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ABSTRACT
Code comment generation aims at generating natural language
descriptions for a code snippet to facilitate developers’ program
comprehension activities. Despite being studied for a long time, a
bottleneck for existing approaches is that given a code snippet, they
can only generate one comment while developers usually need
to know information from diverse perspectives such as what is
the functionality of this code snippet and how to use it. To tackle
this limitation, this study empirically investigates the feasibility of
utilizing large language models (LLMs) to generate comments that
can fulfill developers’ diverse intents. Our intuition is based on the
facts that (1) the code and its pairwise comment are used during
the pre-training process of LLMs to build the semantic connection
between the natural language and programming language, and
(2) comments in the real-world projects, which are collected for
the pre-training, usually contain different developers’ intents. We
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thus postulate that the LLMs can already understand the code from
different perspectives after the pre-training. Indeed, experiments on
two large-scale datasets demonstrate the rationale of our insights:
by adopting the in-context learning paradigm and giving adequate
prompts to the LLM (e.g., providing it with ten or more examples),
the LLM can significantly outperform a state-of-the-art supervised
learning approach on generating comments with multiple intents.
Results also show that customized strategies for constructing the
prompts and post-processing strategies for reranking the results
can both boost the LLM’s performances, which shed light on future
research directions for using LLMs to achieve comment generation.
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1 INTRODUCTION
Code comment generation (a.k.a. code summarization) targets the
ambition of automatically generating a concise and fluent natural
language description of source code. It is considered as a critical
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way to facilitate program comprehension since developers usually
forget or have no time to write such comments, and thus holds
the potential of boosting software development and maintenance
activities. During the years, a number of studies have been devoted
into advancing the state of the art in this domain [4, 28, 32]. For
instance, information retrieval techniques, which focus on extract-
ing some important tokens from the code, are used in the early
stage [25, 58], followed by some recent works applying advanced
deep learning techniques on this task, such as the neural machine
translation (NMT) model [5, 28].

Despite the achieved tremendous progress in this domain, one
critical problem that downgrades the practicality of existing code
comment generation approaches is that they can only generate
comments describing one aspect of a given code snippet (and thus a
one-to-one mapping). In practice, however, developers often write
comments with diverse intents to summarize the code from di�erent
perspectives (e.g., what is the main functionality of the code and
how can we use it). For instance, Zhaiet al.[75] manually checked
comments from real-world projects and identi�ed six categories
of intents hidden in the comments (as shown in Table 1). Muet al.
[47] did the statistics of top-starred Java projects on GitHub and
found that around 67% of the methods contain more than one
intent in their comments. The above observations indicate that what
developers really need is a one-to-many mapping (i.e., generating
multiple comments that summarize the given code from di�erent
perspectives), which is referred to as themulti-intent comment
generation task in this paper.

To tackle the aforementioned task, Muet al.[47] proposed an
approach named DOME, where an attention mechanism is used
to focus on di�erent parts of code for di�erent intents. However,
DOME is based on supervised learning, which limits its e�ective-
ness due to the amount of data available for training. To address
the data shortage problem, we propose to borrow the weapon of
large language models (LLMs) [8], which are pre-trained on a data
corpus of a very large scale in the self-supervised manner and
have captured a lot of domain knowledge during such a process.
The application of LLMs to the multi-intent comment generation
task is motivated by two factors. Firstly, LLMs designed for the
code domain are typically pre-trained using code and its associated
pairwise comments to establish semantic connections between pro-
gramming language and natural language [19, 67]. For example,
the commonly used pre-training task, masked language modeling
[15, 19, 24], is speci�cally intended to align programming language
and natural language representations. Secondly, existing research
has shown that code comments from real-world projects, which
form the training corpus for LLMs, often contain multiple intents
[47]. As a result, during pre-training, LLMs are trained to under-
stand code from various perspectives, potentially allowing them
to capture di�erent code semantics. Thus, by fully exploiting the
capabilities of pre-trained LLMs, we can achieve good performances
on the multi-intent comment generation task.

Recently, in-context learning has been shown to be an e�ec-
tive way to exploit the domain knowledge hidden in the LLMs
[8, 11, 48, 60], since the format of the inputs to the model can
be consistent to that during the pre-training process. Inspired by
these studies, we aim to investigate the feasibility of addressing

the multi-intent comment generation task with in-context learn-
ing. Generally, in-context learning requires to provide a prompt
to the model which is composed of a natural language instruction
describing the detailed information of the task, (optionally) a hand-
ful of examples demonstrating how the task could be well done,
and a query that is required to be addressed. Therefore, a follow-
up question is that, with in-context learning, how can we obtain
better results from the LLMs (e.g., if it is possible by designing
prompts that can guide the LLMs towards the desired output). To
provide empirical evidence on the aforementioned questions, we
investigate the following aspects in this study: (a) Can the LLMs
support to accomplish the multi-intent comment generation task
using the in-context learning paradigm? (b) Can we improve the
performance of the LLMs by designing customized demonstration
selection strategies? and (c) Can we improve the performance of
the LLMs by designing customized strategies to post-process the
obtained results?

To that end, we perform extensive experiments on two large-
scale Java language datasets, which are Funcom [36] and TLC [30].
We use the OpenAI Codex model as the representative LLM because
of its superior performances on several code intelligence tasks
[48, 54]. Our study makes the following important �ndings:

F1:When the LLM is not adequately prompted (i.e., the number
of demonstration examples is less than 10), the potential of
the LLMs may not be fully exploited and the e�ectiveness
is sub-optimal compared with that of the state-of-the-art
supervised learning approach, DOME; in contrast, when the
number of demonstration examples reaches ten, the LLM is
more adequately prompted and its performance exceeds that
of the DOME approach.

F2: Demonstration selection strategies can help LLMs better
understand the on-going task and thus enhance their e�ec-
tiveness to a large extent: when the number of examples is
ten and the code snippets which are most similar to the tar-
get one are used as the demonstration examples, the BLEU
values of Codex can be increased by 97% and 131% on the
two datasets, respectively, compared with random selection.

F3: The outputs of LLMs can be reranked based on simple heuris-
tics to achieve further performance enhancement: compared
with the experiment setting mentioned above, the BLEU val-
ues of Codex can be improved by 9.9% and 9.6%, respectively,
on the two datasets if the comment of the corpus code which
is similar to the target one can be used for guiding the output
reranking.

Our study demonstrates that LLMs can potentially be applied
to multi-intent comment generation since it builds strong perfor-
mance baselines on this task, which should be considered by tool
designers in future evaluation. Further implications include that de-
vising better demonstration selection strategies as well as reranking
strategies are both promising research directions.

2 BACKGROUND AND RELATED WORKS
2.1 Comment Generation
Automatic code comment generation, which aims at summarizing
code with concise natural language descriptions, is a critical task to
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Table 1: The intent taxonomy of code comments [12, 75].

Category De�nition Example

What Describes the functionality of a method
�Checks if the tile units at the given coordinates
are displayed on the screen�

Why
Explains the reason why a method is provided
or the design rationale of the method

�Prepare to start making calls to the currently
registered callbacks�

How-to-use
Describes the usage or the expected set-up of
using a method

�Code executed before the intercepted method�

How-it-is-done Describes the implementation details of a method
�Ends the current table, discards it and pops the
top of the stack to be the new current table�

Property
Asserts properties of a method including
pre-conditions or post-conditions of a method

�Returns true if the value is a string that matches
a regex�

Others Unspeci�ed or ambiguous comments �I am done with the model, free the resources �

facilitate program comprehension. Many approaches have been pro-
posed to construct a set of manually-de�ned complex rules, based
on which comments can be generated following speci�c templates
[25, 27]. With the recent advancement of the deep learning, a hot
line of researches has suggested applying deep neural networks
(DNNs) to this task. By modeling code as the input and comment as
the output, such neural comment generation (NCG) approaches au-
tomatically learn a function, which is usually a DNN model such as
the neural machine translation model, that can produce the output
given the input. Such a DNN model is learned using existing large-
scale code-comment pairwise data. CodeNN [32] is an early attempt
in this direction that uses only code token sequences, followed by
various approaches that utilize the AST structure [4, 28, 29], API
knowledge [30], type information [9], global context [7, 26, 66],
reinforcement learning [22, 62, 65], multi-task learning [72], dual
learning [68, 73], pre-trained language models [19, 21, 67], and hy-
brid approaches [69, 77]. In addition, a number of works also focus
on generating latest and informative comments based on outdated
comments (a.k.a comment updating) [39, 40].

The aforementioned approaches, however, can only generate
comments describing one aspect of a given code snippet, which
limits their practicality since developers usually express multiple in-
tents when commenting the code [12, 47, 75]. That is to say, merely
generating comments describing a speci�c aspect of a code snippet
(e.g., the functionality of the code) may not meet the developers'
requirements about comprehensively summarizing the code (e.g.,
how to use the code). Speci�cally, according to the previous studies
[12, 47, 75], developers usually have six categories of intents when
commenting the code, i.e.,what, why, how-to-use, how-it-is-done,
property, andothers. In Table 1, we list the detailed de�nition and
example for each category. The fact that developers usually express
multiple intents in the comments cast threats to the practicality of
existing single-intent comment generation techniques. To address
this challenge, Muet al. [47] propose a developer-intent driven
code comment generation approach DOME, which aims to produce
a comment coherent with a given intent. It works by leveraging
the attention mechanism guided by the given intent to focus on
the most relevant information from the code. To our best knowl-
edge, DOME is so far the only existing technique that can generate
diverse comments given di�erent categories of intents.

2.2 Large Language Models
Large language models (LLMs) trained on massive corpora of unla-
belled data have been shown to perform well on a wide range of
tasks, including natural language generation, semantic parsing, and

code generation [8, 16, 56]. The reason for their strong power can
be concluded as they do not need task-speci�c training data and can
be pre-trained on tremendous in-the-wild data in a self-supervised
manner (a.k.a. pre-training), so that su�cient domain knowledge
can be captured. The pioneer of this direction, the GPT model [55],
was �rstly proposed in 2018. After that, a number of follow-up
studies continuously enhance the state-of-the-art performances by
adjusting the model architecture (e.g., BERT [16]) or increasing the
total amount of parameters (e.g., GPT-3 [8]).

Codex, released by OpenAI, is an LLM based on the GPT-3 ar-
chitecture (i.e., contains a Transformer-based decoder) [2]. It pow-
ers GitHub Copilot, an AI pair programmer that generates the
whole code function given a natural language description. Codex
is trained on a massive code corpus containing code-comment
pairwise examples from many programming languages including
Python, JavaScript, C/C++, Go, Perl, PHP, Ruby, Swift, TypeScript,
SQL and Shell. Similar to GPT-3, Codex adopts the auto-regressive
manner during the pre-training, in which given a sequence of code/-
comment tokens, it is trained to predict the next token and the
predicted token is recursively used as the input for the next predic-
tion until the end of the sequence. In our study, we use Codex as
the representative LLM since it is a popular LLM in the software
engineering domain and has been widely studied in the literature
[10, 14, 18, 34, 49, 52, 54, 78].

2.3 In-Context Learning
Previously, to apply a pre-trained model on downstream tasks,
users need to further train it on the labelled data of downstream
tasks in a supervised manner (a.k.a. �ne-tuning) [16, 43]. Compared
with training a model from scratch, this paradigm can exploit the
knowledge learned by the pre-trained model and thus achieve better
performance [38, 44]. Such a paradigm, however, mainly has two
limitations. First, the data used for pre-training and �ne-tuning are
in di�erent formats, which makes the learned knowledge of the
model cannot be fully leveraged during the �ne-tuning process [63].
Second, the �ne-tuning process can be extremely time-consuming
and resource-intensive, especially when it comes to large language
models which usually contain billions of parameters [8].

To address the aforementioned limitations,in-context learn-
ing is recently proposed and quickly becomes a research hotspot
after that [8]. Such a paradigm denotes that a few training examples
and/or task descriptions together with a developer query that needs
to be answered are sent into a large language model to produce a
response of the query, without any parameter update. Basically, in
the in-context learning paradigm, a prompt needs to be provided
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for a code intelligence task, e.g., code summarization. By employ-
ing prompts, large language models are shown to be e�ective in
di�erent tasks that the model is not explicitly trained on, without
the need of task-speci�c data [63].

Generally, the rationale of the in-context learning is that since
large language models have been trained on corpora of a very
large scale, they must have absorbed much domain knowledge
and are thus expected to generalize well to unseen tasks without
�ne-tuning [ 8]. Our study shares a similar motivation. Speci�cally,
considering that (1) large language models, e.g., Codex, are trained
on a large-scale corpus containing tremendous amount of code-
comment pairwise data from real-world, and (2) the real-world
comments usually contain di�erent categories of developers' in-
tents, we postulate that the large language models are capable of
understanding the code from di�erent perspectives and thus hold
the potential to generate comments with diverse intents given a
code snippet. By using the in-context learning, such potentials of
LLMs can be exploited.

3 STUDY DESIGN
3.1 Research Questions
The goal of our study is to investigate the e�ectiveness of large
language models on multi-intent comment generation using the
in-context learning paradigm. To this end, we propose to answer
the following research questions.

� RQ1: What is the e�ectiveness of Codex on multi-intent
comment generation using zero-shot, one-shot, and few-
shot learning? As the very �rst RQ, we aim at investigating
the feasibility of addressing the multi-intent comment genera-
tion problem with in-context learning. Speci�cally, we do not
use any customized design and only select code demonstrations
randomly. Our target is to investigate how e�ective is the vanilla
in-context learning compared with the state-of-the-art DOME
approach. The results can also re�ect to what extent the number
of demonstrations (i.e., zero-shot, one-shot, and few-shot) a�ect
the e�ectiveness.

� RQ2: Can the e�ectiveness be improved by retrieval-based
demonstration selections? Some recent works have demon-
strated that the quality of the demonstrations in the prompt
can signi�cantly impact the e�ectiveness of in-context learning
[45, 48, 60]. Inspired by these studies, we propose to investigate
whether customized demonstration selection approaches can
help improve the model's performance. Speci�cally, to answer
this question, we design two retrieval-based approaches that se-
lect code examples similar to the code speci�ed in the developer
query, and evaluate their e�ectiveness.

� RQ3: Can the e�ectiveness be improved by reranking strate-
gies?A large language model experiences a sampling process
to obtain the outputs [11, 49, 61, 78]. That is to say, a developer
can obtain di�erent results from the model for the identical in-
put. In this RQ, we further investigate the feasibility of boosting
the model's performance in a post-processing manner: by �rst
obtaining a number of results and then reranking them through
a pre-de�ned heuristic. Answering such a question can provide
guidance for applying the approach in practice: it can make us

clear about to what extent we can obtain more quali�ed results
by sampling multiple outputs.

3.2 The Prompt Template for Multi-Intent
Comment Generation

Formally, a prompt is de�ned as%= fGtest ¸ CD ¸ NL g, where
NL is a natural language template,CD = f¹ G8•~8ºg=

8=1 is a set of
code demonstrations composed by input code sequence¹G8º and
desired output sequence¹~8º, andGtest is a developer query to
be inferred. Speci�cally, if8 = 0 which means there is no code
demonstration, the setting is known aszero-shot learning; if 8= 1
which means there is only one code demonstration, the setting is
known asone-shot learning; andfew-shot learningmeans there is
a number of code demonstrations. Also, there is a constraint that
size¹Pº � context-window, which means the prompt should �t
within the context window limit of the language model.1

Figure 1 illustrates a prompt template for the multi-intent com-
ment generation task. The input prompt contains two sections: the
code demonstrationsCD and the queryGtest . The natural language
instructions are denoted by the lines starting with the special token
�#�. In the �rst line of the prompt, we �rst tell the model the speci�c
programming language it is working on (e.g., Java) and then the
desired intent of the comment, as highlighted in the red, is speci�ed
by following the de�nitions shown in Table 1. In concrete, for the
�what� intent, we add the prompt �Describe the functionality of
the method�; for the �why� intent, we add the prompt �Explain
the reason why the method is provided or the design rationale
of the method�; for the �how-to-use� intent, we add the prompt
�Describe the usage or the expected set-up of using the method�;
for the �how-it-is-done� intent, we add the prompt �Describe the
implementation details of the method�; for the �property� intent,
we add the prompt �Assert properties of the method including pre-
conditions pr post-conditions of the method�. In this example, the
illustrated prompt aims at generating a comment that ful�lls the
�what� intent. The �rst line is then followed by a number of code
demonstrations that can help the LLM to understand the expected
behavior and each demonstration contains one code snippet and
one corresponding comment within the desired intent category.
Each code demonstration is separated with a delimiter �###�. Finally,
the model is asked to output the desired comment of the query code,
which is shown at the bottom of the �gure.

3.3 Demonstration Retrieval
Note that the code demonstrations used in RQ1 are randomly se-
lected from a corpus. While in RQ2, we aim at investigating whether
customized demonstration selection can enhance the e�ectiveness.
Therefore, we design two strategies to retrieve similar code demon-
stration examples from the corpus whose comments' intents belong
to the desired category. The rationale is that a few demonstrations
that are similar to the target one may help the model better un-
derstand the desired behaviour [45, 48, 60]. The whole process of
such a paradigm is shown in Figure 2: given a code snippet and the
required intent category, we select code examples that are similar
to the target one and use the retrieved code together with their

1Language models limit the amount of contextual information that could be fed it to
the model; the context window for Codex is limited to 8,000 tokens
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Figure 1: Multi-intent code summarization prompt template.

Figure 2: Overview of our in-context learning-based code summarization.

comments to construct a prompt whose template is shown in Fig-
ure 1. The prompt is used to query the model and obtain the results.
We next introduce the two retrieval strategies in detail.

� Token-based: The most commonly-used strategy to identify
similar code is focusing on the overlap with respect to the code
tokens [23, 33, 76]. Inspired by these studies, our �rst retrieval
strategy is also based on the token level information, i.e., to rank
the code snippets from the code corpus based on their token
similarities with the target code. In concrete, we �rst pre-process
the target code snippet and the code snippets in the retrieved
code corpus by removing the keywords de�ned in the program-
ming language (i.e., Java in our study). The behind intuition is
that such frequently-used tokens may bring side e�ects to the
similarity calculation because a large number of code snippets
would contain them, inspired by the recent study [17]. Then, we
further split identi�ers into sub-tokens to adequately leverage the

semantic information hidden in the identi�er names [53]. Specif-
ically, such a process is achieved by utilizing the camel cases and
the underscore naming convention of Java language. Finally, we
convert all the sub-tokens to lower case. As for the token-based
similarity between a candidate code snippet and the target code
(BC>:4=), we exploit the Jaccard Coe�cient [50] for the calculation,

which is de�ned as follows:Btoken =
j tokenstarget \ tokenscandidatej
j tokenstarget [ tokenscandidatej

whereC>:4=BC0A64Cdenotes the sub-token list of the target code
andC>:4=B20=3830C4denotes the sub-token list of the candidate
code. The value ofBC>:4=ranges from 0 to 1. A larger value of
BC>:4=indicates a higher similarity between the target code and
the candidate code from the retrieved set.

� Semantic-based:Recent studies in the clone detection domain
have also revealed that beyond the lexical level code token sim-
ilarity, understanding the code semantics is also important for
�nding similar code [64,74]. Therefore, our second strategy relies
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