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Abstract—Code comment, i.e., the natural language text to
describe the semantic of a code snippet, is an important way
for developers to comprehend the code. Recently, a number
of approaches have been proposed to automatically generate
the comment given a code snippet, aiming at facilitating the
comprehension activities of developers. Despite that state-of-the-
art approaches have already utilized advanced machine learning
techniques such as the Transformer model, they often ignore
critical information of the source code, leading to the inaccuracy
of the generated summarization. In this paper, to boost the
effectiveness of code summarization, we propose a two-stage
paradigm, where in the first stage, we train an off-the-shelf
model and then identify its focuses when generating the initial
summarization, through a model interpretation approach, and
in the second stage, we reinforce the model to generate more
qualified summarization based on the source code and its focuses.
Our intuition is that in such a manner the model could learn to
identify what critical information in the code has been captured
and what has been missed in its initial summarization, and
thus revise its initial summarization accordingly, just like how a
human student learns to write high-quality summarization for a
natural language text. Extensive experiments on two large-scale
datasets show that our approach can boost the effectiveness of
five state-of-the-art code summarization approaches significantly.
Specifically, for the well-known code summarizer, DeepCom,
utilizing our two-stage paradigm can increase its BLEU-4 values
by around 30% and 25% on the two datasets, respectively.

Index Terms—Automatic Comment Generation, Code Summa-
rization, Model Interpretation

I. INTRODUCTION

Program comprehension, where developers try to understand
the semantic meaning of a code snippet, is critical to modern
software development. However, it is a quite labor-intensive
task (e.g., according to the investigation of Hallam et al., 80%
of the development time is spent on understanding the code
[1]). It has been widely recognized that code comments, which
are usually the brief natural language descriptions of the major
functionalities of code snippets, can greatly facilitate program
comprehension [2], [3]. In practice, however, developers may
not write high-quality comments due to their negligence or
time constraints [4], [5]. To release the burden of manually
writing comments for developers, various of techniques have
been proposed to automatically generate comments for code
snippets during the years [6]–[9], making this task (a.k.a.
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code summarization) an active research domain in the software
engineering community [10]–[12].

Traditionally, researchers aim to generate comments with
a template by constructing a set of complex rules, which
cannot generalize well considering the complexity of the real-
world code [13], [14]. Recently, with the advanced deep
learning techniques, state-of-the-art approaches mainly utilize
Neural Machine Translation (NMT) to perform the code sum-
marization task [6]–[9]. Specifically, such approaches adopt
sequence-to-sequence neural networks to convert code snippets
into comments. For instance, CodeNN [6] exploits a classical
encoder-decoder framework in NMT that encodes code to
context vectors and then generates summaries in the decoder
with the attention mechanism. By leveraging the large-amount
high-quality manually-written code comments available in the
wild (e.g., those within the popular projects hosted on GitHub),
these neural comment generation (NCG) approaches can learn
from human experiences, and is thus considered as a promis-
ing research direction. Unfortunately, state-of-the-art NCG
approaches are far from providing significant usefulness to
developers in practice, since they may still generate comments
that are different from the human-written ones to a large
extent, as evaluated by Shi et al. [15]. Moreover, through a
user study, Mcburney et al. [16] found that usually, the critical
information of the target code is missed in the generated
summarizations.

The basic question targeted by our study is thus how to
further improve the effectiveness of existing NCG approaches,
given that they have already utilized state-of-the-art deep
learning techniques. To address this challenge, we are not
going to adjust the model architecture of the current ap-
proaches or apply more advanced learning techniques. Instead,
we explore a new direction that tries to utilize the generated
summarization to enhance code summarization inversely. We
were inspired by noting the process of teaching students to
perform the text summarization task, a common exercise in
reading courses [17]. Specifically, in such an activity, students
firstly give their answers that may not be completely right,
after which the teacher will perhaps let them explain what
information in the original text they focus on during the
summarization. Then, the teacher will demonstrate the actual
critical information in the text (i.e., the information that should
be focused on). Finally, by referring to the differences between
their focuses and the actual critical information, students learn
to revise their summarizations and generate more accurate



results. We note from this case that students learn to write
high-quality summarizations in a two-stage manner in general:
proposing their answers and learning to revise them. The key
reason for the high-quality summarization from students is
not that they can summarize the text well at the beginning, on
the contrary, it is that by comparing their initial focuses with
the actual critical information, students understand what they
capture and what they miss in their initial results. By learning
to revise their answers based on such information, they further
obtain the knowledge about how to perform better in the
future. Motivated by the above observation, we propose that
the effectiveness of code summarization could be improved if
a model can be further trained based on its initial results. By
doing so, the model may also learn how to refine its (probably
inaccurate) summarization based on what critical information
it has captured and what critical information it has missed.

To explore such a direction, in this paper, we propose a new
two-stage paradigm for code summarization. In the first stage,
we train an off-the-shelf NCG model and produce its initial
summarization, and then extract the code tokens which are re-
lied on by the model to generate the initial summarization (i.e.,
which is referred to as the summarization interpretation in
this study), utilizing interpretation approaches. Interpretation
approaches are widely studied in the machine learning domain
[18]–[21], whose target is to explain why an output can be
obtained given a specific input to the modal. In our approach,
we utilize them to help identify which part of the code is
focused on by the model. In the second stage, we reinforce
the model by training it with the inputs being the original code
snippets and the information it relies on to produce its initial
summarization. We postulate that in this reinforcement phase,
the model could implicitly learn to understand which parts
of its focuses are indeed critical and further which parts of
the original code that contain critical information are missed.
The reinforced model is therefore expected to generate more
accurate summarizations on top of its initial results. In this
paradigm, the NCG model is the “student” while the loss
during training plays the role of “teacher” and directs the
student to the correct answer. We refer to this new paradigm
as ICSER, which represents for Interpretation based Code
SummarizER.

We performed extensive experiments to investigate the ef-
fectiveness of ICSER. Specifically, we selected five baseline
NCG models and evaluated the effectiveness of the vanilla
model and the corresponding two-stage paradigm on two
large-scale datasets from the CodeSearchNet benchmark [22].
Results show that ICSER can significantly outperform the cor-
responding vanilla NCG models with respect to three widely-
used metrics for assessing the quality of code summarizations,
i.e., BLEU-4, METEOR, and ROUGE-L. For instance, after
adopting our two-stage paradigm, the BLEU-4 values of the
well-known code summarizer, DeepCom [7], are increased
by around 30% and 25% on the two evaluation datasets.
We also perform a human evaluation to assess the generated
comments and results show that ICSER can generate more
useful comments compared with the vanilla NCG model.

The main contributions of this paper are summarized as
follows:

• We propose a new two-stage paradigm for code summa-
rization which mimics the practice of human students to
learn how to accurately summarize natural language texts.

• We design a black-box and a white-box interpretation
approaches to identify the focuses of NCG models. With
such information, the NCG model can be further trained
to refine its initial summarizations based on the critical
code parts that are captured and missed by it.

• Experiments on top of five state-of-the-art NCG models
have shown that our approach can boost the effectiveness
of code summarization significantly. We open source
our replication package at https://github.com/gmy2013/
Icser for follow-up studies.

II. BACKGROUND AND MOTIVATION

A. Background

The background of our work includes automatic comment
generation and the interpretation of deep learning models.

1) Automatic Comment Generation: In the early stage
of automatic source code summarization, template-based ap-
proaches [13], [14] are widely exploited. However, a well-
designed template requires huge expert domain knowledge,
which is time-consuming. Therefore, information retrieval (IR)
based approaches [13], [23], [24] are proposed, with the basic
idea to retrieve terms from source code to generate term-based
summarization or to retrieve similar source code and reuse its
summarization. However, the retrieved summarizations may
not correctly describe the semantics and behavior of the target
code snippets, leading to the mismatches between code and
summarizations.

Recently, Neural Machine Translation (NMT) based models
are exploited to generate summarizations for code snippets [6],
[7], [25]. In concrete, Iyer et al. [6] proposed CodeNN, which
adopts LSTM networks with attention module to generate
natural language describing C# code snippets and SQL queries.
Later, hybrid approaches [26], [27] that combine the NMT-
based and IR-based methods are also proposed and have been
shown to be promising. Allamanis et al. [28] proposed an
attentional neural network to perform the code summarization
task by viewing source code as plain text and generating
comments using semantic features. Code structures are also
incorporated for generating summaries. Hu et al. [7] proposed
DeepCom, which exploits abstract syntax tree (AST) to an-
notate the methods of Java and take the flattened sequence
as input to the NMT models. Code2seq [29] also leverages
syntactic structure of programming languages to better encode
source code. LeClair et al. [8] exploited a novel model ast-
attendgru to perform the NCG task by combining tokens
with the AST. Similarly, Hu et al.proposed Hybrid-DeepCom
[25], improving DeepCom with hybrid lexical and syntactical
information. A branch of studies focus on updating outdated
comments according to code changes, which can be considered
as another form of comment generation problem [30], [31].
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Fig. 1: A text summarization example from the CNN/Daily dataset and a code summarization example from our evaluation dataset.

2) Interpretation of Deep Learning Models: Although so-
phisticated deep learning models have achieved great success
in various applications, it is still hard to interpret how and why
a deep learning model produces a specific result [32]. Despite
that extensive efforts have been made towards explaining the
results of learning-based models, it still remains an open
problem [33]–[36]. In the natural language processing domain,
existing works generally focus on classification models. Poulin
et al. [37] proposed ExplainD to provide a graphical interpre-
tation of the classification result. Erik et al. [38] interpreted the
classification by using the game theory. LIME provides local
model-agnostic interpretations of any classifier by constructing
a linear model to locally fit a complex DNN model [39].
Riberio et al [40] further proposed Anchor, an extension of
LIME based on the decision rules, where an anchor is a
decision rule that leads to the result. LORE [41] is another
local rule-based interpretation approach similar to Anchor.

Regarding to the intelligent source code domain, there
has been plenty of interests in improving interpretability of
models used in software engineering tasks [18]–[21]. Two
representative works [20], [21] proposed to simplify the code
while retaining the model prediction. Another approach called
AutoFocus [18] aims to rate and visualize the relative impor-
tance of different code elements by using a combination of
attention layers in the neural network and deleting statements
in the program. Recently, Cito et al. [19] targeted global
interpretability and helps model developers identify which
types of inputs result in the poor performances of the model.
They further exploited counterfactual explanation generation
technique to generate the explanations by constituting minimal
changes to the source code under which the model “changes
its mind” [42].

B. Motivation

In this section, we illustrate the motivation of this work
through a real-world text summarization exercise example for
students.

The first part of Fig. 1 gives a text summarization example
from the CNN/Daily dataset,1 which is widely used as exercise
examples for students on this task. From the source text,
we can see that it introduces some information about a
bombing case in Algeria such as the casualties and the time
of the bombing. Beyond the basic information of the current
bombing, the text also introduces the recent trend of bombings
in Algeria, recalling another suicide bombing in the month of
July. Consequently, in the ground-truth summarization of this
piece of news (which is manually-annotated by researchers
[43]), information for both the just-happened and previous
bombings is mentioned together. As we can see, a student’s
summarization (1) captures some critical information like
the casualties of the bombing (the contents in the color of
green), (2) misses some critical information (in this case,
the recent bombing trend and all relevant information of the
previous bombing case are missed, cf. the contents in the
color of red), and (3) mistakenly emphasizes some non-critical
contents and includes them in the summarization (in this
case, the student adds some information about the potential
attacker but it is considered as non-critical probably because
it is not clear enough now, cf. the contents in the color of
blue). Correspondingly, consider the highlighted contents in
the source text, those in green and blue are focused by the
student, while those in green and red are actually needed to
obtain the ground-truth summarization. Given that, if a teacher
could tell the student that some of his/her focuses are right

1https://huggingface.co/datasets/cnn dailymail
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(those in green) while others are unnecessary (those in blue),
and some critical information in the source text is lost (those
in red), the student may produce more accurate answers.

This case is very similar to how NCG approaches perform
the code summarization task. Specifically, after the initial
training, an NCG model could learn certain domain knowledge
so that it is able to capture some critical functionalities of a
given code snippet. However, just like the human beings, a
machine learning model could also miss some critical informa-
tion in the code or mistakenly focuses on certain non-critical
information, both of which will lead to the inaccuracy of its
summarization. A concrete example is shown in the second
part of Fig. 1, where we illustrate a code snippet from the
CodeSearchNet dataset [44], its corresponding ground-truth
summarization written by developers, and the summarization
generated by CodeT5 [45], a well-known pre-training based
NCG approach. The main functionality of the given code snip-
pet is to select the preferred language from a set of candidate
languages. We note that the summarization of CodeT5 (1)
correctly captures the main functionality of the code snippet,
which is returning the preferred language (the contents in the
color of green), (2) misses the information about the range
constraint (i.e., the preferred language is selected from a set
of candidate languages passed as an argument, cf. the contents
in the color of red), and (3) mistakenly captures information
from another argument which does not contain much semantic
information (this is reflected by the fact that the majority of
the code is related to the argument availableLangs instead
of app, cf. the contents in the color of blue). Therefore, we
postulate that the effectiveness of CodeT5 could be improved
if it could be trained to learn that it has focused on something
critical (those in green as highlighted in the code snippet),
it misses something critical (those in red), and it mistakenly
focuses on something non-critical (those in blue). Indeed, as
also shown in the figure, after using our proposed approach,
the model generates a summarization that is semantically-
identical to the ground-truth (we suppose the words “the
given” indicates that the variable is passed as an argument).
In this case, the value of Rouge-L, a widely-used metric for
evaluating the quality of generated texts [46], is increased from
23.5% to 44.4%, an increase of nearly 90%.

III. METHODOLOGY

A. Approach Overview

The architecture of ICSER, which works in a two-stage
manner, is shown in Figure 2. In the first stage, we train an
off-the-shelf neural comment generation (NCG) model. Then,
given a piece of source code as the input, we use the trained
model to generate its corresponding summarization. After that,
we identify the meaningful words in the generated comments,
based on which we can extract the information in the source
code utilized by the model to generate the current summa-
rization (which is referred as summarization interpretation),
with the help of interpretation approaches. Such information is
considered as the original focuses of the comment generation
model. In the second phase, we concatenate the source code

and the original focuses, take them together as the input to
the model, and train the model to produce summarizations
based on such inputs. The aim of this step is reinforcing the
model to learn about how to produce more accurate comments
by identifying the critical information in the source code
that has been captured and missed by it. After the second
round of training, the trained model is supposed to learn the
knowledge of revising its initial summarization based on its
initial focuses, and therefore should be able to produce more
qualified summarizations when given the code snippet and its
initial summarization. We next introduce the meaningful word
dentification, the interpretation approach we utilize, and the
reinforcement training in the second phase in detail.

B. Meaningful Word Identification

We recall that one of the important targets in the first stage
of our approach is to identify the code tokens that are relied
on by the model to generate the initial summarization (we
refer to as summarization interpretation). To achieve so, we
first need to filter non-meaningful words in the summarization.
Our intuition is that not all the words in a natural language text
possess rich semantic information, which is a common sense in
the natural language processing domain [47]–[49]. Therefore,
we can safely focus on the meaningful words (which are
usually the verbs and nouns) in the summarization when
performing the summarization interpretation to obtain more
accurate results. For instance, in Fig. 1, the semantic meaning
of the sentence initially generated by CodeT5, i.e., “return the
preferred language for the given application”, relates largely to
the following words “return”, “preferred language”, and “given
application”, but relates little to the definite article “the” and
the preposition “for”.

We choose to rely on the concept stop word from the
natural language processing to fulfill our target. Specifically,
stop words refer to the words that are filtered out before the
processing of natural language text since they are insignificant
to the ongoing tasks [48], [49]. Stop word identification is
required to perform a number of natural language processing
tasks such as in information retrieval systems (IR), stem
weighting, stemming and spelling standardization [47]. In our
approach, we use the open-source package rake-nltk 2 to help
us identify the meaningful words in the summarization.

C. Summarization Interpretation

After the meaningful word identification, we use interpreta-
tion approaches to extract the code tokens that are focused
on by the model to generate the initial summarization. In
this study, we explore two interpretation approaches, a black-
box one and a white-box one. We next introduce the two
approaches in detail.

1) Black-Box Interpretation Approach: The ultimate goal
of the summarization interpretation is to build a mapping
relation between the code and the summarization, that is, to
identify which part of the code contributes to the generation

2https://pypi.org/project/rake-nltk
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Fig. 2: Model architecture of our ICSER.

of a specific part of the summarization. In the black-box based
approach, we have no direct access to the intrinsic information
of the NCG model such as the values of its parameters. There-
fore, we adopt a mutation-based strategy: we generate different
mutants of the original source code by removing a small code
segment each time, send the mutants to the NCG model and
generate summarizations for such mutants, and then check if
the meaningful words identified in the last step disappear in
any of the newly generated summarization. If so, the removed
code segment in the mutant is considered to have relation with
the disappeared meaningful words, and a mapping relation is
thus built. The behind intuition is straightforward: if a code
segment can contribute to the generation of a specific part of
the summarization, then such a part of summarization could
not be generated if the source code does not contain this
code segment. Note that such a strategy is model-agnostic
and can be applied to any model that does not strictly require
a syntactically-correct input (since removing a code segment
may lead to the input code being syntactically-incorrect).

In our approach, the granularity of the code segment to
be removed is in the expression level. The rationale is that
when manually comprehending code, it could be difficult for
developers to understand the semantic meaning of a standalone
code token, on the contrary, they could easily understand the
semantic meaning of a consecutive code token sequence. For
example, for the code lang.collect(toList()), developers
may easily understand its intention with the information of the
APIs and the parameters. Based on that, we postulate that the
trained NCG model could also generate summarizations by
focusing on a consecutive sequence of code tokens. Also, we
disregard statement level information since expression level
information is more fine-grained and has achieved better ef-
fectiveness than statement level information in several software
engineering tasks such as program repair [50], [51].

The whole process of our black-box interpretation approach
is shown in Algorithm 1. Given a code snippet, we use a

Algorithm 1: Black-box Interpretation Approach.
Input: Neural comment generation model NCG, code snippet c.
Output: original focus set list foc.

1 Function Interpret(NCG, C):
2 list foc → ϕ
3 Initial comment → NCG(c)
4 Meaningful words → kw extract(Initial comment)
5 Expression list → Exp extract(c)
6 for exp in Expression list do
7 mutant → Remove(c,exp)
8 New comment → NCG(mutant)
9 /* Check if any meaningful word is lost

in the newly generated summarization.
*/

10 if ∃ word ∈ Meaningful words, word /∈
New comment then

11 list foc.append(exp)

12 return list foc

language parser (e.g., javalang 3 for the Java language and tree-
sitter 4 for the Python language) to extract all the expressions
in the code (line 5). For each extracted expression, we remove
it from the code to generate a mutant of the original code (line
7). We then send the corresponding mutant to the NCG model
to generate a new summarization (line 8). By comparing the
newly-generated summarization and the original one, we check
if any meaningful word in the summarization is lost. If so, the
removed expression is recorded as part of the original focuses
(lines 10-11). By iterating the process on all the expressions
in the code, we finally extract all the original focuses.

2) White-Box Interpretation Approach: The white-box ap-
proaches allow us to inspect the intrinsic information of the
NCG model. Inspired by existing studies [52], [53], we rely
on the attention score of the input code token to identify the
focuses. Specifically, for each meaningful word in the summa-

3https://github.com/c2nes/javalang
4https://tree-sitter.github.io/tree-sitter/
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rization, we check the attention score of the model at that time
stamp and consider the code token with the highest attention
score as the focus (this is feasible for encoder-decoder based
NCG approaches where the summarization is generated word
by word). After that, all the identified code tokens are recorded
as the original focuses of the NCG model. The intuition
of such a strategy is simple and straightforward: since the
attention mechanism usually represents the contribution of
each input code token to the next word to be generated, we
directly use it as an indicator of the model’s focuses.

D. Reinforcement Training

In the second stage, we incorporate the original focuses
identified through our summarization interpretation into the
reinforcement training process of the model. Since such fo-
cuses could be extracted from different parts of the source
code, they are thus not complete code snippets. Therefore, we
decide to treat them as token sequences. Specifically, for each
instance in the training set, we concatenate the original source
code and the focuses to shape a new token sequence (as shown
in Fig. 2 the focuses are appended to the end of the original
source code). Then we exploit the newly-generated instances
to reinforce our model to generate the oracle summarization.

After this reinforcement training in the second stage, the
model is supposed to learn the ability to revise the summa-
rization based on the original focuses. Taking the code snippet
from the test set plus with the corresponding original focuses
as inputs, the reinforced model can generate a summarization
different from the original one, which is expected to be more
qualified.

IV. EXPERIMENT SETTING

A. Research Questions

In our evaluation, we aim to answer the following research
questions:
• RQ1: How effective is ICSER on generating high-quality

summarizations based on the initial ones? This RQ
aims at comparing the summarization produced through our
two-stage approach, ICSER, and the initial summarization
produced by the original NCG model. By answering such a
question, we can investigate how well the model learns to
revise its initial summarization.

• RQ2: To what extent do different summarization inter-
pretation approaches affect the effectiveness of ICSER?
We design two interpretation approaches for ICSER, a black-
box one and a white-box one. In this RQ, we aim to inves-
tigate how effective is ICSER with different interpretation
approaches.

B. Dataset

We choose to use the CodeSearchNet (CSN) benchmark
[22] as our evaluation dataset. CSN is a large-scale dataset
mined from popular GitHub projects (indicated by the number
of stars and forks), which contains code-comment pairwise
data from six programming languages. It has been widely used

TABLE I: The statistics of our evaluation datasets.

Dataset Training Validation Test
CSN-Python 412,178 23,107 22,176
CSN-Java 446,607 19,855 29,778

in the code summarization domain upon released [15], [54]–
[56]. Generally, the input to the NCG model is the function-
level code snippet, and the corresponding comment written
by the developers is used as the oracle summarization. In our
study, to better evaluate the generalizability of our approach,
we use the data from two popular programming languages,
i.e., Java and Python. Following the existing study [15], the
source code that cannot be parsed by our parser (i.e., javalang
and tree-sitter) are filtered out and the detailed statistics of our
evaluation dataset are listed in Table I.

C. Baseline NCG Approaches

As we have introduced in Section III, the application of
ICSER requires that (1) the NCG model can take a piece of
syntactically-incorrect code as input, and (2) the summariza-
tion is generated word by word. Given that, we choose the
following five state-of-the-art approaches, which ensures the
above prerequisites, as the baseline NCG approaches in our
study.

• CodeNN [6] is the first neural approach that learns to
generate summarizations of code snippets.

• DeepCom [7] is an SBT-based (Structure-based Traversal)
model, which can capture the syntactic and structural infor-
mation from AST. It is an attentional LSTM-based encoder-
decoder neural network that encodes the SBT sequence and
then generates summarizations.

• Astattggru [8] encodes both the code and AST to learn
lexical and syntactic information. It exploits two GRUs to
encode code and SBT sequences respectively.

• NCS [9] is the first attempt to replace the previous RNN
units with Transformer model, incorporating the copy mech-
anism [57] to allow both generating words from vocabulary
and copying words from the input source code.

• CodeT5 [45] is a unified pre-trained encoder-decoder Trans-
former model that is supposed to better leverage the code
semantics conveyed from the developer-assigned identifiers.

We recall that all the selected baseline approaches take
the sequential data as the inputs. Specifically, the input of
CodeNN, NCS, and CodeT5 is the token sequence of the
target code snippet. While DeepCom and Astattggru involve
the information from ASTs, such information is encoded in
the SBT sequence. Specifically, since our black-box approach
targets expressions in the program, all the removed tokens
are actually leaf nodes in the AST. We then remove the
shortest AST paths that link each pair of the leaf nodes
and finally obtain the SBT sequences of such post-processing
ASTs. Therefore, all the selected baselines can accept the
syntactically-incorrect code snippets as inputs. Also, they
all output the word sequence of the summarization since



they use the encoder-decoder architecture with the attention
mechanism.

D. Metrics

To assess the quality of the generated summarization, we
use three metrics in total:
• BLEU (Bilingual Evaluation Understudy) [58] is commonly

used for evaluating the quality of the generated text [6],
[7], [59]. In short, a BLEU score is a percentage number
between 0 and 100 that measures the similarity between one
sentence to a set of reference sentences using constituent n-
grams precision scores. We exploit BLEU-4 (specifically, the
BLEU-DC [15]) to measure the precision of the generated
summaries. In concrete, a value of 0 indicates that the
generated sentence has no overlap with the reference while
a value of 100 means perfect overlap with the reference.

• METEOR [60], which denotes the Metric for Evaluation of
Translation with Explicit ORdering, is another widely used
metric to evaluate the quality of generated code summaries
[25], [61], [62]. METEOR evaluates the generated summary
g by aligning it to the reference summary r and calculating
the similarity scores based on the unigram matching.

• ROUGE denotes the Recall-oriented Understudy for Gisting
Evaluation [46]. It computes the count of several overlap-
ping units such as n-grams, word pairs, and sequences.
ROUGE has several different variants from which we con-
sider the most popular one ROUGE-L [56], [63], [64], which
is calculated based on the longest common subsequence
(LCS).

E. Implementation Details

All the baseline approaches are open sourced by their orig-
inal authors. Therefore, to avoid replication bias, we reused
their official code. We exploited the default hyper-parameter
settings provided by each approach. The maximum value of
epoch is set to 40 and we adopted an early stopping mechanism
to enable the convergence and generalization of the model,
following the recent study [15]. In addition, to mitigate the
randomness in the experiment, we repeated each experiment
3 times and display the mean and standard deviation in the
form of mean ± std. All experiments were conducted on a
DGX machine with 8 Tesla V100 32GB GPUs.

V. EXPERIMENT RESULTS

A. RQ1-The effectiveness of ICSER

Table II and Table III demonstrate the effectiveness of base-
line NCG models and ICSER on the two evaluation datasets.
Note that we experimented with two different interpretation
approaches (i.e., the white-box and black-box ones). In these
two tables, we demonstrate the optimal effectiveness of ICSER
and the differences between such interpretations will be dis-
cussed later.

From the results, we find that our two-stage code sum-
marization approach, ICSER, can consistently outperform the
corresponding baseline approach on both Java and Python
datasets with respect to all the three metrics. For instance,

for the pioneer NCG model in the literature, CodeNN, its
values of BLEU-4, METEOR, and ROUGE-L are increased
by 17.7%, 14.2%, and 9.7%, respectively, on the CSN-Java
dataset after adopting the two-stage summarization paradigm.
Similarly, on the CSN-Python dataset, the values of BLEU-
4, METEOR, and ROUGE-L for CodeNN are increased by
12.6%, 25.2%, and 7.2%, respectively. The most significant
effectiveness enhancement is from DeepCom. Specifically,
comparing with the vanilla DeepCom, IcserDeepCom achieves
increases of 28.2% (24.9%), 24.9% (24.2%), and 17.6%
(14.2%) with respect to BLEU-4, METEOR, and ROUGE-
L, on the CSN-Java (CSN-Python) dataset. We also note that
NCG models with the Transformer architecture gain relatively
low enhancement, probably because their vanilla models can
already generate high-quality summarizations. For instance, on
the CSN-Java dataset, NCS achieves the highest BLEU-4 score
among all the baselines, i.e., 25.17%. After adopting the two-
stage paradigm, IcserNCS achieves a BLEU-4 of 26.89%,
experiencing a performance increase of 6.8%, which is lower
than that of DeepCom (28.2%) to a large extent.

We also conducted Wilcoxon signed-rank tests [65] where
for each vanilla NCG model and its two-stage paradigm, we
compared their achieved values with respect to the three met-
rics on each individual code snippet from the test set. Results
show that ICSER significantly outperforms its corresponding
vanilla NCG model with respect to all the three metrics on
both datasets. Specifically, all the p-values are less than 0.001
in the comparison results.

ICSER can significantly improve the quality of the gen-
erated summarizations compared with those generated by
the vanilla NCG models. Specifically, on the CSN-Java
dataset, the BLEU-4 value of the summarizations generated
by DeepCom is changed from 7.85% to 10.06%, an increase
of 28.2%.

B. RQ2-Comparson Between Black-Box and White-Box Inter-
pretation Approaches

To investigate which interpretation approach can help ICSER
achieve higher effectiveness (the black-box one or the white-
box one), we compare the effectiveness of ICSER when
integrated with different approaches and illustrate the results
in Table IV.

From the results we note that for the majority of our selected
NCG models, ICSER achieves higher effectiveness when using
the black-box interpretation approach. For instance, when the
vanilla model is CodeNN, the values achieved by ICSER
with respect to the BLEU-4, METEOR, and ROUGE-L are
14.46% (14.96%), 12.66% (13.17%), and 31.97% (33.18%)
when using the white-box (black-box) approach, on the CSN-
Java dataset. We observe a similar trend on the CSN-Python
dataset. The only exception is Astattgru, which gains higher
effectiveness when using the white-box approach. Specifically,
on the CSN-Java and CSN-Python datasets, the BLEU-4
values of the black-box approach are 16.74% and 16.83%,



TABLE II: Experiment results of different NCG models on the CSN-Java dataset (metric values in %).
Tool BLEU-4 Improvement METEOR Improvement ROUGE-L Improvement
CodeNN 12.71±0.23 ↑ 17.7% 11.53±0.12 ↑ 14.2% 30.24±0.29 ↑ 9.7%
IcserCodeNN 14.96±0.19 13.17±0.08 33.18±0.24
DeepCom 7.85±1.07 ↑ 28.2% 7.47±0.25 ↑ 24.9% 19.00±0.87 ↑ 17.6%
IcserDeepCom 10.06±0.95 9.33±0.32 22.34±0.75
ASTattgru 15.83±0.17 ↑ 8.1% 13.20±0.04 ↑ 7.0% 34.21±0.64 ↑ 5.5%
IcserASTattgru 17.12±0.26 14.13±0.21 36.11±0.52
NCS 25.17±0.39 ↑ 6.8% 15.62±0.24 ↑ 10.7% 40.97±0.52 ↑ 2.1%
IcserNCS 26.89±0.28 17.29±0.31 41.85±0.64
CodeT5 20.31±0.23 ↑ 6.0% 15.32±0.26 ↑ 10.1% 39.34±0.31 ↑ 4.9%
IcserCodeT5 21.52±0.26 16.87±0.21 41.27±0.26

TABLE III: Experiment results of different NCG models on the CSN-Python dataset (metric values in %).
Tool BLEU-4 Improvement METEOR Improvement ROUGE-L Improvement
CodeNN 13.92±0.14 ↑ 12.6% 9.13±0.09 ↑ 25.2% 30.89±0.12 ↑ 7.2%
IcserCodeNN 15.68±0.25 11.43±0.12 33.12±0.18
DeepCom 8.09±1.13 ↑ 24.9% 7.44±0.21 ↑ 24.2% 20.02±0.79 ↑ 14.2%
IcserDeepCom 10.11±0.95 9.24±0.30 22.87±0.71
ASTattgru 16.08±0.19 ↑ 7.1% 12.94±0.08 ↑ 13.3% 33.97±0.59 ↑ 3.9%
IcserASTattgru 17.22±0.33 14.66±0.18 35.29±0.47
NCS 25.24±0.42 ↑ 6.7% 14.96±0.18 ↑ 9.4% 38.47±0.29 ↑ 2.2%
IcserNCS 26.93±0.37 16.37±0.26 39.31±0.31
CodeT5 20.01±0.19 ↑ 5.8% 15.14±0.22 ↑ 7.3% 37.89±0.38 ↑ 3.2%
IcserCodeT5 21.18±0.19 16.24±0.19 39.11±0.33

TABLE IV: The effectiveness of the black-box and white-box interpretation approaches (in %).

Tool CSN-Java CSN-Python
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

IcserCodeNN−white−box 14.46±0.21 12.66±0.11 31.97±0.28 14.71±0.19 10.39±0.11 32.64±0.16
IcserCodeNN−black−box 14.96±0.19 13.17±0.08 33.18±0.24 15.68±0.25 11.43±0.12 33.12±0.18
IcserDeepCom−white−box 9.24±1.02 8.38±0.19 21.12±0.79 9.14±0.88 8.13±0.26 21.45±0.83
IcserDeepCom−black−box 10.06±0.95 9.33±0.32 22.34±0.75 10.11±0.95 9.24±0.32 22.87±0.75
IcserAstattgru−white−box 17.12±0.26 14.13±0.21 36.11±0.52 17.22±0.33 14.66±0.18 35.29±0.47
IcserAstattgru−black−box 16.74±0.20 13.89±0.11 35.79±0.61 16.83±0.29 14.15±0.16 37.92±0.39
IcserNCS−white−box 26.43±0.33 16.78±0.29 41.69±0.68 26.67±0.44 16.01±0.22 39.11±0.22
IcserNCS−black−box 26.89±0.28 17.29±0.31 41.85±0.64 26.93±0.37 16.37±0.26 39.31±0.31
IcserCodeT5−white−box 21.38±0.28 16.24±0.23 40.88±0.24 20.79±0.17 15.99±0.21 38.79±0.35
IcserCodeT5−black−box 21.52±0.26 16.87±0.21 41.27±0.26 21.18±0.19 16.24±0.19 39.11±0.33

respectively, slightly lower than that achieved when using the
white-box approach, which are 17.12% and 17.22%, respec-
tively. We also note that such effectiveness deviations caused
by different interpretation approaches are not significant. For
instance, regarding to the BLEU-4 metric of CodeT5 on the
CSN-Java dataset, the black-box approach achieves a score
of 21.52% while that of the white-box one is 21.38%, with
only a difference of 0.14%. Our statistical test results also
confirm this, with the p-values comparing the metric values
achieved by the black-box and white-box approaches being
larger than 0.05. Such results indicate that both approaches
could be applied in practice.

Our results are also consistent with the previous studies
[66], [67] which show that merely relying on the attention
score may not obtain promising interpretation results in some
cases. The behind reason could be explained as some inputs
that do not possess the highest attention score may also
contribute to certain outputs but such relations are ignored
if only concentrating on the input with the highest attention

score.

Generally, the black-box interpretation approach can achieve
higher effectiveness than the white-box one when integrated
with ICSER. Nonetheless, such difference is not statistically
significant.

VI. DISCUSSION

A. Human Evaluation

All our metrics assess the lexical gap between the generated
comments and the references. We also perform a human
evaluation to assess the semantic quality of the generated
comments. Specifically, we recruit eight participants, including
four Ph.D students and four senior researchers, who are not
co-authors of this paper. They all have at least three years of
development experience for Java and Python. We randomly
select 100 code snippets from the test sets (50 from CSN-
Java and 50 from CSN-Python). We focus on comparing
CodeT5 and IcserCodeT5, and thus we obtain a total of 200



TABLE V: The statistic results of human evaluation.
Approach Avg. Median Std.

Naturalness CodeT5 3.9 4.0 0.9
IcserCodeT5 4.0 4.0 0.8

Adequacy CodeT5 3.1 3.0 1.2
IcserCodeT5 3.6 4.0 1.1

Usefulness CodeT5 2.9 3.0 1.3
IcserCodeT5 3.3 3.5 1.1

generated comments. The 200 code-comment pairs are divided
into four groups, and each group is checked by two participants
independently. Following the existing studies [68], [69], each
participant is asked to rate each generated comment from
the three aspects: (1) Naturalness which reflects the fluency
of generated comments from the perspective of grammar;
(2) Adequacy which reflects the information richness of
generated comments; and (3) Usefulness which reflects how
can generated comments help developers, on a 5-point Likert
scale (1 for poor, 2 for marginal, 3 for acceptable, 4 for good,
and 5 for excellent).

Table V shows the statistic results of the human evaluation.
We note that IcserCodeT5 is better than CodeT5 in all the three
aspects. The average scores of IcserCodeT5 on naturalness,
adequacy, and usefulness are 4.0, 3.6, 3.3 respectively, for
the 100 selected code snippets. Specifically, in terms of
naturalness, the average score of IcserCodeT5 reaches 4.0,
meaning that the generated comments are generally fluent
and readable. In terms of adequacy, IcserCodeT5 achieves
3.6 while CodeT5 achieves 3.1, which indicates that after
adopting the two-stage paradigm, the generated comments
contain more information. Such results confirm that the model
does learn to capture some missed information in the initial
summarization after the reinforcement training. Moreover, our
user study shows that ICSER improves the usefulness perceived
by the users from a point below 3 to a point over 3. This is a
significant improvement since a point below 3 means that the
users generally do not consider the summarization results as
useful. Therefore, it indicates that ICSER effectively improves
program comprehension from the developers’ perspective.

Our human evaluation focuses on comparing CodeT5 and
IcserCodeT5. It should be noted that ICSER achieves the
least improvement on CodeT5 with respect to the BLEU (cf.
Table II and Table III). It is thus expected that compared
with other vanilla models, ICSER can achieve at least similar
improvements when judged by humans. Due to the scale
restriction of human evaluation, we leave performing more
manual analysis (e.g., involving more code examples and
participants from industry) as our future work.

B. Case Analysis

To further investigate the effectiveness achieved by ICSER,
we analyzed a detailed case to compare the summarizations
generated by the vanilla NCG model and ICSER. As shown in
Fig. 3, the source code implements the functionality that com-
pares two sets of version strings and judges if they are the same
(returning true if so and false otherwise). Therefore, the
corresponding comment written by the developers summarizes

Fig. 3: An example from the CSN-Java test set.

as “compare expected versions with given versions to see if
they are the same or not”. The initial summarization generated
by CodeT5 successfully captures the two subjects (i.e., the
argument versions and the expected set), but it inaccurately
focuses on the method invocation isEmpty() and translates its
meaning as if something is in a specific range (“if the versions
are in the expected set”). With the second stage in ICSER
(i.e., the reinforcement training process), the model learns that
its aforementioned focus is inaccurate and turns to focus on
another method invocation symmetricDifference(). This
time, the model realises that the main functionality is checking
if there is any difference between two objects, and thus
generates a summarization that is semantically identical to the
ground-truth, improving the BLEU-4 score from 0.07 to 0.49.

C. The Rationale of Using the Original Focuses

In our approach, we design a two-phase paradigm where in
the second stage we use the initial focuses of the model for
reinforcement learning. Our intuition is that in such a manner,
the model could learn the critical information which has been
captured and missed by it. To investigate the rationale of such a
strategy, we performed another experiment where to reinforce
the model, we randomly selected focuses from the source code
whose numbers of tokens are identical to the identified original
focuses.

From the results shown in Table VI, we note that after re-
placing the original focuses with randomly selected tokens, the
effectiveness of ICSER decreases significantly. For instance,
the BLEU-4, METEOR, and ROUGE-L of IcserDeepCom

drop from 10.06% to 8.03%, from 9.33% to 7.73%, from
22.34% to 19.41% (from 10.11% to 8.16%, from 9.24% to
7.62%, from 22.87% to 20.21%) on the CSN-Java (CSN-
Python) dataset. Similar phenomenons are observed for other
baselines. Another interesting finding is that the effectiveness
of ICSER with the random strategy is still better than that of
the vanilla models. For instance, the BLEU-4 value of 8.03%
on the CSN-Java dataset is higher than that of the vanilla
DeepCom which is 7.85%. Such results indicate that the two-
stage code summarization paradigm can generally improve the
effectiveness of code summarizers, while the initial focuses of
the model contribute significantly to such enhancements.

D. Threats to Validity

External threats. Generalizing to different programming
languages is always a concern in the evaluation of NCG
models [15]. To mitigate this threat, our study focuses on
two widely-used languages (i.e., Python and Java) and results



TABLE VI: Experiment results after replacing the original focuses with randomly selected tokens (in %).

Tool CSN-Java CSN-Python
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

CodeNN 12.71±0.23 11.53±0.12 30.24±0.29 13.92±0.14 9.13±0.09 30.89±0.12
IcserCodeNN−Random 12.80±0.26 11.68±0.15 30.42±0.25 14.12±0.12 9.36±0.24 31.02±0.14
IcserCodeNN 14.96±0.19 13.17±0.08 33.18±0.24 15.68±0.25 11.43±0.12 33.12±0.18
DeepCom 7.85±1.07 7.47±0.25 19.00±0.87 8.09±1.13 7.44±0.21 20.02±0.79
IcserDeepCom−Random 8.03±1.13 7.73±0.24 19.41±0.82 8.16±1.05 7.62±0.24 20.21±0.76
IcserDeepCom 10.06±0.95 9.33±0.32 22.34±0.75 10.11±0.95 9.24±0.32 22.87±0.71
Astattgru 15.83±0.17 13.20±0.04 34.21±0.64 16.08±0.19 12.94±0.08 33.97±0.59
IcserAstattgru−Random 15.91±0.16 13.32±0.15 34.33±0.54 16.12±0.31 13.11±0.11 34.28±0.62
IcserAstattgru 17.12±0.26 14.13±0.21 36.11±0.52 17.22±0.33 14.66±0.18 35.29±0.47
NCS 25.17±0.39 15.62±0.24 40.97±0.52 25.24±0.42 14.96±0.18 38.47±0.29
IcserNCS−Random 25.39±0.27 15.81±0.28 41.16±0.61 25.41±0.39 15.32±0.17 38.72±0.33
IcserNCS 26.89±0.28 17.29±0.31 41.85±0.64 26.93±0.37 16.37±0.26 39.31±0.31
CodeT5 20.31±0.23 15.32±0.26 39.34±0.31 20.01±0.19 15.14±0.22 37.89±0.38
IcserCodeT5−Random 20.46±0.31 15.51±0.21 39.62±0.33 20.46±0.17 15.49±0.21 38.21±0.35
IcserCodeT5 21.52±0.26 16.87±0.21 41.27±0.26 21.18±0.19 16.24±0.19 39.11±0.33

demonstrate similar trend. Also, due to the limitation of
our black-box interpretation approach, we only evaluate our
approach on code summarization approaches that are able
to deal with syntactically-incorrect code snippets. Those that
strictly require the input code being syntactically-correct are
thus excluded from the evaluation [70]–[72]. This threat is
mitigated considering that the five baselines in our evaluation
represent the state of the art in the code summarization domain
well. We leave refining our approach to generalize on more
code summarization models as our future work.

Internal threats. The evaluation of ICSER requires a large-
scale replication experiment on existing code summarization
approaches. To ensure the reliability of our experiment, we di-
rectly reused the source code and hyper-parameter values from
the existing studies. We further double checked our results and
confirmed that they are consistent with the previously-reported
ones.

VII. RELATED WORK

In this section, we introduce existing studies in the literature
that are related to this study from the following two domains:
reinforcement learning and data augmentation technologies.

The aim of reinforcement learning technique is to find a
strategy that makes the agent take certain actions to max-
imize the cumulative reward. Silver et al. [73] exploited
deep reinforcement learning and Monte Carlo Tree Search
to the computer Go game and reached a professional level.
Reinforcement learning techniques can also be applied to
the intelligent software engineering domain. Wan et al. [59]
exploited an actor-critic reinforcement learning framework to
alleviate the exposure bias issue of code summarization. Yao et
al. [74] proposed an effective framework based on reinforce-
ment learning by encouraging the code summarization model
to generate summarizations that can be used for the retrieval
task. Similarly, Le et al. [75] treated the code generation model
as an actor and exploited a trained correctness-prediction critic
network for better code generation. In our approach, we also
reinforce the model to generate more qualified summarizations

based on its initial summarization and focuses. The difference
between ICSER and the traditional reinforcement learning
techniques is that the actor space and the reward function are
explicitly given in reinforcement learning but are implicitly
learned by our approach. That is because manually labelling
the ground-truth information (i.e., the critical part of each code
snippet) is time-consuming and infeasible. We thus expect that
the model could learn such information automatically.

Data augmentation aims to increase the data diversity and
improve the generalizability by exploiting various transforma-
tion technology. In recent years, data augmentation techniques
have also been exploited in the intelligent software engineering
domain [76]–[78] to expose the vulnerability and improve the
robustness of code models. Compared with data augmentation
technology, ICSER adds auxiliary information as the inputs of
the model without generating additional data, while data aug-
mentation techniques usually add manual labeled or synthetic
training samples for learning.

VIII. CONCLUSION

In this paper, we propose a new two-stage paradigm for
code summarization. The basic idea of our new paradigm is
to mimic the practice of human students to generate high-
quality summarizations for natural language texts. Specifically,
students usually write an initial answer first and then revise it
by understanding what critical information they have captured
and what they have missed. Therefore, in our paradigm, we
first train an off-the-shelf code summarization model and iden-
tify its focuses with the help of summarization interpretation,
then we reinforce the model using its focuses, with the hope
that the model can learn how to revise its intial summarization
automatically, just like a human student. Experiments on five
state-of-the-art code summarization models show promising
results: after adopting our two-stage paradigm, the effective-
ness of these models increases significantly on two large-scale
datasets for Java and Python languages.
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