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ABSTRACT
Test-based automated program repair has been a prolific field of re-
search in software engineering in the last decade. Many approaches
have indeed been proposed, which leverage test suites as a weak, but
affordable, approximation to program specifications. Although the
literature regularly sets new records on the number of benchmark
bugs that can be fixed, several studies increasingly raise concerns
about the limitations and biases of state-of-the-art approaches. For
example, the correctness of generated patches has been questioned
in a number of studies, while other researchers pointed out that
evaluation schemes may be misleading with respect to the process-
ing of fault localization results. Nevertheless, there is little work
addressing the efficiency of patch generation, with regard to the
practicality of program repair. In this paper, we fill this gap in the
literature, by providing an extensive review on the efficiency of test
suite based program repair. Our objective is to assess the number of
generated patch candidates, since this information is correlated to
(1) the strategy to traverse the search space efficiently in order to
select sensical repair attempts, (2) the strategy to minimize the test
effort for identifying a plausible patch, (3) as well as the strategy to
prioritize the generation of a correct patch. To that end, we perform
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a large-scale empirical study on the efficiency, in terms of quantity
of generated patch candidates of the 16 open-source repair tools
for Java programs. The experiments are carefully conducted under
the same fault localization configurations to limit biases. Eventu-
ally, among other findings, we note that: (1) many irrelevant patch
candidates are generated by changing wrong code locations; (2)
however, if the search space is carefully triaged, fault localization
noise has little impact on patch generation efficiency; (3) yet, cur-
rent template-based repair systems, which are known to be most
effective in fixing a large number of bugs, are actually least efficient
as they tend to generate majoritarily irrelevant patch candidates.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software defect analysis; Software testing and debug-
ging.

KEYWORDS
Patch generation, Program repair, Efficiency, Empirical assessment.
ACM Reference Format:
Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bis-
syandé, Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves
Le Traon. 2020. On the Efficiency of Test Suite based Program Repair : A
Systematic Assessment of 16 Automated Repair Systems for Java Programs.
In 42nd International Conference on Software Engineering (ICSE ’20), May
23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3377811.3380338

1 INTRODUCTION
In the last decade, Automated Program Repair (APR) [11, 26, 41]
has extensively grown as a prominent research topic in the soft-
ware engineering community. Figure 1 overviews the research ac-
tivities of this topic. The associated literature includes a broad
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range of techniques that use heuristics (e.g., via random muta-
tion operations [25]), constraints solving (e.g., via symbolic execu-
tion [44]), or machine learning (e.g., via building a code transfor-
mation model [13]) to drive patch generation. A living review of
automated program repair research appears in [42], which shows
that the research in this field has been revived with the seminal
work, ten years ago, of Weimer et al. [56] on generate-and-validate
approaches. Patches are generated to be applied on a buggy pro-
gram until the patched program meets the desired behaviour. In
the absence of formal specifications of the desired behaviour, test
suites are leveraged as affordable partial specifications for validat-
ing generated patches. Over the years, the community has incre-
mentally advanced the state-of-the-art with numerous test-based
approaches that have been shown effective in generating valid
patches for a significant fraction of defects within well-established
benchmarks [16, 27, 36, 49].
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Figure 1: APR research publications since 20091.
Several studies have revisited the constraints and performance

of program repair systems, and have thus contributed to shaping
research directions towards improving the state-of-the-art. For
example, Qi et al. [48] have early shown that repair tools generate
mostly overfitting patches (i.e., patches that pass the incomplete
test suites) but are actually incorrect. Their study led to assessment
results being now carefully presented in a way that highlights the
capability of new approaches to correctly repair programs. Motwani
et al. [43] then questioned whether state-of-the-art approaches can
deal with hard and important bugs. Liu et al. [29] recently revealed
significant biases with fault localization configurations in APR
system evaluations. More recently, Durieux et al. [7] have shown
that state-of-the-art tools may actually be overfitting the associated
study benchmarks.

Performance measurement of repair systems has evolved to pro-
gressively consider the number of correctly-fixed bugs or the di-
versity of benchmark bugs [7] that are fixed. Another performance
aspect that deserves investigation is the efficiency of the patch
generation system. It is however mentioned in only a few assess-
ment reports [12, 63]. Yet, efficiency is a key property for bringing
program repair into general use within practitioners’ settings. In-
deed, APR aims to alleviate the manual effort involved in resolving
software bugs, and holds this promise in two scenarios: in pro-
duction, it is expected to drastically reduce the time-to-fix delays
and minimize downtime; in a development cycle, APR can help
suggest changes to accelerate debugging. Yet, until now, literature
approaches [15, 31, 31, 51, 63] have mainly focused on highlighting
the increased performance on eventually fixing more and more
benchmark bugs. In recent work, Ghanbari et al. [12] raised the effi-
ciency issue and built on the time cost criterion to demonstrate the
efficiency of their PraPR tool (which does not require re-compiling
1Data are extracted from Monperrus’s living review on APR [42].

source code). This criterion, which was already mentioned in a
few of the previous work [33, 57, 63], however, has limitations
with respect to generalizability (cf. Section 2): execution time is (1)
dependent on many variables that are unrelated to the approach
implemented in the repair system; and (2) is generally unstable.

We postulate that the efficiency of test-based program repair
should be assessed along with the following question: how many
attempts does the repair systemmake before catching a valid
patch? In previous work, Qi et al. [47] have formulated this ques-
tion into a metric that served to assess the effectiveness of fault
localization techniques in a platform-agnostic manner. To the best
of our knowledge, little attention has been paid to measuring repair
efficiency by estimating the number of validated patch candidates.

In this paper, we report on the results of a large scale empiri-
cal study on the efficiency of test-based program repair systems.
Our study considers 16 APR systems targeting Java programs, and
performs a systematic assessment under identical and controlled
fault localization configurations. The objective of this work is to
contribute a comprehensive analysis of repair efficiency to the lit-
erature with respect to generated patches for a large spectrum of
APR systems. Eventually, we gather insights on how the strategies
of approaches in the literature affect repair efficiency. Overall, we
mainly find that:

F0: So far, efficiency is not a widely-valued performance target.
We found that state-of-the-art APR tools are the least effi-
cient. This calls for an industry investigation of the impact
of efficiency on adoption (or lack thereof).

F1: Across time, repair tools subsume each other in terms of
which benchmark bugs can be fixed. Unfortunately, effective-
ness (i.e., how many bugs are eventually fixed) is increased
at the expense of efficiency (i.e., how many repair attempts
are made before a given bug is fixed).

F2: Template-based repair systems are generally inefficient as
they produce too many patch candidates. However, when the
templates are mined from clean datasets or are specialized
to specific bugs, efficiency can be substantially improved.

F3: Literature approaches develop a few strategies, such as con-
straint solving or donor code search, which contribute to
drastically reducing the nonsensical or in-plausible patches.

F4: APR systems that implement random search over the repair
search space require large sets of patch candidates to increase
the likelihood of hitting a correct patch.

F5: Implementation details can diversely influence the repair
efficiency of an APR approach.

2 BACKGROUND AND MOTIVATION
Test suite based program repair systems commonly implement a
three-step pipeline as illustrated in Figure 2: fault localization,
which produces a ranked list of suspicious code locations that
should be modified to fix the bug; patch generation, which im-
plements the change operators that are applied on the buggy code
locations; and patch validation, which executes the test cases to
check that the patched program meets the behaviour (approxima-
tively) specified by the test suite.

If a patch candidate can pass all the given test cases (both previously-
passing and previously-failing test cases on the buggy version), it is
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Figure 2: Standard steps in a pipeline of Automated ProgramRepair.

regarded as a valid patch. This criterion was first used by Weimer
et al. [56] in their seminal work on GenProg, and has become the
de-facto metric of repair performance [26]. Nevertheless, as later
studies have revealed, even if a generated patch can pass all test
cases, it might break a necessary behaviour or introduce other
faults, which are not covered by the given test suite [52]. Besides,
a developer may not accept the patch due to several reasons such
as coding convention [17, 40]. All such valid patches in terms of
the test suite are therefore now referred to as plausible since they
require further investigations to ensure that they are correct, i.e.,
acceptable to developers. In the literature, correctness is generally
assessed manually by comparing the APR-generated patch against
the developer-provided patch available in the benchmark.

Studies in the literature, such as the recent work of Durieux et al. [7]
on benchmark overfitting, generally focus on information about
plausible patches given that correctness is hard to assess. Our work
is the first to explore artifacts from the literature, where researchers
provide correctness labels of their generated patches, in order to
extract and categorize implicit rules used by the community to
define correctness. We expect that these rules will be studied and
augmented by the community to enable systematic assessment of
correctness.

Efficiency of APR tools has been assessed in the literature [12,
14, 57, 63] via measuring the time-to-generate-and-validate patches.
Table 1 presents the time cost of the PraPR [12] state-of-the-art
repair tool on Defects4J [16] program samples. On average, for
each Closure bug, PraPR generated and validated more than 29
thousand patches, approximately 10 times more than the average
number of patches that are generated and validated for each Chart
bug. Yet, the time cost for Closure bugs is 20 times more than the
time cost for Chart bugs. This suggests that it is challenging to
define a generically-suitable time budget for repairing bugs. We fur-
ther note that correlation tests did not reveal any linear correlation
between the time cost of repairing a bug and benchmark properties
such as the number of test cases or program sizes. Consequently,
time cost may not be a reliable metric for efficiency.

Table 1: Average PraPR time cost (s) & # patches per bug [12].

Subjects # Validated Patches Time cost (s)
Chart 2,827.6 157.8
Closure 29,849.9 3,027.3

To further highlight the biases that execution time may carry, we
refer to literature settings of time budgets for running APR systems:
ACS [63] and SimFix [15] are evaluated with repair time budgets
of 30 minutes and 5 hours, respectively. Furthermore, in [15], as-
sessment comparison between ACS and SimFix does not consider
the bias related to the difference between the execution platforms.
A comparison of performance (in terms of how many bugs each
tool can fix) may, therefore, be misleading: a given bug may have

been fixed by one tool because the time budget is sufficient while it
cannot be fixed by the other due to lack of time.

With two simple experimental runs of compiling and testing
Defects4J samples, we confirm our concerns: time budgets could
introduce biases for different bugs. Indeed, as revealed in Figure 3,
different machine configurations may lead to drastically diver-
gent compiling and testing time: irrespectively of projects. The
Mann–Whitney–Wilcoxon tests [37, 60] confirm that the first ma-
chine consumes statistically significantly more CPU time than the
second machine either for compilation or for testing Defects4J
buggy programs. These results definitively suggest that time cost
is not a reliable metric to enable reproducible and comparable ex-
periments on the efficiency of program repair.
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Figure 3: Distribution CPU times for compiling and testing De-
fects4J programs.
• Machine 1 runs OS X El Capitan 10.11.6 with 2.5 GHz Intel Core i7, 16GB 1600MHz DDR3 RAM.

• Machine 2 runs macOS Mojave 10.14.1 with 2.9 GHz Intel Core i9, 32 GB 2400MHz DDR4 RAM.

Instead, we propose to rely on the metric of number of gener-
ated patch candidates, which should be intrinsic to the approach
and agnostic of machine configuration variabilities.

3 STUDY DESIGN
This section presents the design details of this empirical study.

3.1 Research Questions
Overall, our investigation into the efficiency of test-based APR
systems seeks answers for the following research questions (RQs):
(1) RQ1. Repairability across time: We first revisit the classical

performance criterion of APR systems, which is about the re-
pairability (i.e., effectiveness): howmany bugs can be fixed by test
suite based repair approaches? Our investigation goes beyond
previous studies in the literature by (i) systematically assessing
a large range of repair systems under the same configurations
(see Section 3.3.2); and (ii) exploring not only plausibility but
also the correctness of patches (see Section 3.3.3). Eventually,
we investigate the evolution across time of effectiveness to bet-
ter discuss the need for revisiting efficiency as an important
complementary performance criterion.

(2) RQ2. Patch generation efficiency: Based on the experimen-
tal outputs of benchmarking repair systems in RQ1, we can
investigate the efficiency of test-based repair: how many patch
candidates are generated and checked before fixing a given bug?
Although program repair is often regarded as a background/of-
fline task, efficiency remains critical since resource budgets are
limited. Therefore, efficiency may have adverse effects on the
adoption of the repair system and even on its effectiveness. In
this RQ, we extensively review two cases of invalid patches
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whose generation may undermine efficiency: nonsensical and
in-plausible patches (see Section 3.5).

(3) RQ3. Fault Localizationnoise impact on efficiency: Finally,
given that fault localization is known to provide noisy inputs
to repair, we investigate its impact on efficiency to highlight
repair directions for mitigations. Mainly, we question whether
some repair strategies are more or less resilient to repair attempts
on wrong code locations. Our study differs from recent work [29]
in the literature, which explores the bias of fault localization on
repairability with only one repair system.

3.2 Subject Selection
Our study focuses on APR systems targeting Java programs. Java is
indeed today the most targeted language in the community of pro-
gram repair. Furthermore, a well-formed dataset of real-world Java
program bugs is available, with the necessary tool support to read-
ily compile and execute programs. Although we initially planned
to consider all repair approaches proposed in the last decade, we
were limited by the fact that many APR tools are not open-source
or even publicly available.

In the end, APR systems considered for our study are systemati-
cally selected based on the following criteria:
(1) Availability: our study involves the execution of APR tools, thus

APR approaches without publicly available tools are excluded.
(2) Executability: some APR approaches provide publicly available

tools, which however cannot be executed as-is for diverse issues
(e.g., ssFix [61] failed to execute because of an online connection
to a private search engine fails). We exclude such approaches
from the study.

(3) Configurability: to limit biases, we need to configure the dif-
ferent tools to use the same input information (e.g., fault local-
ization details). We, therefore, exclude APR approaches whose
tools cannot be readily configured. For example, HDRepair [22]
implementation is tied to an assumption that exact information
on the faulty method is first available.

(4) Standalone: finally, our selection ensures that we focus on APR
approaches where the tools can be run if provided with Java
program source code and the available test suite. Therefore, any
tool that would require extra data is excluded (e.g., LSRepair [32]
requires run-time code search over Github repositories).
We consider two sources of information to identify Java APR

tools: the community-led program-repair.org website and the living
review of APR by Monperrus [42]. As of July 2019, 31 APR tools
were targeting Java programs listed in the literature. After system-
atically examining these tools, 16 are found to satisfy our criteria
and are therefore finally selected. Table 2 enumerates all Java-based
APR tools and provides arguments for rejection/consideration. We
categorize them into three main categories: heuristic-based [26],
constraint-based [26], and template-based [17] repair approaches.

Heuristic-based repair approaches. These approaches construct
and iterate over a search space of syntactic program modifica-
tions [26]. Associated tools include jGenProg [38], GenProg-A [67],
ARJA [67], RSRepair-A [67], SimFix [15], jKali [38], Kali-A [67], and
jMutRepair [38]. jGenProg and GenProg-A are Java implementa-
tions of GenProg [56], which generates patches by searching donor
code from existing code with the genetic programming method.

Table 2: Included and excluded APR tools for our study.
Selected Reason APR Tools for Java Programs

No Not public
PAR [17], xPAR [22], JFix/S3 [21], ELIXIR [50],

Hercules [51], SOFix [33], CapGen [57], PraPR$ [12].

No Faulty method
required HDRepair [22], JAID [4], SketchFix [14].

No Other LSRepair∗ [32], ssFix★ [61], DeepRepair† [59], NPEFix‡ [6].

Yes Open-source
& working

jGenProg [38], jKali [38], jMutRepair [38], Cardumen [39],
DynaMoth [8], Nopol [64], ACS [63], SimFix [15],
kPAR [29], FixMiner [19], AVATAR [30], TBar [31],

ARJA [67], GenProg-A [67], Kali-A [67], RSRepair-A [67].
$PraPR was not available before August 2019. ∗LSRepair relies on the data from the run-time
GitHub repositories and needs a private deep learning model [28] and an online code search
engine [18] to search syntactically- or semantically-similar code, which would be biased to assess
its repair efficiency.★ssFix fails to execute as it relies on a private code search engine that is failed
to connect. †DeepRepair is not working, thus it is not selected. ‡NPEfix is not selected as it does
not use any fault localization technique.

ARJA is also a genetic programming approach to optimizing the
exploration of the search space by combining three different ap-
proaches. RSRepair-A is a Java implementation of RSRepair [46],
a Random-Search-based Repair tool, which tries to repair faulty
programs with the same mutation operations as GenProg but uses
random search, rather than genetic programming, to guide the
patch generation process. SimFix utilizes code change operations
from existing patches and similar code to build two search spaces,
of which intersection is further used to search fix ingredients for re-
pairing bugs. jKali and Kali-A are Java implementations of Kali [48]
that fixes bugs with three actions: removal of statements, modifica-
tion of if conditions to true/false, and insertion of return statements.
jMutRepair implements the mutation-based repair approach [5]
for Java programs, with three kinds of mutation operators (i.e.,
relational, logical and unary) to fix buggy if-condition statements.

Constraint-based repair approaches. These approaches generally
focus on fixing a single conditional expression that is more prone
to defects than other types of program elements. Nopol [64], Dy-
naMoth [8] ACS [63], and Cardumen [39] are dedicated to repairing
buggy if conditions and to adding missing if preconditions. Nopol
relies on an SMT solver to solve the condition synthesis problem.
DynaMoth leverages the runtime context, which is a collection of
variable and method calls, to synthesize conditional expressions.
ACS is proposed to refine the ranking of ingredients for condition
synthesis. Cardumen repairs bugs by synthesizing patch candi-
dates at the level of expressions with its mined templates from the
program under repair to replace the buggy expression.

Template-based repair approaches. These approaches are also of-
ten referred to as pattern-based and include kPAR [29], AVATAR [30],
FixMiner [19] and TBar [31]. kPAR is the Java implementation of
PAR [17] that repairs bugs with fix patterns manually summarized
from human-written patches. FixMiner automatically mines fix pat-
terns from the code repository for patch generation. AVATAR relies
on the fix patterns for static analysis violations. TBar combines
diverse fix patterns collected from the literature.

Note that, technically, template-based repair approaches can be
viewed as heuristics-based approaches. In this study, however, we
separate them in their category to highlight their specificity. Finally,
there exist some repair approaches that are enhanced by machine
learning techniques. Le Goues et al. [26] refer to them as learning-
based repair approaches. One example of such approaches is the
Prophet tool by Long and Rinard [35]: it learns from a corpus of code
a model of correct code, which indicates how likely a given piece
of code is w.r.t. the code corpus. Our criteria of subject selection

http://program-repair.org/
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however excluded all learning-based repair as they are generally
not “standalone”.
Our study considers the most diverse set of repair tools in the litera-
ture for a systematic assessment of APR. Notably, we cover different
categories of repair approaches, while the previous record for a large
scale study, which is held by Durieux et al. [7] on APR benchmark
overfitting, did not consider the most widespread template-based
tools. Furthermore, their study did not include ACS and SimFix from
the current state-of-the-art in Java APR.

3.3 Experiment Settings
We now overview the inputs (i.e., buggy programs and fault local-
ization information) and the validation process used in our study.
3.3.1 Defect Benchmark. TheAPR literature includes several bench-
marks [16, 17, 36, 49]. In recent work, Durieux et al. showed that
APR systemmay overfit the study benchmarks in terms of repairabil-
ity. Since our objective is on efficiency, we focus on a single com-
monly used benchmark in the literature. We consider Defects4J [16]
as it has been widely employed to assess approaches [15, 22, 32, 57],
or to conduct various APR studies [34, 53, 55, 58], as well as other
software engineering research [2, 3, 45, 47]. Defects4J consists of
395 bugs across six Java open source projects. Its dissection infor-
mation [53] shows that the dataset contains a diversity of bug types.
Our experiments thus consist of running each selected APR tool
to generate patches in an attempt to fix each Defects4J bug. Over-
all, our experiments led to 347,603 repair attempts (each attempt
requiring program compilation and testing against the test suite).
3.3.2 Fault Localization. As reported by Liu et al. [29], repair per-
formance of APR tools could be biased by fault localization settings.
To minimize such potential bias, we take on the challenge and im-
plementation effort to re-configure all APR tools so that they are
using the same fault localization information for each Defects4J bug.
In our experiments, we employ the latest release of GZoltar v1.7.2,
an on-hand test automation framework. Note that early versions of
this tool were widely used in the APR community [15, 38, 57, 63].
However, Liu et al. revealed that the new version yields better re-
sults in the context of program repair [29]. For sorting suspicious
statements, we use the Ochiai[1] ranking metric. Eventually, APR
tools are fed with a ranked list of suspicious source code statements
that should be changed within the buggy program to repair it.
3.3.3 Patch Validation. Patch validation is performed by APR sys-
tems based on the execution outcome of regression and bug-triggering
test cases, i.e., test cases that are passed by the buggy program and
those that, because they are not passed, reveal the existence of a bug.
If a patch candidate can make the revised buggy program pass the
entire test suite successfully, it is considered as a valid patch. Such
a patch, however, could be incorrect if it is just overfitting the test
suite [48, 62]. Thus, the community has adopted the terminology
of plausible [48] patches to refer to patches that pass all test cases.

In recent literature, following the criticism on overfitting, re-
searchers are shifting towards investigating correctness [20, 62]. So
far, this has been a manual effort based on a recurrent criterion: a
plausible patch is considered as correct when it is semantically similar
to the developer’s patch in the benchmark. Unfortunately, the scope
of semantics for APR is not explicitly defined as it is subjective.

Table 3: Example rules that the community applies to confirm se-
mantic similarity between tool-generated and developer-provided
patches.

Rule ID Rule description Illustrations

R1
Different fields with the
same value (or alias)

- return cAvailableLocaleSet.contains(locale);

+ return availableLocaleList().contains(locale);

e.g., AVATAR→Chart-7 + return cAvailableLocaleList.contains(locale);

R2
Same exception but
different messages

+ throw new NumberFormatException(str +

" is not a valid number.");

e.g., ACS→Time-15 + throw new NumberFormatException();

R3

Variable initialization
with new rather than a
default value

+ if (str == null) str = "";

e.g., TBar→Lang-47 + if (str == null) str = new String();

R4
if statement instead + classes[i] = array[i] == null ? null : array[i].getClass();

of a ternary operator + if (array[i] == null) continue;

e.g., TBar→Lang-33 + classes[i] = array[i].getClass();

R5
Unrolling a method - this.elitismRate = elitismRate;

+ setElitismRate(elitismRate);

+ if (elitismRate>(double)1.0){throw ...;}

e.g., ACS→Math-35 + if (elitismRate<(double)0.0){throw ...;}

R6
Replacing a value
without a side effect

- int g = (int) ((value - this.lowerBound) / (this.upperBound

+ int g = (int) ((v - this.lowerBound) / (this.upperBound

e.g.,
FixMiner→Chart-24

- v = Math.min(v, this.upperBound);

+ value = Math.min(v, this.upperBound);

R7 Enumerating - if (fa * fb >= 0.0 ) {

+ if (fa * fb > 0.0 ) {

e.g., ACS→Math_85 + if (fa * fb >= 0.0 &&!(fa * fb==0.0))

R8 Unnecessary code
uncleaned

- boolean wasWhite= false;

for(int i= 0; i<value.length(); ++i) {

- if(Character.isWhitespace(c)) { ...... }

- wasWhite= false;

e.g.,
AVATAR→Lang-10

- if(Character.isWhitespace(c)) { ...... }

- wasWhite= false;

R9 Return earlier instead of
a packaged return

- return foundDigit && !hasExp;

+ return foundDigit && !hasExp && !hasDecPoint;

e.g., ACS→Lang-24 + if (hasDecPoint==true){return false;}

R10 More null checks + if (searchList[i] == null || replacementList[i] == null)

+ { continue; }

e.g., SimFix→Lang-39
+ if(noMoreMatchesForReplIndex[i]||searchList[i]==null

+ ||searchList[i].length()==0||replacementList[i]==null)

+ { continue; }

We applied these rules to determine whether a plausible patch is a correct one when it is syntactically different
from the patch that a developer wrote. In the second column, “tool_name→bugID” denotes that the patch
generated by the tool is identified as correct. The patches in the grey background are generated by APR tools
while the patches in the white background are patches written by the developers.

We propose in this work to provide a first attempt of explicitly
determining semantic similarity among patches. Our objective is
to reduce the threat of subjectivity and enable reproducible experi-
ments. To that end, we call on the community and consider labels of
patches within APR research artifacts. We manually revisit patches
that are generated by APR tools and which researchers have con-
sidered as correct in the literature. The objective is to unveil the
implicit rules that researchers use to make the decisions on correct-
ness. We find that there are broadly two scenarios when comparing
a generated patch against the developer-provided patch:
(1) Identical patches: in this case, the two patches are exactly

identical, excluding variations in whitespace, layout, and com-
ments.

(2) Semantically-similar patches: in this case, the patches are
not identical, although developers regard that they have the
same effect on the program behavior. In Table 3 we summarize a
taxonomy of correctness decision based on our study of patches
labeled as correct by the research community. This taxonomy
is based on the patches generated by ACS, SimFix, AVATAR,
FixMiner, kPAR, and TBar whose authors investigated correct-
ness and provided their manually labeled patches as research
artifacts.
In the remainder of this paper, for the experiments with the 16

APR tools, we will systematically build on the rules of Table 32 to
label plausible patches as correct. Thus, unless a generated patch is

2We enumerated only 10 rules in this paper due to space limitation. Please visit https:
//github.com/SerVal-DTF/APR-Efficiency for more rules and detailed descriptions.

https://github.com/SerVal-DTF/APR-Efficiency
https://github.com/SerVal-DTF/APR-Efficiency
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identical to the developer patch, it must fall under rules R1-10 to
be labeled as correct. Our rules are certainly not exhaustive neither
for defining semantic similarity nor for defining patch correctness.
We call on a community effort to augment these rules to enable
reproducible research.

Due to space constraints, we only detail here a single rule. Con-
sider rule R5: In the illustration example, the developer patch en-
sures that boundaries are checked by calling a function that imple-
ments it. In contrast, a patch generated by ACS [63] directly inserts
the necessary code to check the boundary. Both patches, which are
not syntactically identical, are semantically similar.

In the end, plausible and correct patches have the following
relationship: Let 𝑃 and 𝐶 be sets of plausible and correct patches,
respectively. It always holds𝐶 ⊆ 𝑃 . We compute |𝐶 |

|𝑃 | as theCorrect-
ness Ratio (CR) of generated plausible patches that are correct.

3.3.4 Halting Threshold. In the APR community, it is commonly
accepted that patch generation processes are halted if a system runs
out of the time budget before being able to find a valid patch. As
discussed in Section 2, time can be a biased metric. Therefore, in this
study, we propose to halt the repair systems by setting a threshold
of repair attempts for a given bug. We set the threshold of attempts
as 10,000. This number is selected based on the reported average
number (9,696.5) of patch candidates generated by PraPR [12] for
its fixed bugs. Given that PraPR works at the mutation level and
does not require re-compilation, the number of attempts could be
higher than that of other tools and it is high enough for the 16 APR
tools employed in this study.

3.4 Terminology
Given that correct patches are first and foremost plausible patches,
we propose in this work to use the term valid patches when re-
ferring to all plausible patches (including correct ones). Unless
otherwise specified, we will also refer to as plausible all valid
patches that have not yet been manually assessed as correct. We
consciously avoid the term incorrect since the definition of correct-
ness in Section 3.3.3 is sound, to some extent3, but is not complete
(i.e, there are some cases of semantic similarity that are missed).

3.5 Efficiency Metric: NPC
As motivated in Section 2, we employ as efficiency metric in this
study the number of patch candidates (NPC) generated by APR tools
until the first plausible patch is found. This metric was initially pro-
posed byQi et al. [47] as a proxy tomeasure the performance of fault
localization techniques based on program repair tools. JAID [4] and
PraPR [12] recently used them to highlight the performance of their
approaches. Nevertheless, efficiency has not been systematically
assessed before. In this study, we further differentiate generated
patches that turn out to be invalid into two groups:
(1) Nonsensical patch: Such a patch cannot evenmake the patched

buggy program successfully compile [17, 40].
(2) In-plausible patch: Such a patch lets the patched buggy pro-

gram successfully compile, but fails to pass some test cases in
the available test suite.

3The developer-patch provided in the benchmark, which we use as ground truth, may
be erroneous as well.

Our efficiency metric is then computed by summing the number of
patches in each category:

𝑁𝑃𝐶 = 𝑁𝑃𝐶𝑛𝑜𝑛𝑠𝑒𝑛𝑠𝑖𝑐𝑎𝑙 + 𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 + 𝑁𝑃𝐶𝑣𝑎𝑙𝑖𝑑

In practice, 𝑁𝑃𝐶𝑣𝑎𝑙𝑖𝑑 == 1 since the generation of patches is halted
as soon as the first valid patch is found. In this study, since we aim
to investigate the repair efficiency, we focus on bugs for which the
repair attempts were successfully concluded. Thus, our experimen-
tal data do not mention the cases where many patch candidates are
generated but none of them was valid. We leave this investigation
as a future study.

4 STUDY RESULTS
We now provide experimental data as well as the key insights that
are relevant to our research questions.

4.1 RQ1: Repairability Across Time
Table 4 provides execution outcomes of 16 repair tools on the De-
fects4J benchmark. We count the number of bugs that are plausibly
fixed by each tool implementation, and further provide the number
of plausible patches that can be considered as correct following the
rules of patch validation (cf. Section 3.3.3).
Table 4: Numbers of Defects4J bugs that are correctly (plausibly)
fixed by the different APR tools.

APR Tool C Cl L M Mc T Total CR(%)
jGenProg 0 (5) 0 (2) 0 (2) 3 (11) 0 (0) 0 (0) 3 (20) 15
GenProg-A 0 (5) 2 (15) 0 (1) 0 (9) 0 (0) 0 (0) 2 (30) 6.7
jMutRepair 1 (4) 2 (5) 0 (2) 2 (11) 0 (0) 0 (0) 5 (22) 22.7
kPAR 3 (13) 2 (10) 1 (18) 4 (22) 0 (0) 0 (1) 10 (63) 15.9
RSRepair-A 0 (4) 2 (22) 0 (3) 0 (12) 0 (0) 0 (0) 2 (41) 4.9
jKali 0 (4) 1 (8) 1 (4) 2 (9) 0 (0) 0 (0) 4 (25) 16
Kali-A 0 (6) 2 (48) 0 (0) 1 (10) 0 (1) 0 (0) 3 (65) 4.6
DynaMoth 0 (6) N/A 0 (2) 1 (13) 0 (0) 0 (1) 1 (22) 4.5
Nopol 0 (6) N/A 1 (6) 0 (18) 0 (0) 0 (1) 1 (31) 3.2
ACS 2 (2) 0 (0) 3 (3) 10 (16) 0 (0) 1 (1) 16 (22) 72.7
Cardumen 1 (4) 0 (2) 0 (0) 1 (6) 0 (0) 0 (0) 2 (12) 16.7
ARJA 1 (10) 2 (29) 0 (3) 4 (15) 0 (1) 0 (0) 7 (58) 12.1
SimFix 3 (8) 7 (19) 5 (16) 10 (25) 0 (0) 0 (0) 25 (68) 36.8
FixMiner 5 (14) 0 (2) 0 (2) 7 (15) 0 (0) 0 (0) 12 (33) 36.4
AVATAR 5 (12) 7 (15) 4 (13) 3 (17) 0 (0) 0 (0) 19 (57) 33.3
TBar 7 (16) 3 (12) 6 (21) 8 (23) 0 (0) 0 (0) 24 (72) 30.8

∗The numbers outside the parentheses indicate the bugs fixed with correct patches while the
numbers inside parentheses indicate the number of plausible patches. The missing numbers are
marked with N/A as we failed to change the fault localization input for Closure program bugs
for DynaMoth and Nopol, of which fault localization is tightly tied with GZoltar-0.0.1. “C, Cl,
L, M, Mc, and T” represent Chart, Closure, Lang, Math, Mockito and Time, respectively. The
same as Table 8.
• [Template-based repair tools are the most effective.] We observe

that kPAR, FixMiner, AVATAR and TBar, which are template-based
repair tools, present better repair performance than other tools in
terms of the number of fixed bugs. The state-of-the-art, SimFix,
also performs among the top. Note that, although it is classified
as heuristics-based, and does not use templates explicitly, it per-
forms transformations based on similar changes, and thus has been
presented in previous studies [31] as template-based.

• [Patch ordering strategies are necessary to increase the likelihood
of hitting correct patches.] Among the 16 repair tools, ACS exhibits
the highest ratio of plausible patches that are found to be correct.
This experimental finding confirms the strategy used by the authors
to increase “precision”4 in patch generation: these are dependency-
based ordering, document analysis, and predicate mining.

4Precision is the terminology employed by its authors to refer to the ratio of correct
patches to plausible patches.
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Table 5: Number of overlapped fixed bugs per repair tool.
jGenProg GenProg-A jMutRepair kPAR RSRepair-A jKali Kali-A DynaMoth Nopol ACS Cardumen ARJA SimFix FixMiner AVATAR TBar

jGenProg 5.0% (1) 40.0% (8) 45.0% (9) 55.0% (11) 45.0% (9) 40.0% (8) 40.0% (8) 35.0% (7) 25.0% (5) 20.0% (4) 30.0% (6) 60.0% (12) 80.0% (16) 45.0% (9) 60.0% (12) 85.0% (17)
GenProg-A 26.7% (8) 0.0% (0) 36.7% (11) 46.7% (14) 90.0% (27) 33.3% (10) 80.0% (24) 23.3% (7) 20.0% (6) 16.7% (5) 10.0% (3) 96.7% (29) 40.0% (12) 30.0% (9) 43.3% (13) 53.3% (16)
jMutRepair 40.9% (9) 50.0% (11) 4.5% (1) 68.2% (15) 50.0% (11) 59.1% (13) 54.4% (12) 31.8% (7) 22.7% (5) 18.2% (4) 13.6% (3) 63.6% (14) 77.3% (17) 45.5% (10) 86.4% (19) 90.9% (20)
kPAR 17.5% (11) 22.2% (14) 23.8% (15) 6.3% (4) 25.4% (16) 25.4% (16) 25.4% (16) 22.2% (14) 25.4% (16) 11.1% (7) 7.9% (5) 39.7% (25) 49.2% (31) 34.9% (22) 57.1% (36) 74.6% (47)
RSRepair-A 22.0% (9) 65.9% (27) 26.8% (11) 39.0% (16) 2.4% (1) 26.8% (11) 75.6% (31) 19.5% (8) 22.0% (9) 12.2% (5) 7.3% (3) 85.4% (35) 29.3% (12) 19.5% (8) 39.0% (16) 41.5% (17)
jKali 32.0% (8) 40.0% (10) 52.0% (13) 64.0% (16) 44.0% (11) 8.0% (2) 56.0% (14) 40.0% (10) 24.0% (6) 8.0% (2) 12.0% (3) 56.0% (14) 56.0% (14) 20.0% (5) 76.0% (19) 68.0% (17)
Kali-A 12.3% (8) 36.9% (24) 18.5% (12) 24.6% (16) 47.7% (31) 21.5% (14) 23.1% (15) 13.8% (9) 9.2% (6) 3.1% (2) 1.5% (1) 63.1% (41) 21.5% (14) 15.4% (10) 29.2% (19) 27.7% (18)
DynaMoth 31.8% (7) 31.8% (7) 31.8% (7) 63.6% (14) 36.4% (8) 45.5% (10) 40.9% (9) 0.0% (0) 54.5% (12) 13.6% (3) 9.1% (2) 50.0% (11) 54.5% (12) 50.0% (11) 54.5% (12) 59.1% (13)
Nopol 16.1% (5) 19.4% (6) 16.1% (5) 51.6% (16) 29.0% (9) 19.4% (6) 19.4% (6) 38.7% (12) 19.4% (6) 12.9% (4) 6.5% (2) 25.8% (8) 25.8% (8) 19.4% (6) 38.7% (12) 35.5% (11)
ACS 18.2% (4) 22.7% (5) 18.2% (4) 31.8% (7) 22.7% (5) 9.1% (2) 9.1% (2) 13.6% (3) 18.2% (4) 40.9% (9) 13.6% (3) 36.4% (8) 22.7% (5) 18.2% (4) 31.8% (7) 40.9% (9)
Cardumen 50.0% (6) 25.0% (3) 25.0% (3) 41.7% (5) 25.0% (3) 25.0% (3) 8.3% (1) 16.7% (2) 16.7% (2) 25.0% (3) 8.3% (1) 25.0% (3) 58.3% (7) 50.0% (6) 50.0% (6) 83.3% (10)
ARJA 20.7% (12) 50.0% (29) 24.1% (14) 43.1% (25) 60.3% (35) 24.1% (14) 70.7% (41) 19.0% (11) 13.8% (8) 13.8% (8) 5.2% (3) 6.9% (4) 31.0% (18) 25.9% (15) 39.7% (23) 43.1% (25)
SimFix 23.5% (16) 17.6% (12) 25.0% (17) 45.6% (31) 17.6% (12) 20.6% (14) 20.6% (14) 17.6% (12) 11.8% (8) 7.4% (5) 10.3% (7) 26.5% (18) 19.1% (13) 25.0% (17) 39.7% (27) 58.8% (40)
FixMiner 27.3% (9) 27.3% (9) 30.3% (10) 66.7% (22) 24.2% (8) 15.2% (5) 30.3% (10) 33.3% (11) 18.2% (6) 12.1% (4) 18.2% (6) 45.5% (15) 51.5% (17) 9.1% (3) 54.5% (18) 75.8% (25)
AVATAR 21.1% (12) 22.8% (13) 33.3% (19) 63.2% (36) 28.1% (16) 33.3% (19) 33.3% (19) 21.1% (12) 21.1% (12) 12.3% (7) 10.5% (6) 40.4% (23) 47.4% (27) 31.6% (18) 5.3% (3) 78.9% (45)
TBar 23.6% (17) 22.2% (16) 27.8% (20) 65.3% (47) 23.6% (17) 23.6% (17) 25.0% (18) 18.1% (13) 15.3% (11) 12.5% (9) 13.9% (10) 34.7% (25) 55.6% (40) 34.7% (25) 62.5% (45) 5.6% (4)

The intersection of tool X (row) and tool Y (column) contains the percentage of bugs fixed by X which are also fixed by Y. For instance, 40% of the bugs fixed by jGenProg (row 1) are also fixed by GenProg-A
(column 2). On the contrary, 26.7% of the bugs fixed by GenProg-A (row 2) are also fixed by jGenProg (column 1). While the diagonal cells present the number of bugs exclusively fixed by each repair tool.
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• [Through time, repair tools tend to subsume their predecessors
in terms of which bugs are fixed.] Table 5 provides statistics on the
percentage of fixed bugs that are overlapping between two repair
tools. In this table, the tools in column headers and row headers are
ordered chronologically concerning the date of approach publica-
tion. Note that jGenProg ranked based on the GenProg publication
year although the tool itself was implemented years later. We note
that the upper-right side of the table is relatively darker than the
rest: the percentages of overlapping are higher for these cells. These
results suggest that, overall, the bugs that are fixed by earlier tools
are also generally covered by more recent tools. Besides, evolution
trends presented in Figure 4 show that, although the number of
bugs that are fixed by the different tools over the years is increasing,
the number of new bugs is increasing with small increments. This
result suggests that the strategies implemented in new approaches
tend to have similar outcomes as merging past techniques to cover
previous bug sets that were fixed each via different approaches.

• [Recent APR tools tend to correctly fix more bugs than their
predecessors.] In the right part of Figure 4, a visible breakthrough
is the sharp increase of the light grey area indicating that recent
tools increasingly correctly fix bugs which have not been fixed
by previous tools. We further summarize in Figure 5 the number

of bugs that each tool can correctly fix exclusively or not. SimFix,
ACS, AVATAR, and TBar are leading repair tools that generate
correct fixes for more bugs. In contrast, jGenProg, GenProg-A,
jMutRepair, RSRepair-A, jKali, Kali-A, DynaMoth, and Cardumen
do not correctly fix any Defects4J bug that is not also correctly
fixed by another tool.

• [Implementation details can make a difference.] Finally, we ob-
serve that Java-targeted implementations of GenProg (i.e, jGenProg
and GenProg-A) and Kali (i.e., jKali and Kali-A) by different research
groups yield diverging repair performance on the same benchmark.

Overall the systematic study of repairability of APR tools across
time reveals that (1) recent tools tend to fix more bugs than their
predecessors; (2) each newly-proposed repair tool however plausibly
fix few bugs that were not fixed by other tools; (3) more bugs can be
correctly-fixed by lately-proposed APR tools; and (4) template-based
repair tools are the most effective to eventually produce plausible
patches. It thus remains unclear whether the strategies proposed
by record-setting tools are improving the state-of-the-art of patch
generation. We propose to focus on efficiency as a complementary
metric to assess performance gains.

4.2 RQ2: Patch Generation Efficiency
Following our motivation argument in Section 2, we use the 𝑁𝑃𝐶

scores (i.e., number of generated patch candidates that are checked
until a valid patch is found) to measure repair efficiency of APR
tools. For each tool, the results focus on Defects4J bugs that are
fixed (i.e., a valid patch was eventually found). Indeed, through
efficiency, we attempt tomeasure the ability of the APR tool to
avoidwasting computing resource, time and energy in patch
validation towards generating a valid patch.

Figure 6 overviews the general distributions of 𝑁𝑃𝐶 scores of
the 16 repair tools on the Defects4J benchmark. For all tools, the
median 𝑁𝑃𝐶 is lower than 250 patch candidates. However, the
distribution spread among bugs is not only significant for several
(8 out of 16) tools but also varies across tools.

•[Efficiency is not yet a widely-valued performance target.] SimFix,
TBar and kPAR exhibit the highest𝑁𝑃𝐶 scores which can go beyond
1,000 patch candidates for some bugs. Correlating this data with
repairability findings (Section 4.1), we note that tools with highest
repairability scores also have the highest 𝑁𝑃𝐶 scores (hence, lower
efficiency). In particular, we note that APR approaches, which rely
on change patterns (i.e., standard template-based tools) or heuristi-
cally search for donor code based on code similarity (e.g., SimFix),
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Figure 6: The distribution of NPC scores for 16 APR tools.

produce the largest number of patch candidates. They are effective
since they end-up finding a valid patch, but they are not efficient
as they generate too many patches (comparing against other ap-
proaches) for repair attempts. On the other hand, constraint-based
APR tools (e.g., ACS) have the lowest 𝑁𝑃𝐶 scores. There is, there-
fore, an insight that constraint-solving and synthesis strategies,
although they might require more computing effort to traverse the
search space, eventually yield patches which waste less resource
during test-based validation.

• [The state-of-the-art can avoid generating nonsensical patches.]
Figure 7 illustrates the contribution of nonsensical and in-plausible
patches to the 𝑁𝑃𝐶 scores. The distributions of nonsensical patches
are interesting with respect to different claims in the literature. In-
deed, to motivate their seminal work on template-based program
repair, Kim et al. [17], authors of the PAR tool, stated that pioneer
genetic programming based repair tools had the limitation that
it could generate nonsensical patches. Our empirical assessment
results back up this claim. However, our results also reveal that
template-based repair tools (e.g., kPAR and TBar) have not fulfilled
the claimed promise since they produce the largest numbers of non-
sensical patches. This finding calls for a triaging strategy targeting
nonsensical patches within the search space. In this regard, our
experimental results highlight three tools (i.e., DynaMoth, Nopol,
and SimFix), which do not generate any nonsensical patches.

Nopol uses an SMT solver to address the condition patch synthe-
sis problem. DynaMoth leverages the runtime context, collects vari-
able and method calls to synthesize conditional expression patches.
SimFix heuristically searches similar code from the intersection of
two search spaces: one is for donor code and the other one is for
code change actions, to generate patches. A noteworthy result is
that, while Nopol and DynaMoth overall generate few candidates,
SimFix generates the largest number of patch candidates, none of
which is ever found nonsensical. This finding suggests that code
similarity has a large influence and can be useful for effectively
triaging the repair search space.

Besides Nopol, Dynamoth, and SimFix, five repair tools (i.e,
jMutRepair, jKali, Kali-A, Cardumen and ARJA) generate signifi-
cantly more in-plausible patches than nonsensical ones. jMutRepair,
jKali and Kali-A are implemented with simple mutation operators
that are unlikely to prevent the programs from compiling. However,
these mutation operations can lead to test failures. ARJA’s efficiency
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Figure 7: Distributions of 𝑁𝑃𝐶𝑛𝑜𝑛𝑠𝑒𝑛𝑠𝑖𝑐𝑎𝑙 and 𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒
scores for each APR tools.

w.r.t. nonsensical patch generation is likely due to the combination
of different search strategies that drive its genetic programming.

• [The more templates an APR system considers, the more nonsen-
sical and in-plausible patches it will generate.] TBar contains more
fix templates than kPAR, FixMiner and AVATAR since it merges
all literature templates. Therefore, each suspicious buggy location
has a higher probability in TBar to be matched with more tem-
plates, leading to more patch candidates than other tools. This
finding highlights the importance of strategies for fix template
matching and donor code searching to improve the repair efficiency
of template-based repair tools.

• [Specialized templates increase the efficiency of APR tools.]
Among the template-based repair tools, kPAR has the smallest
number of templates. Indeed it includes 10 templates manually pre-
pared by Kim et al. [17], while AVATAR includes 11, TBar integrates
35 and FixMiner considers 28. Nevertheless, experimental results
for NPC scores (cf. Figure 6) and the dissection in non-sensical and
in-plausible categories (cf. Figure 7) reveal that kPAR is the least effi-
cient. According to the authors’ source code of the tools, these tools
use the same search space traversal strategy and implementation.
Therefore, the only difference being about the included templates,
we can safely conclude that the nature of these templates is driving
the efficiency performance. AVATAR indeed focuses on templates
obtained by curated datasets of fixes: all mined code changes are for
static analysis violations which are systematically validated as ac-
tual fixes. FixMiner, on the other hand, augments its templates with
relevant contextual information to ensure that they are applied on
code locations that are syntactically similar to the locations where
the templates where mined.

• [Correct patches are sparse in the search space.] Long et al. [34]
presented an initial study which revealed that correct patches can
be considered as sparse in the search space and that overfitting
patches [20, 23, 48, 62] (i.e., only plausible but not correct) are vastly
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more abundant. We extend their study to consider the cases of in-
plausible patches that are produced "before any plausible patch"
(i.e., including if it is correct) vs. "before a correct patch" (i.e., only
if the plausible is correct). Figure 8 illustrates the distributions of
𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 scores for all fixed bugs and only correctly-fixed
ones. We observe that for tools such as TBar, AVATAR, FixMiner,
and kPAR, the median of 𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 scores for correctly-fixed
bugs is lower than the median for all fixed bugs. This means that,
when a correct patch can be found, the number of in-plausible
patches that are generated before is fewer than when only a plau-
sible patch can be found. The situation is the converse for SimFix
and ARJA. Therefore, we note that for most tools, a correct patch
is more efficiently found when the search space is less noised (i.e.,
fewer in-plausible patches).
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Figure 8: Number of in-plausible patch candidates generated before
the first plausible patch.

Table 6 provides more detailed statistics to drive an in-depth
correlation study around efficiency and correctness. Based on the
mean values, except for ACS, ARJA, and AVATAR, APR tools tend
to generate more patch candidates when considering all bugs than
when considering only the correctly-fixed ones. This tendency
is much more apparent for search-based APR techniques such as
jGenProg [38], GenProg-A [67], SimFix [15], and RSRepair-A [67].
Although TBar is a template-based approach, it has characteristics
of search-based tools since its search-space has been enlarged by
incorporating any fix templates in the literature.

The previous experimental data overall suggest that simply giv-
ing more time to the APR tool to repair a buggy program does not
guarantee to find correct patches. On the contrary, it seems that
when allowing less attempts, the correctness ratio is improved. We
propose to simulate a simple strategy of threshold setting to investi-
gate the impact on the correctness ratio (i.e., ratio of correctly-fixed
bugs to plausibly-fixed bugs). We consider a scenario where the
APR tool is halted when a certain number of in-plausible patches is
checked.

Table 6: Upper whisker, median and mean values of 𝑁𝑃𝐶

(𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 ) scores in Figures 6 and 8.

APR Tools Upper Whisker Median Mean #
bugsAll Correct All Correct All Correct

jGenProg 803 (247) 191 (79) 50 (34) ↑ 127 (73) 670 (436) 108 (51) 3
GenProg-A 235 (76) 139 (40) 34 (11) ↑ 75 (41) 187 (81) 75 (40) 2
jMutRepair 67 (77) 33 (27) 20 (14) ↑ 28 (13) 43 (36) 32 (27) 5
kPAR 2377 (844) 992 (383) 269 (134) 130 (68) 879 (480) 600 (298) 10
RSRepair-A 208 (65) 103 (26) 34 (10) ↑ 62 (17) 250 (81) 62 (17) 2
jKali 92 (83) 17 (16) 14 (13) 7 (5) 35 (31) 27 (25) 4
Kali-A 43 (38) 4 (3) 8 (7) 2 (1) 12 (10) 3 (2) 3
Dynamoth 1 (0) 1 (0) 1 (0) 1 (0) 2 (1) 1 (0) 1
Nopol 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1
ACS 15 (4) 15 (3) 2 (0) 2 (0) 15 (4) ↑ 18 (4) 16
Cardumen 966 (965) 141 (68) 87 (50) 77 (40) 479 (454) 77 (40) 2
ARJA 362 (302) ↑ 686 (648) 38 (22) ↑ 87 (83) 142 (117) ↑ 181 (170) 7
SimFix 3801 (3800) 2274 (2273) 164 (163) ↑ 447 (446) 1168 (1167) 895 (894) 25
FixMiner 546 (147) 357 (99) 111 (24) 77 (24) 754 (189) 656 (87) 12
AVATAR 1624 (512) ↑ 2426 (511) 164 (65) 136 (33) 478 (145) ↑ 530 (150) 19
TBar 2958 (1262) 1806 (1031) 240 (118) 120 (53) 818 (444) 620 (306) 24

∗The upper whisker value is determined by 1.5 IQR (interquartile ranges) where IQR = 3rd Quartile -
1st Quartile, as defined in [9]. “All” denotes all fixed bugs, and “Correct” denotes correctly fixed bugs.
The numbers outside the parentheses indicate the related 𝑁𝑃𝐶 score values and the numbers inside
the parentheses indicate the related 𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 score values. ↑ implies that the 𝑁𝑃𝐶 and
𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 values of “Correct” are higher than those of “All”. “# bugs” denotes the number of
bugs correctly fixed by each repair tool.

Table 7: CR after setting a 𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 threshold.

Tool TH∗ # fixed
bugs CR(%) Tool TH∗ # fixed

bugs CR(%)

jGenProg 80 3 (14) +6.4 Nopol 0 1 (31) 0
GenProg-A 80 2 (25) +1.3 ACS 32 16 (22) 0
jMutRepair 70 5 (20) +2.3 Cardumen 70 2 (7) +11.9
kPAR 300 8 (42) +3.1 ARJA 650 5 (56) +0.4
RSRepair-A 26 2 (27) +2.5 SimFix 3800 24 (61) +4.0
jKali 80 4 (22) +2.2 FixMiner 100 11 (23) +11.4
Kali-A 3 3 (26) +6.9 AVATAR 511 19 (55) +0.2
Dynamoth 0 1 (21) +0.2 TBar 1230 24 (66) +5.6

∗The threshold (TH) for each repair tool is set with its upper-bound
𝑁𝑃𝐶𝑖𝑛−𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 score shown in Figure 8.

Table 7 presents the results on how correctness ratio is influenced
when we set a threshold on the number of in-plausible patches:
basically, we propose to stop the repair attempts by a given tool if a
certain number of generated patches turned out to be in-plausible
(i.e., do not pass the test cases). We observe that the ratio of gener-
ated plausible patches to be correct is increased at varying degrees
for 14 (out of 16) repair tools. Nopol and ACS do not show any
improvement: initially, they produce few in-plausible patches. It
should be noted that this result should be put in perspective as when
discussing precision and recall: threshold setting, while useful to
increase correctness ratio, may also lead to an overall reduction of
the number of bugs that are correctly fixed.

Overall our systematic study of patch generation efficiency reveals
that (1) efficiency is not yet a widely-valued performance target;
(2) state-of-the-art can avoid generating nonsensical patches; (3)
the more templates an APR system considers, the more nonsensical
and in-plausible patches it will generate; (4) specialized templates
increase APR tool efficiency; and (5) correct patches are sparse in
the search space.

4.3 RQ3: Impact of Fault Localization Noise
A recent study by Liu et al. [29] has reported empirical results
suggesting that fault localization results can adversely affect the
performance of the repair. The authors experimented on a single
tool, kPAR, and focused on repairability (i.e., how many bugs are
not fixed due to localization errors). Our study already takes steps
to avoid the bias of presenting various experimental results with
APR tools which use different fault localization inputs. Thus, we
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have put an effort to harmonize all fault localization configurations
for the 16 APR tools under study (cf. Section 3.3.2).

To evaluate the impact of fault localization noise for different
tools, we propose to compare results obtained so far with our stan-
dard spectrum-based fault localization (GZoltar+Ochiai) against
experimental results where the APR systems are directly given the
ground-truth fix locations. We compare the results both in terms
of repairability and repair efficiency.

4.3.1 Impact of fault localization noise on repairability. First, we
measure the impact on repairability, where we estimate for each
repair tool how many bugs can be fixed by each APR system
if it is precisely pointed to the ground-truth fix locations?
Table 8 illustrates the details on the impact of repairability. Except
for Cardumen, we observe that in general the correctness ratio
improves (by up to 30 percentage points) if the fix locations are
provided. It suggests that false-positive bug locations, hence fault lo-
calization noise, has an impact on the likelihood to generate correct
patches. There are however anecdotical cases that are noteworthy:

• [Ground truth incompleteness.] Although our configuration of
fault localization did not yield the developer-provided fix position
for bug Lang-35, ACS patch generation eventually produced a cor-
rect patch for this bug. This patch, which targets a different code
location, was found semantically-similar to the developer-provided
patch following rule R2 (cf. Section 3.3.3). This finding reminds us
that the benchmark that is used is not a complete ground-truth, nei-
ther for repair-oriented fault localization nor for patch generation.
Table 8: Impact† on repairability∗ when ground-truth fix locations
are directly given to the APR system.

APR Tool C Cl L M Mc T Total CR (%)
jGenProg +1 (-3) +1 (0) 0 (-2) +1 (+1) 0 (0) 0 (0) +3 (-4) +22.5
GenProg-A 0 (-2) +2 (+1) +1 (+2) +2 (-2) 0 (0) 0 (0) +5 (-1) +17.4
jMutRepair 0 (-3) 0 (-1) 0 (-2) 0 (-5) 0 (0) 0 (0) 0 (-11) +22.8
kPAR +3 (-5) +9 (+11) +3 (-5) +2 (-6) 0 (0) +3 (+4) +20 (0) +31.7
RSRepair-A 0 (-2) +2 (-6) +1 (+1) +5 (0) 0 (0) 0 (0) +7 (-7) +24.5
jKali 0 (-3) +1 (-6) -1 (-4) -2 (-4) 0 (0) 0 (0) -2 (-17) +9
Kali-A 0 (-5) +2 (-18) +1 (+3) 0 (-2) 0 (-1) 0 (0) +3 (-23) +9.7
DynaMoth 0 (-5) N/A +2 (+2) 0 (-5) 0 (0) 0 (-1) +2 (-9) +18.6
Nopol 0 (-5) N/A 0 (-3) +1 (-13) 0 (0) 0 (-1) +1 (-22) +19
ACS 0 (0) 0 (0) -1 (-1) +1 (0) 0 (0) 0 (0) 0 (-1) +3.5
Cardumen 0 (+2) 0 (-2) 0 (+1) 0 (+3) 0 (0) 0 (0) 0 (+4) -4.2
ARJA 0 (-8) +2 (-13) -1 (+2) +2 (-2) 0 (-1) 0 (0) 5 (-22) +21.2
SimFix 0 (-4) 0 (-2) 0 (-10) +2 (-4) 0 (0) 0 (0) +5 (-18) +19.2
FixMiner +2 (-5) +6 (+13) +3 (+7) +5 (+10) +2 (+2) +3 (+3) +21 (+30) +14.6
AVATAR +1 (-4) +3 (-2) +1 (-2) +4 (-4) +2 (+2) +2 (+3) +13 (-7) +30.6
TBar +4 (-3) +11 (+12) +4 (-3) +5 (-1) +3 (+3) +3 (+5) +30 (+13) +32.7

†This table shows variations of repairability w.r.t. results of our generic configuration of fault
localization provided in Table 4. ∗+x(-y) means that, if given exact fix locations, the tool can
correctly fix x more bugs, but plausibly fixes y less bugs

• [Fix location is different from bug location.] We observe that
jKali now fails to correctly fix respectively 2 when it is given the
developer-provided fix locations. This finding suggests that the
repair tool is rather misled, in the cases of specific bugs, when it is
given the right bug positions. Instead, some sibling positions are
better inputs to drive correct fixing. However, data in Table 8 show
fault localization has different impacts on performance for plausible
fixing than for correct fixing.

Furthermore, based on results of overlapping in repairability (in
terms of plausible patches) performance as depicted in Figure 9,
we note that many bugs are only fixed (plausibly) when the fault
localization does not precisely point to the fix locations. This is
a surprising but interesting finding to be investigated by APR-
targeted fault localization research.

• [Mockito bugs are not repairable.] Another immediate observa-
tion that we make from the experimental results in Table 8 is that
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Figure 9: Overlap and difference between normal fault localization
and given fix positions for repair tools.
bugs from the Mockito project are not easy to fix. According to
reported results in Table 8, only three tools (i.e., FixMiner, AVATAR,
and TBar) are able to fix Mockito bugs even if ground-truth fix
locations are provided. We carefully proceed to investigate the pos-
sible reasons for this situation: 13 Mockito bugs (i.e., bug IDs 1-10
and 18-20) are associated to program code that cannot be compiled
under JDK 7 (which is the JDK that is mentioned in the require-
ments of Defects4J). Our results further confirm a recent study [55]
by Wang et al., who reported that the state-of-the-art SimFix and
CapGen are not able to fix any Mockito bugs even when provided
with ground-truth fix locations. Our study enlarges the scope of
their studies. In the end, our systematic assessment results for all
bugs better sheds light on a common phenomenon in the literature
where Mockito project bugs are not considered when reporting
repair performance. These results call for modular configuration of
execution environment as well as for better integration of advances
in fault localization to support APR systems. Besides Mockito bugs,
many bugs in other projects cannot be fixed since they are not
precisely localized. Overall, consider again Figure 9. For all tools
(except jMutRepair), we observe that some bugs are fixed only when
the actual fix locations are directly given to the system.

4.3.2 Impact of fault localization noise on repair efficiency. We
investigate the 𝑁𝑃𝐶 scores, i.e., the number of patch candidates
that are generated by the different APR systems when they are
pointed to the developer-provided fix locations. Figure 10 shows
the corresponding distribution of 𝑁𝑃𝐶 scores for each repair tool.

• [Template-based program repair tools are highly sensitive to
fault localization noise.] We observe from Figure 10 that, except for
DynaMoth, Nopol, and ACS, the remaining 13 repair tools have
significantly smaller distribution ranges of 𝑁𝑃𝐶 scores than the dis-
tribution ranges when the APR system was run under our generic
fault localization configuration (cf. Figure 6). A straightforward
explanation is that, under a typical fault localization configuration,
a repair tool will attempt to generate patch candidates for each sus-
picious statement that is ranked by the fault localization. When the
fault localization is noisy (i.e., top suspicious statement(s) are false
positives), more in-plausible and even non-sensical patches might
be generated. In particular, for repair tools that are based on pattern
matching and code similarity (i.e., SimFix, and the template-based
repair tools) the gap of repair efficiency has reduced substantially
by an order of magnitude when correct fix locations are given to
the tool. For example, the median 𝑁𝑃𝐶 score of SimFix is around
200 when using our generic configuration of fault localization,
but is around 20 when using directly correct fix locations. Such
tools are thus more sensitive to fault localization noise than other
tools. In conclusion, we confirm the finding of the study of Liu et
al. [29]. However, we delimitate its validity to template-based repair
tools. Other tools, e.g., constraint-based repair tools such as ACS or
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Nopol, which use specific techniques to triage the search space do
not present any increase in repair efficiency when pointed to the fix
locations. This finding suggests that they have limited sensitivity
to fault localization noise.
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Figure 10: NPC score distribution of each tool given fix positions.

Fault localization is an important step in a repair pipeline. Its false
positives, however, have a significant impact on both repairability
and repair efficiency. In particular, we found that accurately local-
izing the bug can reduce the number of generated patches by an
order of magnitude, thus drastically enhancing efficiency. From the
perspective of repairability, better fault localization will increase the
probability to generate correct patches (i.e., the correctness ratio).

5 THREATS TO VALIDITY
External validity.Our study considers only the Defects4J benchmark
and only java repair tools. All findings might thus be valid only
for this configuration. Nevertheless, this threat is mitigated by
the fact that we use a large set of repair tools and a renowned
defect benchmark to study a performance criterion that was largely
ignored in the literature.

Internal validity. Our implementation of fault localization as well
as the manual assessment of patch correctness may threaten the va-
lidity of some of our conclusions. We mitigate this threat by reusing
common fault localization components from the repair literature as
well as by enumerating and sharing the rules for defining patch cor-
rectness. Two authors were in charge of assessing the correctness
and they cross-reviewed each other’s decisions. In case of conflict
other authors were called to create a consensus.

Construct validity. By construct, to limit resource exhaustion, we
added a threshold on the number of patches to validate. However,
this threshold may penalize some tools. We mitigate this threat by
carefully selecting a threshold based on empirical results on PraPR,
a recent related work which mutates directly bytecode, allowing it
to generate many more patches (since no compilation is needed).

6 RELATEDWORK
Performance Evaluation. Initially, evaluation of test-based

program repair was focused on counting the number of bugs fixed
by a repair tool out of all bugs in a benchmark [17, 22, 25, 56].
However, valid patches are sometimes incorrect as they overfit on
incomplete test suites [48], and might cause issues during main-
tainance [10, 52]. Thus, plausibility and correctness became widely

accepted to define metrics for assessing repairability of repair
tools [4, 12, 14, 19, 29–32, 50, 51, 57, 63]. In this study, we also
follow the metric to revisit the repairability of repair tools. Never-
theless, we differ from studies in the literature by ensuring that APR
tools use the same controlled configuration for fault localization.

Repair Efficiency. Along with the performance evaluation, ser-
val studies simply reported the repair efficiency in terms of CPU
time consumption of fixing bugs [12, 14, 56, 57, 63]. However, it
could be biased to assess the efficiency with time cost for various
reasons (cf. Section 2). Instead, we leverage the number of patch can-
didates generated by repair tools to measure the repair efficiency,
which should be intrinsic to the repair approaches. Ghanbari et
al. [12] provided information on the number of patch candidates
generated by PraPR. This information, however, could not be put
into perspective against other tools. Our study fills this gap.

Empirical Study. To boost the development of program repair,
various empirical studies have been conducted in this direction.
Le Goues et al. [24] re-assessed GenProg on real bugs, while sev-
eral studies on overfitting followed [20, 23, 47, 48, 54, 62]. Yang
et al. [65] explored better test cases for better program repair. Yi
et al. [66] empirically investigated the effectiveness of test-suite
metrics in controlling the repairing reliability of GenProg. Mot-
wani et al. [43] investigated to what extent important bugs can
be fixed by 9 APR tools. Liu et al. [29] investigated the FL bias
in benchmarking APR tools with only one APR tool. Durieux et
al. [7] conducted a large-scale empirical study for Java APR tools to
investigate their repairability on different benchmarks. Empirical
studies for APR tools have been studied from different scenarios in
the literature, but these studies mainly focus on the traditional APR
tools and the latest state-of-the-art tools (e.g., ACS [63], SimFix [15]
and TBar [31]) have not been studied systematically. Our study fills
this gap by looking back at 10 years of test-based program repair
research and focusing on the under-valued performance criterion
that is efficiency.

7 CONCLUSION
This paper reports on a large-scale study on the efficiency of test
suite based program repair. Efficiency is defined based on the num-
ber of patch candidates that are generated before a repair system
can hit a valid patch. Our study comprehensively runs 16 repair
systems from the literature under identical configuration of fault
localization. Our experiments explore repairability (i.e., repair effec-
tiveness), repair efficiency as well as the impact of fault localization
on both performance criteria. Beyond the statistical data, we call
on the community to invest in strategies for making repair ef-
ficient in order to facilitate adoption in a software industry where
computing resources are managed sometimes with parsimony.
Artefacts: All data and tool support for replication are available at
https://github.com/SerVal-DTF/APR-Efficiency.git
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