standalone
techniques and our fusion approaches.
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