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Abstract—Transformers are now widely utilized in code in-
telligence tasks. To better fit highly structured source code,
various structure information is passed into Transformer, such
as positional encoding and abstract syntax tree (AST) based
structures. However, it is still not clear how these structural
features affect code intelligence tasks, such as code summariza-
tion. Addressing this problem is of vital importance for designing
Transformer-based code models. Existing works are keen to
introduce various structural information into Transformers while
lacking persuasive analysis to reveal their contributions and
interaction effects. In this paper, we conduct an empirical study of
frequently-used code structure features for code representation,
including two types of position encoding features and AST-based
structure features. We propose a couple of probing tasks to detect
how these structure features perform in Transformer and conduct
comprehensive ablation studies to investigate how these structural
features affect code semantic summarization tasks. To further
validate the effectiveness of code structure features in code
summarization tasks, we assess Transformer models equipped
with these code structure features on a structural dependent
summarization dataset. Our experimental results reveal several
findings that may inspire future study: (1) there is a conflict
between the influence of the absolute positional embeddings and
relative positional embeddings in Transformer; (2) AST-based
code structure features and relative position encoding features
show a strong correlation and much contribution overlap for
code semantic summarization tasks indeed exists between them;
(3) Transformer models still have space for further improvement
in explicitly understanding code structure information.

Index Terms—Transformer, empirical study, probing task, code
summarization

I. INTRODUCTION

Inspired by the successful application in the natural lan-
guage processing (NLP) [1], [2], the state-of-the-art deep
learning architecture, i.e., the Transformer [3], is widely
utilized to process source code in support of code intelligence
tasks [4]–[8], including method names recommendation [9],
[10], code generation [11], [12], bug fixing [13], [14], code
translation [15], [16], etc. Due to the global and long-range
connections view for input sequences, Transformers outper-
form traditional sequential deep learning architectures, e.g.,
Convolutional Neural Network (CNN) [17] and Recurrent
Neural Network (RNN) [18]–[21], as these architectures cap-
ture more on local dependencies [22]. Source code snippets are
usually seen as a sequence of keywords in the programming
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language, identifiers, and punctuations, which are fed to the
Transformer directly at the beginning of exploration [23]. In
this case, the Transformer based models make predictions
mainly depend on literal semantics. In contrast to natural
language, the programming language is highly structured and
contains rich structural information, such as abstract syntax
tree, data and control flow graph. Therefore, increasing efforts
are devoted to integrating the structure of source code into
Transformer for effectiveness enhancement [24].

The self-attention mechanism is the key component of
Transformer architecture, which treats the input sequence as an
unordered bag of tokens. To remedy the loss of the order struc-
ture, the Transformer requires additional positional encodings
[25], [26]. Ahmad et al. [23] adopted relative position repre-
sentation [25] to model the pairwise code token relationship
by injecting relative position embeddings into Transformer.
Following this research line, several research works endeavour
to insert non-sequential code structure features into the self-
attention calculation as inductive biases to encode source code
snippets [27]–[29].

Although methods that integrate code structure information
into Transformer achieved promising summarization results,
little is known about how these structural features affect code
summarisation tasks’ performance. Existing research works
usually utilize structure features heuristically and validate their
contributions by control variate technique, which neglects the
interactive impact of these features. It will offer valuable
guidance to figure out whether incorporating multi-features
would achieve a sub-additive effect or result in a super-additive
consequence. Therefore, there is an increasing demand to
understand to what extent the embedding vectors from the
Transformer encoder equipped with multiple structural fea-
tures effectively capture the source code characteristics and
how they affect code intelligence tasks.

To fill this gap, in this paper, we extensively study the
frequently used code structure features in Transformers for
two code intelligence tasks, i.e., code summarization [30],
and extreme summarization [31]. The former aims to generate
a sentence-level summary (usually explaining how the code
snippet work), while the latter provides a summary in the form
of a descriptive method name. Since generally both tasks aim
at summarizing the main semantics of a given code snippet, we
unified refer to them as code semantic summarization. We
conduct a thorough empirical study of frequently used code



structure features for code summarization tasks. More specifi-
cally, we would like to answer the question: How do these code
structure features utilized in Transformer affect code semantic
summarization? Addressing this question plays an important
role in understanding Transformer-based code models. We
propose a couple of probing tasks to detect how these structure
features perform in the Transformer. Furthermore, we also con-
duct comprehensive ablation studies to investigate how these
structural features affect code semantic summarization tasks.
We aim to provide consistent observations and findings in
both ablation studies and probing tasks to be more convincing.
Our work is performed on the structure-induced Transformer
architecture, which is the Transformer equipped with relation-
aware self-attention [25] and structure-induced self-attention
in SIT [32]. Through comprehensive studies, we mainly find:

• There is a conflict between the influence of the absolute
positional embeddings and the relative positional em-
beddings in Transformer, and the combination of them
interferes with understanding tokens position information
and generating code summaries.

• The AST-based code structure features and relative po-
sition encoding feature show strong Pearson correlation
in Transformer, and much contribution overlap for code
semantic summarization indeed exists between them.

• In a more structural-dependent setting, in which gen-
erating summaries require a more explicit structural
understanding of source code, the performance of the
Transformer model drops significantly. The Transformer
equipped with structure features still has space for further
improvement in explicitly understanding code structure.

These findings call for more concentration on integrating
code structure features into Transformer and could inspire
future studies on source code representation in Transformer.

II. PRELIMINARIES

This section reviews some background knowledge of our
study and describes our research questions.

A. Vanilla Transformer and Self-Attention

Transformer [3] is stacked with multi-head attention and
parameterized linear transformation layers for both the encoder
and decoder. In each layer, the multi-head attention employs h
attention heads and performs the self-attention mechanism. We
describe Transformer architecture for a code summarization
task, which maps a source code snippet to a target natural
language summary. Let c = {w1, w2, . . . , wn}, where wi is
the ith token in the token sequence of the source code snippet,
i ∈ {1, 2, . . . , N}, (N is the length of source vocabulary)
denote a piece of code that contains n tokens. The input
tokens are mapped into a sequence of embedding vectors,
x = {x1, x2, . . . , xn} , xi ∈ Rdx (dx is the embedding size
of x).

The self-attention mechanism is the core component of the
Transformer. In a single attention head, input embeddings are
transformed into a sequence of output vectors with the same
length: z = {z1, z2, . . . , zn}, zi ∈ Rdz . Each output element

zi is computed as a weighted sum of inputs, which can be
formulated as:

zi =

n∑
j=1

αij

(
xjW

V
)

(1)
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(2)
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xiW

Q
(
xjW

K
)T

√
dz

(3)

where WQ,WK ,WV ∈ Rdx×dz are projection matrices.
These parameter matrices are uniquely applied in parallel per
layer and attention head. Attention weights αij are the query-
key similarity between code token i and token j,

∑n
i=1 αij =

1, αij ≥ 0.
A Transformer block consists of the described multi-head

self-attention, a residual connection, a layer-normalization
step, and a position-wise fully-connected network. The over-
all Transformer model comprises L stacking layers of the
Transformer blocks. In the code summarization task, future
target words are masked in self-attention computation, and the
consequence stacking blocks are called Transformer decoder.
Otherwise, the Transformer encoder is without masking. In
addition, the attention from the decoder to the encoder is also
computed.

B. Positional embeddings in Transformer

Absolute positional embeddings (APE): Initially designed
for NLP to account for the sequential structure order, the
vanilla Transformer assigns an absolute positional representa-
tion for each token in the input sequence. After mapping input
tokens to embedding vectors x = {x1, x2, . . . , xn} , xi ∈ Rdx ,
xi are summed with positional embeddings pi, which helps it
determine the position of each token, or the distance between
different words in the sequence, x̃i = xi + pi, pi ∈ Rdx .
Each position i = 1, 2, . . . , L, indicates the index of token
in the sequence, based on which pi can be computed with
sine and cosine functions [3] or be learned in an embedding
matrix [23].

Relative positional encoding (RPE): In code representa-
tion learning, the mutual interactions embody the semantic
functions of code snippets [23]. In expression statements n+m
and m+n, absolute positions do not make a difference in their
semantic meaning. Shaw et al. [25] firstly proposed relation-
aware self-attention to leverage relative positional encoding.

zi =

n∑
j=1

αij

(
xjW

V + aVij
)

(4)

eij =
xiW

Q
(
xjW

K + aKij
)T

√
dz

(5)

Where aVij and aKij are the pairwise relationship representations
between input tokens for position i and j. With the hypothesis
that precise relative position information is not useful beyond
a certain distance, Shaw et al. [25] suggested to clip the
maximum relative positional relationship to a value of k.



We follow the suggestion in [23] to set k = 32 in our
experiments. Moreover, to better applying relative position
embeddings to code representation, directional information are
ignored in [23], i.e. relative position embeddings for token i
and token j, or for token j and i share the same representation.

aKij = wK
clip(j−i,k), a

V
ij = wV

clip(j−i,k) (6)

clip(x, k) = min(|x|, k) (7)
The absolute position encoding focuses on capturing the

sequence order information of code tokens, and the relative
position encoding treats relationships between token pairs as
edges, which focus more on the relative position differences
between two code tokens.

C. AST structures in Transformer
Structure-induced self-attention: An abstract syntax tree

uniquely determines a source code snippet given the lan-
guage and grammar rules. Thus, AST is usually applied to
represent the syntactic structure of code. In an AST, each
node contains a type, which represents the syntactic unit
of specific language grammar (e.g. identifier, argument list,
for statement). Leaf nodes, also called terminals, contain a
value (e.g., url, file path, opContext), which usually are user-
defined identifiers (e.g., variable names) and its values. Exist-
ing works have demonstrated the benefits of integrating AST
properties into deep learning approaches [33], [34]. Inspired by
relation-aware self-attention [25], much more types of pairwise
relationships between code tokens are expected to enrich the
code snippets representation. In Structure-induced Transformer
(SIT) [32], authors expand AST into a multi-view graph based
on code semantics, which are the combination of abstract
syntax graph Aast, control-flow graph Acf and data-flow graph
Adf . We show an example in Figure 1 to demonstrate the
AST structure features of a Python code snippet. SIT adopt
adjacency matrix to represent AST, based on which control-
flow and data-flow edges are added to form the multi-view
graph Amv = Aast +Acf +Adf .

Self-attention mechanism equations (1-3) can be formulated
as matrix form:

Self-Attention(x) = softmax

(
QKT

√
dz

)
V (8)

Where x = {x1, x2, . . . , xn} , xi ∈ Rdx , denotes the input
sequence of code tokens. In SIT, self-attention calculation is
viewed as a directed cyclic graph, in which N (= V in (8))
are n vector representations of code tokens (seen as vertexes
in graph) and E = {eij} (= QKT /

√
dz in (8)) is viewed

as weighted matrix of each edge, where eij represents the
significance of vertex ni attend to nj . The matrix form Self-
attention mechanism can be rewritten as follow:

Self-Attention(x) = E ·N (9)

Note that, in vanilla Transformer, self-attention is a full
connection cyclic graph. In SIT [32], multi-view graph is
utilized to dropout the attention where aij = 0 in Amv

Self-Attention(x) = softmax

(
Amv ·QKT

√
dz

)
V (10)

D. Research Questions

RQ1: How do absolute and relative position encoding
perform in code semantic summarization?

As described in the former part, various kinds of features
of source code are integrated into the self-attention calcu-
lation, including the absolute/relative position encoding and
the syntax information in ASTs. Experimental results in [23]
and [25] suggested not to include absolute position encoding
when there is pairwise relationship modeling but without
explaining the rationale. It is of vital significance to probe
the capability of capturing positional information, which may
guide future design for source code representation. Therefore,
we are motivated to validate and interpret the interactive
impact of absolute/relative position encoding on code semantic
summarization. We devise our first research question to seek
some clues.

RQ2: To what extent do AST-based structure features
and positional information contribute to code semantic
summarization?

Moreover, Ahmad et al. [23] hypothesized that there is a
limited advantage in exploring code structure information in
code summarization because Transformer learns it implicitly
with relative position representation. In contrast, later works
integrated code structure information from AST into the self-
attention calculation to improve code summarization. Existing
approaches focus on capturing the structural information of
source code, and little is known about the interaction influence
of each introduced feature. Addressing this problem paves the
way for future code representation works.

RQ3: How does Transformer perform in a more
structural-dependent setting in code summarization?

Furthermore, to better figure out the capability of the
Transformer model that utilizes code structure information,
we design a code summarization dataset with a more
structural dependent setting, in which generating a summary
requires a deeper structural understanding of source code.
The structural-dependent summarization datasets would offer
a more straightforward method to evaluate the capability
of code models that convert code structural information to
semantic summaries.

III. EXPERIMENTAL SETTING

In this section, we describe our experimental setting for
investigating the effect of code structure features in code se-
mantic summarization tasks. First of all, we replicate structure-
induced Transformer models for code semantic summarization
tasks. After obtaining the trained models and the generated
summaries with different structure feature settings, we design
a couple of probing tasks to detect the interactive influence of
these learned features in the Transformer by using the embed-
dings from model encoders equipped with various features.
Additionally, we conduct ablation studies on the generated
summaries to figure out how these features affect code se-
mantic summarization tasks. The probing tasks could reveal
how structure features preserve in the hidden representation
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Fig. 1. An example of a Python code snippet with the corresponding ast, cf and df graph dege connections and matrices.

of the Transformer, and the ablation studies illustrate how
structure features perform in downstream summarization tasks.
The probing tasks and the ablation studies are complementary,
and the probing tasks can be the replenishment for interpreting
the rationale for the effect of the ablation studies. The overall
methodology of our study is illustrated in Figure 2.

1. Select Structure Features 2. Perform Probing Tasks 3. Conduct Ablation Study

Structure induced

Transformer Encoder
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Fig. 2. Overall methodology description of our work.

A. Experiment setup

Data and preprocessing. Our experiments are conducted
on two code intelligent tasks. For code summarization, we use
two public parallel benchmarks, Java from Wan et al. [10] and
Python from Hu et al. [6], and we follow their initial training,
test, and validation divisions. For code extreme summarization,
the experiments are conducted on Java-small from Alon et al.
[18], which contains 11 relatively large Java projects (nine
projects for training, one project for validation and one project
as our test set). The statistics of Java, Python and Java-small
datasets are described in Table I. For the parser to generate

ASTs, we use the open-source parser Tree-Sitter1 to process
both Java and Python code in a uniformed module, in which
all the code tokens are natively mapped as terminals. For the
code structure graphs used in structure-induced Transformer,
we write a script to traverse AST-based features into abstract
syntax tree (ast) adjacency matrix and control-flow (cf ) graph
matrix, and we use the data-flow (df ) extractor provided by
GraphCodeBERT [35] to obtain the data-flow graph matrix.
Figure 1 shows an example of a Python code snippet with the
corresponding ast, cf and df . All three code structure graph
matrices are kept separately to allow ease of ablation. We
adopt the way to split sub-tokens following [23] by applying
CamelCase and snake case tokenizers.

Training details. The implementation of the structure-
induced Transformer is based on the PyTorch implementation
of open-NMT and the source code in SIT [32]. We follow the
hyper-parameters setting in [23] and [32]. The embedding size
for source code and summary is 512. The batch size is 32, and
the optimizer is Adam [36]. The learning rate was initially set
to 1e-4 with a warmup rate of 0.06 and L2 weight decay of
0.01. For the code summarization task, we train the structure-
induced Transformer models for a maximum of 200 epochs
and perform an early stop if the validation performance does
not improve for 20 consecutive iterations. For the extreme
summarization task, we set the maximum epochs to 40 and
perform an early stop when there is no improvement for 10
epochs. In the inference period, we use a beam search to
generate a summary and set the beam size to 5.

B. Probing tasks

A probe is made up of a probing task and a probing
classifier. A probing task is an auxiliary diagnostic task used
to investigate whether a specific property is preserved in the

1https://github.com/tree-sitter/



TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS.

Datasets Number of Avg. tokens
samples in source code summary

Java-train 69708 106.05 17.72
Java-valid 8714 105.72 17.89
Java-test 8714 106.97 17.6
Java-if 1031 146.19 35.17

Java-loop 749 175.78 30.12
Java-struc-dpdt 929 91.06 16.07

Python-train 55538 77.67 9.46
Python-valid 18505 77.72 9.48
Python-test 18502 78.09 9.55
Python-if 1148 83.88 13.28

Python-loop 1276 101.59 12.36
Python-struc-dpdt 694 71.91 9.47
Java-small-train 600701 75.66 3.10
Java-small-valid 29144 50.79 3.54
Java-small-test 52015 84.67 2.75

embedding vectors, which are often utilized to diagnose pre-
trained models. If a specific property can be predicted in
a probing task given the embedding vector from a model
encoder, the original model most likely has the capability to
encode it in its hidden states. To minimize the interpretability
problem, probing tasks should not be complicated in nature
compared to the main task for the original model. Therefore,
a probing classifier is usually a linear or shallow multi-layer
perceptron with no or few hidden layers of a classifier on its
own.

In order to determine whether or to what extent embed-
dings of source code from the structure-induced Transformer
encoder reflect code understanding in terms of position-aware
and structure-aware characteristics, we propose a set of prob-
ing tasks.

Tokens distance prediction. We conjecture that the dis-
tance between two tokens in a code snippet sequence, es-
pecially when absolute/relative position encoding methods
are equipped in code transformer models, should be easily
accessible and easily predicted. To investigate whether the
code transformer encoders preserve such primary positional
information, we train structure-induced Transformer models
under different position encoding settings, and then we probe
the models with a tokens distance prediction task.

Structure connection prediction. To understand whether
the code structure features introduced into Transformer is
well encoded in the embedding vectors, we use the code
tokens representation from the encoder as input to predict the
structural connection between them. To further test each single
structure information, including abstract syntax tree, data-flow
graph, control-flow graph and the combination of the three, we
first train structure-induced Transformer models equipped with
different structural adjacency matrices. After that, a probing
task is performed on the code tokens embedding vectors from
trained model encoders.

Probing data and labels. We select a subset from the test
dataset of both Java and Python that never occurred in the
training and validation dataset.

For the Tokens distance prediction task, we randomly gen-

erate token pairs in a code snippet sequence and label them
according to their distances. In a binary classification setting,
class bins are formulated as 1-16 and 17-32. If the distance
between two tokens is in the range of 1 to 16, the probing
task will treat this tokens-pair as a positive sample; otherwise
negative sample. To further challenge the models, we split
range 32 into four sub-classes, and labels are in 4 class bins
(A:1-8, B:9-16, C:17-24 and D:25-32). The probing task is
formulated as a classification problem with a binary setting
and a 4-classes setting.

For the Structure connection prediction task, we generate
the probing data depending on the three kinds of structure
adjacency matrices and their combination. Code token pairs
are randomly chosen from the sequence, and labels are the in-
dication of whether there exists a specific structure connection
between the two tokens. This probing task is formulated as a
binary classification. To avoid the imbalanced data problem,
we generate the same size of samples in all classes. Fig.3
illustrate the probing tasks: tokens distance prediction and
structure connection prediction.

def    is_odd    x    if    x    &    1    ==    0    return    False    else    print    x     return    True  

data flow(DF) connection 

True

tokens distance prediction 

B

def    is_odd    x    if    x    &    1    ==    0    return    False    else    print    x     return    True  

Structure induced Transformer Encoder

def    is_odd    x    if    x    &    1    ==    0    return    False    else    print    x     return    True  

Structure induced Transformer Encoder

data flow (DF) connection 

True

tokens distance prediction 

A

Fig. 3. Illustration of the probing tasks (tokens distance prediction and
structure connection prediction).

C. Structural-dependent summarization

To better evaluate how code Transformer models perform
in utilizing structure information for code summarization
task, we build a special code summarization test dataset, in
which generating summaries requires an explicit structural
understanding of source code. Specifically, if a code snippet
contains if-else statements and there are natural language
keywords that explicitly indicate the if-else structure keywords
in its reference summary, such as if, or and else, we call
this kind of ⟨code, summary⟩ cases as structural-dependent
samples. We chose structural-dependent samples from original
Java/Python-test splits and named them as Java/Python-if.
We hypothesize that generating summaries for structural-
dependent samples requires a more thorough understanding
of source code structure information. Fig.4 shows an example
of structural-dependent ⟨code, summary⟩ case.

Similarly, if a code snippet contains for-loop/while-loop
statements and there are natural language keywords, such
as from, in, in its gold summary, we also call this kind
of ⟨code, summary⟩ cases that require explicit descriptions



Source code snippet :

Summary:

transforms a string or list to a list .

Fig. 4. An Example of a structural-dependent ⟨code, summary⟩ case, in
which we hypothesize that predicting string, or and list requiring the capability
of structure-aware.

for structure understanding to summarize source code as
structural-dependent samples. These samples are gathered
from original Java/Python-test splits and named original
Java/Python-loop. The statistics of each structural-dependent
test dataset are shown in Table I.

IV. EXPERIMENTAL RESULTS

We present the experimental results and analysis through
the following research questions.

RQ1: How do absolute and relative position encoding
perform in code semantic summarization?

From Table II, we can observe from the tokens distance pre-
diction accuracy that APE and RPE both contribute positively
to predicting the distances between code tokens. The APE
is learned based on the absolute indexes of each code token
in the full input sequence. The RPE clipped the maximum
relative position to k for the hypothesis that relative position
information is not useful beyond a certain distance. Therefore,
results in Table II show that the model equipped with APE
alone outperforms RPE in this probing task.

TABLE II
RESULTS OF TOKENS DISTANCE PREDICTION PROBING TASKS, INCLUDING

BINARY (2-CLS) AND FOUR CLASSES (4-CLS) CLASSIFICATION IN JAVA
AND PYTHON DATASETS. METRICS: ACCURACY, THE HIGHER THE

BETTER.

Model settings Java Python
ASTs APE RPE 4-cls 2-cls 4-cls 2-cls

1 1 1 86.50 90.75 89.79 91.05
1 1 0 88.09 93.02 92.09 93.07
1 0 1 57.17 75.63 50.28 70.83
1 0 0 50.78 70.92 43.36 67.77
0 1 1 89.86 92.07 92.85 92.26
0 1 0 89.92 92.77 91.60 93.24
0 0 1 61.16 80.74 54.44 70.92
0 0 0 39.45 64.50 37.00 58.42

Probing results in Table II show that models trained with the
combination of APE and RPE yield no further improvement,
and there is an accuracy degradation in predicting tokens
distance compared to models only equipped with APE. In most
situations, models trained with APE alone achieve the best

accuracy, and there occurs an accuracy drop when combing
RPE with APE, especially when AST-based structure features
are integrated. In the bottom of Table II, when AST-based
features are not passed to Transformer, the decrease is not
significant. There are two possible interpretations for this
phenomenon. First, APE and RPE are two different kinds of
position encoding methods, and APE, learned from the token
index, could predict the distance between tokens well enough.
The inaccurate position information in RPE due to the clipping
mechanism decreases the classification accuracy. Second, the
AST-based structure information may contain an inaccurate
position relationship, which further harms the performance. In
SIT [32], abstract syntax tree (ast), data-flow graph (df ) and
control flow graph (cf ) are integrated into self-attention as an
adjacency matrix, which stores the edge connections between
tokens. The connections in ast graph and cf graph usually
occur between tokens that relatively closer to each other,
which may reflect rough closer distances between tokens. The
location of assignment statements in the code snippet is less
likely related to the position, and the tokens that correlated
with df connections may present a different regularity in the
distance. For this reason, connections in AST-based features
may indicate inaccurate position information. Therefore, if we
compare the last row of the top half and the last row of
the bottom half in Table II, we can observe that AST-based
structure features can also bring improvements in predicting
the tokens distance probing task, although not much compared
to APE or RPE.

According to Table II, we could partially answer RQ1
that applying the combination of APE and RPE in the
Transformer would harm capturing positional information..
Naturally, it is necessary to figure out whether this finding is
consistent in code semantic summarization tasks. Therefore,
we perform an ablation study to investigate the interaction of
APE and RPE in code summarization task and code extreme
summarization task. The results are shown in Table III and
Table IV.

Experiment results in Table III show that the Transformer
equipped with RPE alone achieve the best performance com-
pared to other configurations in code summarization task in
both Python and Java test dataset, regardless of whether AST-
based structure features are equipped. In addition, compared
to only utilizing RPE, Transformer model will suffer a
significant summarization performance degradation when
equipped with the combination of APE and RPE. Moreover,
in code extreme summarization task, results in Table IV also
illustrate the same observation. Utilizing RPE only in the
Transformer could achieve the best extreme summarization
performance, and the combination of APE and RPE will yield
a notable performance degradation.

This empirical finding in the summarization task is consis-
tent with the result of the tokens distance prediction probing
task mentioned above, which also corroborates the design
choice of [23]. Now we could answer RQ1 that the APE and
RPE do not coexist well in Transformer for code semantic
summarization tasks.



TABLE III
ABLATION STUDY ON APE AND RPE ON JAVA AND PYTHON CODE SUMMARIZATION BENCHMARKS. METRICS: BLEU, ROUGE-L, AND METROR,

THE HIGHER THE BETTER.

Model settings Java Python
ASTs APE RPE BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

1 1 1 45.46(↓1.18) 55.58 27.57 32.88(↓1.46) 46.90 19.93
1 1 0 45.67 55.79 27.48 33.30 47.37 20.26
1 0 1 46.64 56.61 28.29 34.34 48.24 20.91
1 0 0 46.58 56.40 28.31 34.24 48.09 20.87
0 1 1 45.86(↓0.78) 55.83 27.58 33.13(↓1.02) 47.19 20.05
0 1 0 45.41 55.58 27.46 32.71 46.73 19.84
0 0 1 46.64 56.74 28.25 34.15 48.19 20.85
0 0 0 45.93 55.03 27.77 33.09 46.40 19.91

TABLE IV
RESULTS OF CODE EXTREME SUMMARIZATION ON JAVA-SMALL DATASET.

METRICS: PRECISION, RECALL, AND F1 SCORE.

Model settings Java-small
ASTs APE RPE Precision Recall F1

1 1 1 44.83 37.60 40.90(↓0.90)
1 1 0 47.01 37.52 41.73
1 0 1 46.48 37.98 41.80
1 0 0 46.42 36.96 41.15
0 1 1 44.92 35.91 39.91(↓1.09)
0 1 0 44.45 37.10 40.44
0 0 1 45.21 37.51 41.00
0 0 0 41.49 31.82 36.02

Finding 1. There is a conflict influence when applying
the combination of APE and RPE in Transformer for
encoding positional information, and the combination
of them interferes with both the understanding of po-
sition information and the code summaries generation.

Before moving to RQ2, we notice an interesting phe-
nomenon. If we focus on the last row of the top half and
the penultimate row of the bottom half in Table III, the
model equipped with AST-based structure features and the
model trained with RPE show closely similar performance for
code summarization task in both Java and Python test dataset.
Similarly, the results of code extreme summarization in Table
IV demonstrate the same observation that performance gain
from RPE is competitive to the contribution from ASTs
features. This finding will be discussed in RQ2.

RQ2: To what extent do AST-based structure features
and positional information contribute to code semantic
summarization?

In RQ1, we find that the combination of APE and RPE
shows a 1 + 1 < 2 consequence in understanding positional
information as well as summarization tasks. To better investi-
gate how Transformer performs in preserving AST-based code
structure features and how the positional features and ASTs
features interact, we design the structure connection prediction
probing task.

In the left part of Table V, Transformer models equipped
with single specific AST-based structure feature, such as ast,
could achieve the highest accuracy in abstract syntax tree
graph (AST) connection prediction task, and the observations
are the same for cf and df in control-flow graph (CF) and

data-flow graph (DF) connections prediction tasks. We could
claim that Transformer models are able to capture AST-
based structure information introduced from specific adjacency
matrices.

In the middle part of Table V, Transformer model trained
with df is expected to achieve the best accuracy in DF connec-
tion prediction, and models trained with the combination of
ast, df and cf should have achieved the best accuracy in ADJ
connection prediction. Whereas, this expectation trend in the
left part of Table V is disturbed with the APE integrating to
encode position information with RPE. Moreover, in the right
part of Table V, we cannot observe the same trend either. We
blame this inconsistency on the conflicts between APE and
ASTs features in Transformer.

As we discussed in RQ1, there is a conflict between APE
and RPE in Transformer for capturing positional information,
and APE would harm code summarization tasks. Moreover,
applying APE in Transformer also has a negative effect on
understanding AST-based structure information. Therefore, we
only include RPE in our following experiments.

To evaluate the contribution of AST-based code structure
features and positional structure information for code intelli-
gent summarization, Table VI and Table VII show the ablation
study results on models trained with different settings of RPE
and ASTs features. In code summarization task, Transformer
model equipped with relative position encoding (RPE) and the
combination of multi-view graph of code structural features
(ast, cf and df ) achieves best evaluation scores in Python
dataset, and the model with the setting of RPE and ast achieves
the best BLEU scores in Java dataset. Results in Table VII
show that model equipped with RPE and ast perform best
for code extreme summarization task in Java-small dataset.
In addition, we observe that the difference between applying
a multi-view graph and only ast graph in Transformer is
marginal. We claim that AST-based structure information does
contribute to summarization tasks, and the main contribution
is attributed to ast. Meanwhile, Transformer models trained
solely with cf or df has a worse performance than models
equipped with ast or the combination of all threes in both two
code summarization tasks. A possible reason is that the cf and
df adjacency matrices are much sparser than ast, which may
filter out many useful structure connections between tokens.

Furthermore, from Table VI, in the code summarization
task, RPE alone contributes 0.71 BLEU, 1.71 ROUGE and



TABLE V
RESULTS OF STRUCTURE CONNECTION PREDICTION PROBING TASKS ON PYTHON DATASET, INCLUDING DATA-FLOW (DF), CONTROL-FLOW (CF),

ABSTRACT SYNTAX TREE (AST) AND COMBINATION OF THE THREE (ADJ).

Model settings with RPE with APE and RPE with APE
-ast -cf -df DF CF AST ADJ DF CF AST ADJ DF CF AST ADJ

1 1 1 79.88 80.07 83.40 72.7 83.21 83.14 83.52 74.89 79.89 79.04 82.99 71.43
1 0 0 77.00 75.82 85.18 71.05 80.44 83.71 87.81 76.69 81.03 83.37 81.95 76.49
0 1 0 77.12 86.46 77.92 69.87 78.46 86.56 74.27 68.64 77.92 84.69 77.61 71.44
0 0 1 81.81 71.20 78.78 67.80 81.25 68.53 70.03 62.86 80.20 69.82 76.05 67.60
0 0 0 77.17 70.30 78.05 66.52 78.90 72.81 77.78 68.46 75.97 71.64 77.56 68.29

TABLE VI
ABLATION STUDY ON RPE AND ASTS FEATURES ON JAVA AND PYTHON CODE SUMMARIZATION BENCHMARKS. METRICES: BLEU, ROUGE-L AND

METROR, THE HIGHER THE BETTER.

Model settings Java Python
RPE ast cf df BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR

1 1 1 1 46.64 56.61 28.29 34.34 48.24 20.91
1 1 0 0 46.75 56.50 28.29 34.27 48.07 20.76
1 0 1 0 46.63 56.46 28.27 33.81 47.71 20.49
1 0 0 1 46.42 56.27 28.12 33.70 47.39 20.42
1 0 0 0 46.64(↑0.71) 56.74(↑1.71) 28.25(↑0.48) 34.15(↑1.06) 48.19(↑1.79) 20.85(↑0.94)
0 1 1 1 46.58(↑0.65) 56.40(↑1.37) 28.21(↑0.44) 34.24(↑1.15) 48.09(↑1.69) 20.87(↑0.96)
0 0 0 0 45.93 55.03 27.77 33.09 46.40 19.91

TABLE VII
ABLATION STUDY ON RPE AND ASTS FEATURES ON JAVA-SMALL CODE

EXTREME SUMMARIZATION DATASET. METRICES: PRECISION RECALL
AND F1 SCORE.

Model settings Java-small
RPE ast cf df Precision Recall F1

1 1 1 1 46.48 37.98 41.80
1 1 0 0 47.36 38.29 42.34
1 0 1 0 44.20 33.65 38.21
1 0 0 1 44.73 35.45 39.55
1 0 0 0 45.21(↑3.72) 37.51(↑5.69) 41.00(↑4.98)
0 1 1 1 46.42(↑4.93) 36.96(↑5.14) 41.15(↑5.13)
0 0 0 0 41.49 31.82 36.02

0.48 METEOR scores in Java and 1.06 BLEU, 1.79 ROUGE
and 0.94 METEOR in Python benchmarks. The improve-
ments contributed from the ASTs features are 0.65 BLEU,
1.37 ROUGE, 0.44 METEOR in Java and 1.15 BLEU, 1.69
ROUGE, 0.96 METEOR in Python. In code extreme task,
results in Table VII show that RPE contributes 3.72 Precision,
5.69 Recall and 4.98 F1 scores, and ASTs features contribute
4.93 Precision, 5.14 Recall and 5.13 F1 scores respectively.
Both RPE and ASTs features could solely achieve a noticeable
improvement in code summarization and extreme summariza-
tion tasks. Nevertheless, after RPE was introduced into the
Transformer model, the improvements contributed from the
ASTs features are very limited, which are 0.00 BLEU, -0.13
ROUGE, 0.04 METEOR in Java, 0.19 BLEU, 0.05 ROUGE-
L,0.06 METEOR in Python and 1.27 Precision, 0.47 Recall
and 0.80 F1 scores in Java-small datasets, and vice versa.

We hypothesize that the contributions of RPE and ASTs
feature to code semantic summarization overlap to a large
extent. To validate our hypothesis, we propose to establish
the correlation between RPE and ASTs by using Pearson
correlation coefficient. The main evaluation metric, BLEU
score distributions of models equipped with different feature

settings, are utilized to calculate Pearson correlations of ASTs
and RPE, and the results are displayed in Figure 5. Our
interpretation of Pearson r correlation is based on Hinkle
et al.’s scheme [37]: negligible correlation (|r| < 0.3), low
correlation (0.3 ≤ |r| < 0.5), moderate correlation (0.5 ≤
|r| < 0.7), high correlation (0.7 ≤ |r| < 0.9), and very high
correlation (0.9 ≤ |r| ≤ 1). Figure 5 shows that there exists
high Pearson correlations between ASTs and RPE in three
datasets. The combination feature ASTs&RPE also shares
high correlations with ASTs and RPE. Although the absolute
Pearson correlation values are moderately high, the NONE
feature has a relatively low correlation with RPE and ASTs,
which shows a notable gap from the correlations between
ASTs and RPE features. As we can observe from the left
two sub-figures in Figure 5, the moderately high correlations
between the NONE feature and ASTs and RPE features are
more significant in code summarization task since the basic
Transformer model without any structure feature could achieve
competitive performance in Java and Python datasets.

Now, we could answer RQ2 that code structure features con-
tribute positively to code semantic summarization, and RPE,
together with ASTs code structure features, could achieve
the best performance in Transformer architecture. In addition,
our experimental results show an insightful finding that the
contribution of RPE and ASTs structure information to code
summarization tasks overlap to a large extent since they have
a strong Pearson correlation.

Finding 2. The ASTs code structural features and
relative position encoding feature contribute positively
to code semantic summarization tasks, but they have a
strong Pearson correlation, and much feature overlap
exists between them.
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Fig. 5. Pearson correlations of RPE and ASTs features. The left two sub-figures are evaluated in code summarization task, and the last one is in extreme
summarization task. ASTs&RPE is the combination of ASTs and RPE, and the NONE means both are not included.

TABLE VIII
RESULTS ON STRUCTURAL-DEPENDENT SUMMARIZATION DATASETS.

Model settings Python-if Python-loop Java-if Java-loop
RPE ast cf df BLEU ROUGE-L METEOR BLEU ROUGE-L METEOR BLEU-4 ROUGE-L METEOR BLEU ROUGE-L METEOR

1 1 1 1 30.00 45.26 20.18 26.98 41.80 17.75 38.51 49.01 24.16 40.92 50.80 22.49
1 1 0 0 29.56 44.93 19.88 27.31 42.05 17.85 38.74 49.19 24.34 40.52 50.46 22.35
1 0 1 0 29.70 45.23 20.04 26.58 41.14 17.30 38.24 48.55 24.02 39.82 49.88 22.11
1 0 0 1 29.38 44.24 19.53 26.75 41.38 17.52 38.42 48.82 24.05 39.99 49.89 22.16
1 0 0 0 29.64 44.97 20.08 26.95 41.73 17.60 38.83 49.12 24.24 41.58 51.83 23.15
0 0 0 0 28.61 43.63 19.16 25.83 39.90 16.66 36.99 47.52 23.23 38.55 48.70 20.96

RQ3: How does Transformer perform in a more structural
dependent setting in code summarization task?

To better evaluate the ability of code Transformer models
that convert the understanding of code structure information
into natural language code summary. We gather a special code
summarization test dataset, in which generating a summary
requires a more explicit structural understanding of source
code. Experimental results of the Transformer equipped with
various structural feature settings on the structural-dependent
summarization test dataset are displayed in Table.VIII.

We can observe that in Python-if, the model equipped
with RPE and the combination of all ASTs structure features
achieves the highest evaluation metric scores. In Python-loop,
RPE together with ast performs best. In both Java-if and
Java-loop, Transformer equipped with RPE alone achieves
best BLEU scores. Transformer models equipped with various
code structure settings achieve best performance in different
structural-dependent summarization benchmarks, which may
suggest that it’s not the perfect choice to treat code structure
features ( ast, cf and df ) equally in one adjacency matrix.

Structural-dependent datasets are selected from the original
Java and Python test datasets following the rules we stated in
Section III. It’s obvious to see that overall evaluation metrics
decrease a large margin, about 8 BLEU scores drop in Java-if,
5 BLEU scores in Java-loop, 4 BLEU scores in Python-if, and
7 BLEU scores in Python-loop, compared to the best perfor-
mances evaluated on the whole benchmarks in Java/Python-
test shown in Table VI. We blame the performance gap for
two reasons. First, according to the statistics of datasets in
Table I, both the average tokens of Java/Python-if/loop in
code and in summary are much longer. The average length
summary in Java-if is almost twice as long as in Java-
test. Second, we assume the selected Structural-dependent test

datasets are challenging for Transformer that integrated with
code structure features. To eliminate the effects of the code
length and summary length, we further sample Java/Python-
if/loop to match the length distribution of Java/Python-test.
The structural-dependent datasets that match the length dis-
tribution of Java/Python-test are noted as Java/Python-struc-
dpdt, and the statistics are listed in Table I. We re-evaluate
code Transformer models with various structural feature set-
tings on Java/Python-struc-dpdt summarization datasets, and
the experimental results are demonstrated in Table IX. Com-
pared to the performance decreasing margin in Java/Python-
if/loop, although smaller, we also observe 1.46 BLEU scores
decreased in Java-struc-dpdt and 0.98 BLEU scores decreased
in Python-struc-dpdt compared to the best performances in
Table VI. This observation indicates that it is still challenging
for structure-induced Transformer models to convert their im-
plicit understanding of code structure information into explicit
natural language summary.

On the other hand, the Structural-dependent summarization
test datasets offer a more straightforward and challenging
method to evaluate the capability of converting code structural
information into explicit natural language summary, which
may inspire the evaluation of code summarization. We could
answer RQ3 that in a more structural-dependent setting, the
Transformer model equipped with code structure features
shows a significant performance decrease.

Finding 3. In a more structural-dependent summariza-
tion scenario, explicitly understanding code structure
information in Transformer still has space for further
improvement.



TABLE IX
RESULTS ON Java/Python-struc-dept SUMMARIZATION DATASET.

Model settings Java-struc-dpdt Python-struc-dpdt
RPE ast cf df BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR

1 1 1 1 44.45 55.19 31.32 33.36 48.77 22.85
1 1 0 0 44.54 55.31 31.25 32.69 48.05 22.12
1 0 1 0 44.07 54.61 31.03 32.55 48.31 22.04
1 0 0 1 43.97 54.86 30.93 32.21 47.36 21.63
1 0 0 0 45.29 55.85 31.88 32.25 47.46 22.21
0 0 0 0 43.02 53.69 30.10 31.74 47.72 22.20

V. THREATS TO VALIDITY

One potential threat to the validity of our work is the
design of probing tasks. Although we obtain the consistent
conclusion that APE and RPE yield a conflict influence in
both the tokens distance probing task and summarization task,
there is still an inconsistency phenomenon. The embedding
vectors from the Transformer encoder equipped with APE
could achieve the best performance in the tokens distance
prediction probing task. However, RPE is proved to be more
beneficial in the Transformer for code semantic summarization
tasks. The absolute accuracy values in the probing task are
not the focus of this study; instead, the probe is utilized
to assess whether APE or RPE helps in encoding position
information and the effect of using the combination of them. In
our future work, we will try to explore more suitable probing
tasks that not only could reflect specific features but keep
consistent with the target downstream task. Concerning the
input embedding vectors of the probing task, our limitation is
that only the last layer outputs of the Transformer encoder are
considered. It would be interesting to explore the capability
of preserving specific properties in various layers in the
Transformer encoder. Besides, in this paper, we only consider
the method utilizing code structure features in Transformer
proposed in [32]. Therefore, our findings and suggestions are
suitable for scenarios that integrate code structure features into
Transformer as an inductive bias. It will be more revealing to
extend this study to more methods that utilize code structure
information in Transformer.

VI. RELATED WORKS

A. Code semantic summarization.

Recently, in the code summarization task, researchers have
focused on encoding source code structural information, such
as positional relationships and the structure feature from ASTs.
Ahmad et al. [23] adopted relative position representation [25]
to model the pairwise code token relationship by injecting
relative position embeddings into Transformer. Along this
technique track, Wu et al. [32] propose a structure-induced
Transformer (SIT) to integrate ASTs structure features into
the self-attention calculation, which combines the AST tree,
data-flow graph, and control-flow graph as a multi-view graph
matrix to filter attention connections between tokens. Follow-
ing SIT, Gao et al. [27] proposed to introduce the AST relative
position relationship between tokens into the Transformer to
further enhance the capturing of code structure information.

B. Empirical study on source code models
In the natural language processing (NLP) community, the

research works that attempt to demonstrate what BERT [38]
learn and how it affects downstream tasks by analyzing
attention and task probing have formed a “BERTology” [39]
subspecialty. The counterpart research in software engineering
mostly focused on the pre-trained language models for source
code. For example, Karmakar and Robbes [40], and Troshin
and Chirkova [26] introduced a set of heuristic diagnostic
probing tasks to test whether or to what extent vectors from
source code pre-trained models reflect diverse aspects of code
understanding. Wan et al. [8] also conducted a structural
analysis on pre-trained code models. In [40] and [26], re-
searchers focused on pre-trained models, such as CodeBERT
[41], GraphCodeBERT [35] and PLBART [42] and CodeT5
[43]. However, these studies only show in which probing tasks
a code embedding technique works better, i.e., in capturing
which kind of features a model performs better. It is still
not clear how these features affect code intelligence tasks.
Chirkova and Troshin [26] conducted an empirical study to
investigate what is the best way of utilizing syntactic struc-
ture information in different scenarios while lacking analysis
on code summarization. Sontakke et al. [44] performed an
empirical study to analyze the state-of-the-art summarization
models, to which extent these models understand the code
they attempt to summarize. Insightful observations on code
summarization are found, and their study granularity is on the
model level.

VII. CONCLUSION

In this paper, we conduct an empirical study concerning the
code structure features in Transformer-based code semantic
summarization tasks. Through extensive experiments, several
insightful findings are found. (1) There is a conflict between
the influence of the APE and the RPE in Transformer, and we
suggest that utilizing only RPE in code summarization tasks
yields better performance. (2) The AST-based code structure
features and RPE feature show a strong correlation, and much
contribution overlap for code semantic summarization tasks
do exist between them. (3) In a more structural-dependent
setting, explicitly understanding code structure information in
Transformer still has space for further improvement. These
findings revealed in this paper could inspire future studies
on source code representation in Transformer. All data in the
study are publicly available at: https://drive.google.com/file/d/
1cbdaxsVEC tzZtfJ0yE-jNJeI2rwYs2J/view?usp=share link

https://drive.google.com/file/d/1cbdaxsVEC_tzZtfJ0yE-jNJeI2rwYs2J/view?usp=share_link
https://drive.google.com/file/d/1cbdaxsVEC_tzZtfJ0yE-jNJeI2rwYs2J/view?usp=share_link
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