
CCT5: A Code-Change-Oriented Pre-Trained Model
Bo Lin

linbo19@nudt.edu.cn
College of Computer Science,
National University of Defense

Technology
Changsha, China

Shangwen Wang
wangshangwen13@nudt.edu.cn
College of Computer Science,
National University of Defense

Technology
Changsha, China

Zhongxin Liu
liu_zx@zju.edu.cn
Zhejiang University
Hangzhou, China

Yepang Liu
liuyp1@sustech.edu.cn

Department of Computer Science and
Engineering, Southern University of

Science and Technology
Shenzhen, China

Xin Xia
xin.xia@acm.org

Zhejiang University
Hangzhou, China

Xiaoguang Mao
xgmao@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

ABSTRACT
Software is constantly changing, requiring developers to perform
several derived tasks in a timely manner, such as writing a de-
scription for the intention of the code change, or identifying the
defect-prone code changes. Considering that the cost of dealing
with these tasks can account for a large proportion (typically around
70 percent) of the total development expenditure, automating such
processes will significantly lighten the burdens of developers. To
achieve such a target, existing approaches mainly rely on train-
ing deep learning models from scratch or fine-tuning existing pre-
trained models on such tasks, both of which have weaknesses.
Specifically, the former uses comparatively small-scale labelled
data for training, making it difficult to learn and exploit the domain
knowledge of programming language hidden in the large-amount
unlabelled code in the wild; the latter is hard to fully leverage the
learned knowledge of the pre-trained model, as existing pre-trained
models are designed to encode a single code snippet rather than a
code change (i.e., the difference between two code snippets). We
propose to pre-train a model specially designed for code changes to
better support developers in software maintenance. To this end, we
first collect a large-scale dataset containing 1.5M+ pairwise data of
code changes and commit messages. Based on these data, we curate
five different tasks for pre-training, which equip the model with
diverse domain knowledge about code changes. We fine-tune the
pre-trained model, CCT5, on three widely-studied tasks incurred by

† Shangwen Wang is the corresponding author.
Bo Lin, Shangwen Wang, and Xiaoguang Mao are with the Key Laboratory of Software
Engineering for Complex Systems.
Yepang Liu is with the Research Institute of Trustworthy Autonoumous Systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/xxxxxxx.xxxxxxx

code changes and two tasks specific to the code review process. Re-
sults show that CCT5 outperforms both conventional deep learning
approaches and existing pre-trained models on these tasks.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software; Software evolution.

KEYWORDS
Code Change, Pre-Training, Deep Learning.

ACM Reference Format:
Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xi-
aoguang Mao. 2023. CCT5: A Code-Change-Oriented Pre-Trained Model .
In Proceedings of The 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
2023). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/xxxxxxx.
xxxxxxx

1 INTRODUCTION
Software undergoes continuous changes during the maintenance
phase to fix defects, change execution logic, make the processing
more efficient, or introduce new features [14, 54, 57, 64]. Because
of the omnipresence of code changes, developers need to deal with
a number of derived tasks (referred to as code-change-related
tasks in this paper). For instance, the interview conducted by Fritz
and Murphy [15] showed that developers have to frequently answer
the question “Why were the code changes introduced?” in their
daily development tasks. After comprehending the intention of
code change, they may further need to estimate the impact of soft-
ware changes [52], troubleshoot unexpected behavior [28], monitor
the maintenance of code clones [49], or update the associated code
comments [35]. Statistics have shown that maintaining software
systems demands possibly as high as 70 percent of the total devel-
opment efforts [37]. Furthermore, a user study indicates that there
is an urgent need of tool support for code-change-related tasks,
such as commit message generation and defect prediction [61].

Prior works proposed to leverage deep learning (DL) techniques
to deal with code-change-related tasks and have achieved promis-
ing results [35, 43]. Currently, there are typically two ways to apply

https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx
https://doi.org/10.1145/xxxxxxx.xxxxxxx

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao

deep learning techniques. The first is to train deep learning models
from scratch with a comparatively small-scale, manually-labelled,
and task-specific dataset (referred to as non-pre-training in this
paper) [23, 36, 50, 53]. Despite the progress such approaches have
achieved, their effectiveness sometimes cannot be as promising
as expected (possibly because of the lack of training data [35]),
and there is still a large room for improvement [34, 41, 70]. For
instance, Liu et al. [41] found that, when generating commit mes-
sages that describe the intention of code changes, a simple heuristic
can outperform a sophisticated DL model and save a lot of com-
puting resources at the same time. Another way is to leverage
the state-of-the-art pre-training paradigm, where the models are
first pre-trained on large-scale unlabelled datasets to be equipped
with domain knowledge of programming language (PL) and natural
language (NL), and then fine-tuned on various downstream tasks
[1, 13, 18, 72]. By doing so, the parameters of the trained model can
store some common knowledge compared with random initializa-
tion. Specifically, one can fine-tune existing pre-trained models on
code-change-related tasks [33, 79]. However, existing pre-training
techniques are mainly targeted at tasks related to encoding and un-
derstanding a given code snippet (referred to as code-related tasks
in this paper), such as code search [17], code summarization [25],
and defect detection [32]. Specifically, the designed pre-training
tasks (e.g., the Masked Language Modeling in CodeBERT [13]) typ-
ically take a code snippet and its paired documentation (i.e., the
comment) as inputs. Thus, the learned domain knowledge is gen-
erally related to the syntactic and semantic information of code
snippets, which can hardly be exploited to encode and understand
code changes. That is to say, adopting the secondwaywill inevitably
lead to inconsistent inputs and objectives between pre-training and
fine-tuning since code-related and code-change-related tasks have
natural differences: the former deals with a code snippet and the
key challenge is to capture the syntactic and semantic information
of a code snippet; while the latter deals with two code snippets and
the key challenge is to understand the differences. Consequently,
it is sub-optimal to fine-tune existing pre-trained code models for
code-change-related tasks [67].

To help developers better deal with code changes and address
the limitations mentioned above, our basic idea is that models
can be equipped with different domain knowledge and thus be
applied to different tasks if they are pre-trained by different tasks
[8, 33, 72, 79]. Therefore, we propose a code-change-oriented pre-
trained model, CCT5, which is built on top of the well-known Text-
To-Text-Transfer Transformer (T5) model [56], but pre-trained with
code-change-specific inputs and objectives. CCT5 mainly embodies
two advantages: First, by adopting the pre-training paradigm, the
domain knowledge of code changes hidden in a large amount of
unlabelled data can be absorbed by the model. Second, by designing
specific pre-training tasks for code changes, the domain knowl-
edge learned by the pre-trained model can be easily transferred
to code-change-related downstream tasks. To achieve our target,
we first build a large-scale dataset (named CodeChangeNet) for
pre-training. Specifically, we collect 1.5M+ pairwise data of code
change and commit message from popular GitHub projects written
in six widely-used programming languages. As the NL description
of the code change during pre-training, the commit message plays

a similar role to the code comment in existing pre-training tech-
niques. After that, we design five different pre-training tasks for
learning the domain knowledge about code changes, which take as
inputs the differences between two code snippets (i.e., code diffs
[33]), and enable the model to align the NL and PL representations,
generate fluent NL descriptions and complete code snippets, and
be aware of the program structure, respectively.

To evaluate the effectiveness of CCT5, we fine-tune it on three
widely-studied downstream tasks, which are commit message gen-
eration [68], just-in-time comment update [43], and just-in-time
defect prediction [50]. Results show that CCT5 outperforms both
the state-of-the-art non-pre-training techniques and existing pre-
trained models on the three tasks consistently. For instance, on
a large-scale multi-linguistic benchmark for the commit message
generation task, CCT5 outperforms NNGen (the state-of-the-art
non-pre-training technique) and CodeT5 (the state-of-the-art pre-
trained model) by 24% and 22%, respectively, in terms of the BLEU
values. Besides, CCT5 can also generalize well to code review tasks:
it outperforms CodeReviewer [33], a recently-proposed pre-training
technique specially designed for the code review process, on the
code change quality estimation and review generation tasks.

In summary, our study makes the following contributions:
• Dataset:We collect and release a large-scale dataset for perform-
ing code-change-oriented pre-training, i.e., CodeChangeNet.

• CCT5:We propose totally five carefully-curated pre-training tasks,
based on which we release the first code-change-oriented pre-
trained model, i.e., CCT5.

• Performance assessment: We perform extensive experiments
to assess the performance of CCT5. CCT5 achieves the state-of-the-
art performance on three widely-studied code-change-related
tasks and two tasks specific to the code review process.

2 BACKGROUND AND RELATEDWORKS
2.1 Code Change and Its Related Tasks
Software is constantly changing as new features are added, bugs
are fixed, and performance is enhanced [64]. Specifically, it has
been shown that the Linux kernel changes 5.5 times per hour [7]. In
another study, Jiang et al. found that there are over 2M code changes
in the most popular 1K open-source repositories on GitHub[27].
Both the above studies demonstrate the widespread existence of
code changes. Along with the changes of code, developers need
to solve many derived tasks. For instance, a developer may need
to write a description for the code changes he/she made for better
communication among the development team [7, 27]; or in some
other cases, he/she may need to check if a code change made by
others will induce program defects or not [29, 60]. Given that, it
is not surprising that the cost of program maintenance can reach
around 70% of the total expenditure, as reported by Lehman [31].
Therefore, techniques that can automate such code-change-related
tasks hold great potential to boost developers’ productivity.

2.2 Code Change Representation Techniques
Previously studies have demonstrated that compared with conven-
tional heuristic-based approaches, deep learning techniques can
perform better on code-change-related tasks [36, 39, 43, 69]. Con-
sequently, to deal with code-change-related tasks, recent studies

CCT5: A Code-Change-Oriented Pre-Trained Model ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

focus on learning the distributed representations of code changes
using DL techniques.

CC2Vec [23] adopts a hierarchical attention network to succes-
sively build vector representations for code lines, code chunks, and
finally the entire code change. It achieves state-of-the-art perfor-
mance on a number of code-change-related tasks such as just-in-
time defect prediction [29]. Yin et al. [77] experimented with two
different ways to embed a code change: treating it as a code token
sequence and treating it as the difference between two Abstract
Syntax Trees (ASTs). The results show that the representations
could be better if the structure-level information is involved. Re-
cent studies also utilize the AST path technique [3] for representing
the code change [35, 36], where the AST is split into changed and
unchanged parts and the paths connecting different leaf nodes are
embedded to represent each part. Despite the progress achieved
by these techniques, they are all trained from scratch with a com-
paratively small-scale labelled dataset. It is hard for them to learn
and use the domain knowledge of programming language hidden
in the large amount of unlabelled code in the wild, which limits
their effectiveness [35].

2.3 Existing Pre-Training Techniques
Training a deep learningmodel from scratch requires a large amount
of labelled data, which is rather labor-intensive. To reduce the bur-
den of manual labelling, pre-training techniques have been pro-
posed recently, with the aim of equipping the model with com-
mensense knowledge using unlabelled data, after which the model
can be fine-tuned on downstream tasks with relatively small-scale
labelled data. Such a paradigmwas first proposed in the Natural Lan-
guage Processing (NLP) domain [9, 55], and then adapted to code-
related tasks by designing pre-training tasks to learn the domain
knowledge of programming language or build the connections be-
tween a code snippet and its associated documentation [13, 18, 72].

Existing pre-trained models mainly target two types of code-
related tasks: generation and understanding [13, 78]. The genera-
tion tasks denote those that require the generation of a sequence
of tokens/words either in program languages (e.g., code genera-
tion [8, 76] and code repair [65]) or natural languages (e.g., code
summarization [25, 30]). The understanding tasks denote those
that require to produce vectorized representations of programs and
then perform downstream tasks such as classification and ranking
(e.g., code search [17, 66], code clone detection [71], and defect
detection [81]). Although existing pre-training techniques such as
CodeBERT [13], GraphCodeBERT [18], and CodeT5 [72] outper-
form traditional supervised learning techniques for the above tasks
[45], few of them target code-change-related tasks. As introduced,
the pre-training of these models focuses on capturing the syntac-
tic and semantic information of a code snippet, whereas dealing
with code-change-related tasks requires the model to encode and
understand the differences between two code snippets (rather than
a single code snippet). Consequently, the inputs to the models will
be different from those used for pre-training when the models are
fine-tuned for code-change-related downstream tasks. Such incon-
sistency makes the knowledge learned by pre-trained models hard
to be fully exploited, easily leading to sub-optimal results for down-
stream tasks [40, 67]. In the literature, CoditT5 [79] is evaluated on

Figure 1: An example of code change with commit message.

a code-change-related downstream task (i.e., just-in-time comment
update). However, its pre-training paradigm is designed for better
editing the code and comment rather than capturing the syntactic
and semantic information of code changes. To our best knowledge,
the only existing pre-trained model that aims at modelling code
changes is CodeReviewer [33], but it is specially designed for code
review tasks (e.g., generating the review comment and refining the
code based on the review comment). Beyond such tasks, there are
many other code-change-related tasks where an automated tool
can significantly lighten the burdens on developers, such as commit
message generation [41], code comment update [43], and defect
prediction [53]. Thus, the literature lacks a pre-trained model that
can perform well on diverse code-change-related tasks. Moreover,
from the technical perspective, the pre-training of CodeReviewer
ignores program structure information, which has been shown to
be critical for the model’s capability [18].

3 THE DATASET: CODECHANGENET
Pre-training techniques in the software engineering domain rely
on capturing the syntactic and semantic information of code snip-
pets. Previously, for code-related pre-trained models, the target is
achieved by using the pairwise data, i.e., the code and its correspond-
ing comment, for pre-training. The comment, which summarizes
the main functionality of the code, provides the model with a way
to understand the semantic information of the code. Similarly, if
we are going to pre-train a model for code changes, we also need
a way to reflect the semantic information of the code change. We
note that while committing a code change to a version control sys-
tem, developers need to document their changes using a commit
message, which usually summarizes what happens in the change
[7, 47]. A concrete example is shown in Figure 1. A developer
changes the value of a variable from false to true, and the associ-
ated commit message describes this change as “enable subqueries”.
Therefore, in this work, we choose to use the commit messages to
serve as the natural language descriptions of code changes. Existing
datasets on commit messages, however, are usually small-scale. For
instance, the dataset provided by Jiang et al. [27] only contains
32K commit messages. Such a scale cannot ensure the adequacy
of pre-training (cf. the dataset used for code-related pre-training,
i.e., the CodeSearchNet [26], contains around 2M code-comment
pairs). Therefore, we propose to build a multi-linguistic dataset with
large-scale pairwise data of code changes and commit messages for
pre-training, named CodeChangeNet. In the following sections,
we present the details of the building of dataset.

3.1 Data Collection
Nowadays, many projects are hosted on software development plat-
forms such as GitHub. With developers continuously committing

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao

Table 1: Statistics of the pre-training dataset.

Language Projects Commits Data Size
Python 9,627 519k 16.0GB
Javascript 11,925 97k 3.2GB
Ruby 1,839 62k 0.5GB
Go 4,110 185k 4.0GB
Java 5,645 461k 13.0GB
PHP 2,384 230k 2.8GB
Total 35,530 1,524k 39.6GB

† Projects of the dataset are accessed in October 2022.
their code changes, there is a large amount of readily-available
commit data including the exact content of code changes and com-
mit messages associated with code changes. We thus build our
CodeChangeNet dataset based on commit data collected from open-
source projects in GitHub.

Following CodeSearchNet, we collect projects in six popular pro-
gramming languages, which are Go, Java, JavaScript, PHP, Python,
and Ruby. To ensure the quality of our dataset, we collect data from
projects with high popularity, which is indicated by the number of
stars. Specifically, we select projects whose numbers of stars are
more than 500 (such a criterion is widely-used by existing studies to
indicate that a project is popular [4, 74]). We then remove projects
that do not have a license or whose licenses do not explicitly permit
the re-distribution of parts of the project.

To collect commit data, we use GitHub REST API to crawl project
information from GitHub, following the common practice in the
mining software repository (MSR) domain [21, 33]. Specifically,
by calling GitHub API, the detailed repository information of each
project such as the commit data can be accessed and stored in a JSON
file. Such commit data includes code changes (i.e., the original file,
new file, and the code diff) and commit messages. Finally, a set of
pairs (𝑐𝑐𝑖 , 𝑐𝑚𝑖), where 𝑐𝑐𝑖 is a code change and 𝑐𝑚𝑖 is the associated
commit message, is collected as the initial data of CodeChangeNet.

3.2 Data Filtering
To further ensure the data used for pre-training is of high quality,
we perform the following preprocessing steps to filter low-quality
data:

• Pairs whose 𝑐𝑚𝑖 is shorter than three tokens (including three)
are removed to ensure that the commit message is descriptive.
This decision follows CodeSearchNet which restricts that the
comment of the code should contain more than three tokens.

• Pairs whose 𝑐𝑐𝑖 involves more than 100 tokens in the code diff
are removed to ensure that the model will not be affected by such
extremely complex code changes. This decision follows existing
studies which build commit-related datasets [5, 27, 68].

• Pairs whose 𝑐𝑐𝑖 occurs in the test files are removed since we focus
on code changes in the source code. This decision also follows
the preprocessing of CodeSearchNet.

• Pairs from those projects that have been used to build down-
stream tasks (which will be introduced later in Section 5) are
removed to avoid data leakage.

The resulting CodeChangeNet dataset contains about 1.5M of
<code change, commit message> pairs from 35,530 projects. Such a
scale is comparable to that of CodeSearchNet and thus can ensure

the adequacy of pre-training. The detailed statistics of the dataset
are illustrated in Table 1.

4 CCT5
In this section, we introduce the details of our CCT5, including the
model architecture, the input-output representations of the model,
and the five different pre-training tasks designed for the model.

4.1 Model Architecture
Following the T5 model [56], CCT5 uses an encoder-decoder ar-
chitecture. The encoder and decoder both have 12 Transformer
layers and in each layer, 12 attention heads are used to perform the
multi-head attention calculation, leading to the total parameter size
being 220M. Such an architecture is widely-used by state-of-the-art
pre-trained models [8, 16, 33, 72].

Following existing studies [8, 33], we initialize the parameters of
CCT5 with the values from CodeT5, with the aim of equipping the
model with some domain knowledge of the programming language.
CCT5 is then further trained on five different pre-training tasks and
then fine-tuned on various downstream tasks.

4.2 Input-Output Representation
Since CCT5 is designed to address code-change-related tasks, a fun-
damental problem is thus how to represent code changes. If we
send the token sequences of the old code and new code into the
model, the inputs would be extremely long since a code change
may happen across different files, which could make the model
hard to converge [2]. Instead, we use code diff to represent the code
changes which is shown to be effective [33]. A diff file is generated
by comparing the files before and after the code change. Specifically,
there are one or more diff hunks in a diff file, and each diff hunk
contains three different types of information: lines deleted in the
change (indicated by a “-” at the beginning of each line, e.g., the
red line in Figure 1), lines added in the change (indicated by a “+”
at the beginning of each line, e.g., the green line in Figure 1), and
surrounding lines unchanged in the change (which serve as the
context information of the code change, e.g., the line 25 in Figure 1).
One advantage of using the diff format is that it reduces the input
length to a large extent, as the unchanged lines occur only once.

For downstream tasks, CCT5 takes the code diff as input and
then performs a number of different tasks. Following the standard
manner of the Transformer, the input is treated as a token sequence.
We reuse the tokenizer fromCodeT5 to split the code into a sequence
of tokens. After that, a special token [𝐶𝐿𝑆] is prepended to the
sequence, making the input with the form of { [𝐶𝐿𝑆], 𝑐1, . . . , 𝑐𝑛 },
where 𝑐𝑖 is a source code token and 𝑛 denotes the length of the code
token sequence. This decision follows existing studies [13, 18, 72],
and the token [𝐶𝐿𝑆] will be used as the representation of the code
change in understanding tasks (which will be described in more
detail in Section 5.3). To help the model better understand the
code change, we also insert a special token in front of each line:
for deleted lines, we insert the token [𝐷𝐸𝐿]; for added lines, we
insert the token [𝐴𝐷𝐷]; and for unchanged lines, we insert the
token [𝐾𝐸𝐸𝑃]. In the pre-training phase, some of our pre-training
tasks take as inputs the code change and the commit message
simultaneously, with the aim of building the semantic connection

CCT5: A Code-Change-Oriented Pre-Trained Model ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

between the programming language and the natural language. For
such tasks, the inputs will be { [𝐶𝐿𝑆], 𝑐1, . . . , 𝑐𝑛 , [𝑀𝑆𝐺],𝑚1, . . . ,𝑚𝑙

}, where [𝑀𝑆𝐺] is a token separating the code tokens and commit
message tokens,𝑚𝑖 is a commit message token, and 𝑙 denotes the
length of the commit message token sequence.

4.3 Pre-Training Tasks
An important goal of CCT5 is designed to accurately capture the
semantic information of a given code change. To achieve so, we
need to build the semantic connection between the code change
and the commit message during the pre-training phase. We design
totally four pre-training tasks to fulfill this target. Besides, inspired
by GraphCodeBERT [18], we also design a pre-training task to
make the model be aware of the program structure. Figure 2 gives
an illustration of the five pre-training tasks of CCT5. Details about
these tasks will be introduced below.

4.3.1 Masked Language Modeling. The Masked Language Mod-
eling (MLM) pre-training task is widely used in previous studies
[13, 18] to encourage the model to align the natural language (NL)
and programming language (PL) representations. Generally, the
MLM is to randomly mask some tokens from the source code and
paired documentation and then ask the model to predict the original
tokens. In this study, we design two different tasks according to
masking the code change or masking the commit message.

Masked Language Modeling for Code Change (MLM4CC).
In this task, we input the code change and commit message to the
model, and mask the code lines from the code change. We focus
on the line level rather than the token level in order to keep the
integrity format of code diff, following the previous study [33].
Specifically, we randomly sample 15% of the lines in the code diff
and mask them, and the model is asked to predict the masked to-
kens. Note that this task is similar to the Masked Span Prediction
(MSP) task proposed in CodeT5 [72] as they both require the model
to predict consecutive tokens. The key difference between them
is that in MSP, the number of masked tokens is randomly deter-
mined, whereas in MLM4CC, we ensure that the masked tokens can
form a complete code line. This task helps the model gain general
knowledge about the distribution of the code change corpus, and
furthermore, when the information from the code change is not
enough, the model can refer to the paired commit message to help
it make the prediction, which also helps the model build the con-
nection between the NL and PL. From a general perspective, this
pre-training task helps the model understand what code change can
fulfill the intended functionality (expressed through the commit
message). Note that this pre-training task differs from the denoising
code diff (DCD) task of CodeReviewer [33], since we also take the
commit message as input to build the NL-PL correlations better. In
contrast, the previous work only takes the code change as the input
and thus can only help the model learn the code change distribution.
Formally, the loss can be described as:

L𝑀𝐿𝑀4𝐶𝐶 (\) =
𝑘∑︁
𝑡=1

−𝑙𝑜𝑔𝑃\ (𝑐𝑡 |𝑐𝑚𝑎𝑠𝑘 ,𝑚, 𝑐<𝑡)

where 𝑐𝑚𝑎𝑠𝑘 is the masked code diff, 𝑚 is the commit message,
𝑘 denotes the number of masked code diff tokens, and 𝑐<𝑡 is the
token sequence predicted for the masked code diff so far.

Masked LanguageModeling forCommitMessage (MLM4CM).
In this task, we input the code change and commit message to the
model, and mask the commit message tokens. Specifically, we ran-
domly sample 15% of the tokens from the commit message which
are supposed to be predicted by the model, and then we replace
them with the [𝑀𝐴𝑆𝐾] token 80% of the time, with a random to-
ken 10% of the time, and keep them unchanged 10% of the time,
following existing study [9]. This task helps the model gain general
knowledge about the distribution of the commit message corpus.
Furthermore, when the information from the commit message is
not enough, the model can refer to the corresponding code change
to help it make the prediction, which again helps the model build
the connection between the NL and PL. From a general perspective,
this pre-training task helps the model understand the semantic
information of the corresponding code change. Similarly, this pre-
training task differs from the denoising review comment (DRC)
of CodeReviewer, since DRC still merely learns the distribution of
the review comments while does not build the NL-PL connection.
Formally, the loss of this task can be described as:

L𝑀𝐿𝑀4𝐶𝑀 (\) =
𝑘∑︁
𝑡=1

−𝑙𝑜𝑔𝑃\ (𝑚𝑡 |𝑚𝑚𝑎𝑠𝑘 , 𝑐,𝑚<𝑡)

where 𝑚𝑚𝑎𝑠𝑘 is the masked commit message, 𝑐 is the code diff,
𝑘 denotes the number of tokens in the masked commit message,
and𝑚<𝑡 is the token sequence predicted for the masked commit
message so far.

4.3.2 Code Change-CommitMessage Dual Generation. In the above
pre-training tasks, the decoder only predicts discretemasked tokens,
while in the generation downstream tasks it needs to generate a
fluent NL description or a complete code snippet. To fill the gap
between the pre-training and downstream tasks, we design two
pre-training tasks to train the model for an NL-PL bidirectional
conversion, inspired by CodeT5 [72]. To our best knowledge, we
are the first to employ such a dual-generation mode to pre-train
code-change-oriented models.

NL → PL Generation (NL2PL). In this task, we expect the
model to learn how to generate the new code based on the old
code and the commit message. We consider that code lines in the
code diff beginning with [𝐷𝐸𝐿] and [𝐾𝐸𝐸𝑃] can denote the old
code before the code change. Therefore, we mask the added code
(i.e., code lines beginning with [𝐴𝐷𝐷]), and then send the code diff
(which now denotes the old code) and the commit message into the
model. The model is asked to predict the masked contents which
denote the added content during the code change. Considering that
the lines beginning with [𝐴𝐷𝐷] and [𝐾𝐸𝐸𝑃] denote the new code
after the code change, the model thus learns how to generate a
code snippet during this task. Note that the difference between
this task and MLM4CC is that in this task we train the model to
explicitly generate the added code (i.e., the lines beginning with
[𝐴𝐷𝐷]), while in MLM4CC the masked contents are randomly

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao

Figure 2: Pre-training tasks of CCT5.

selected. Similar to L𝑀𝐿𝑀4𝐶𝐶 , the loss can be described as:

L𝑁𝐿2𝑃𝐿 (\) =
𝑘∑︁
𝑡=1

−𝑙𝑜𝑔𝑃\ (𝑐𝑡 |𝑐𝑚𝑎𝑠𝑘
′
,𝑚, 𝑐<𝑡)

where 𝑐𝑚𝑎𝑠𝑘
′
is the masked code diff, 𝑚 is the commit message,

𝑘 denotes the number of masked code diff tokens, and 𝑐<𝑡 is the
token sequence predicted for the masked code diff so far.

PL → NL Generation (PL2NL). In this task, we expect the
model to learn how to generate the commit message based on the
code change. Specifically, we send the code diff into the model
and the model is expected to generate the entire commit message,
through which the model learns to generate fluent NL descriptions.
Formally, the loss can be described as:

L𝑃𝐿2𝑁𝐿 (\) =
𝑘∑︁
𝑡=1

−𝑙𝑜𝑔𝑃\ (𝑚𝑡 |𝑐,𝑚<𝑡)

where 𝑐 is the code diff, 𝑘 denotes the number of tokens in the
commit message, and𝑚<𝑡 is the token sequence generated so far.

4.3.3 Code Diff Generation. The authors of GraphCodeBERT [18]
propose that the performance of pre-trained models can be en-
hanced if considering the code structure during the pre-training.
They design two structure-aware pre-training tasks and results
show that GraphCodeBERT outperforms CodeBERT [13], which
does not involve such pre-training tasks, on a number of down-
stream tasks. In our study, we also design a structure-aware pre-
training task for CCT5 to make it better understand the code change.
To our best knowledge, we are the first to involve program structure
information when pre-training code-change-oriented models.

Following GraphCodeBERT, we rely on the data flow of the code
snippet to provide the semantic-level structure information. Gen-
erally, data flow can be considered as a graph in which the data
dependency relation (i.e., “where-the-value-comes-from”) among
different variables is depicted. In the graph, the nodes represent
the variables in the code and the edges represent that the two con-
nected variables have dependencies. Data flow is crucial for code
understanding since (1) it provides a way to understand the seman-
tics of a variable by concentrating on where its value comes from,
rather than focusing on the variable’s name, which is sometimes in

poor quality (e.g., i and j); and (2) it enables the model to consider
the long-range dependency for variables with the same names but
occur in distant locations. We refer the readers to the previous
study [18] for more details about data flow.

In this Code Diff Generation (CDG) task, we send the old data
flow, new data flow, and old code into the model, after which the
model is asked to generate the corresponding code diff. By doing
so, we expect the model could learn to understand the code change
based on the data flow change and thus take the program structure
into consideration. To adapt the data flow into the acceptable format
of the model, we use the variable pair < 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐴 , 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐵 >

to represent an edge in the graph that connects two variables,
and all the edges are sent into the model sequentially. The inputs
are thus represented as { [𝐶𝐿𝑆], 𝑜𝑐1, . . . , 𝑜𝑐𝑛 , [𝑆𝐸𝑃], 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐴 ,
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐵 , [𝐸𝐷𝐺𝐸], . . . ,𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑋 ,𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑌 , [𝑆𝐸𝑃],𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐴′ ,
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐵′ , [𝐸𝐷𝐺𝐸], . . . , 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑋 ′ , 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑌 ′ }, where 𝑜𝑐𝑖 is a
token in the old code, [𝑆𝐸𝑃] is a special symbol to split two kinds
of data types, [𝐸𝐷𝐺𝐸] is a special symbol to split two edges in the
data flow graph, 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐼 denotes a variable in the data flow of
the old code, and 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝐼 ′ denotes a variable in the data flow of
the new code. Formally, the loss can be described as:

L𝐶𝐷𝐺 (\) =
𝑘∑︁
𝑡=1

−𝑙𝑜𝑔𝑃\ (𝑐𝑡 |𝑜𝑐, 𝑜𝑑 𝑓 , 𝑛𝑑 𝑓 , 𝑐<𝑡)

where 𝑜𝑐 is the old code, 𝑜𝑑 𝑓 is the data flow before the code change,
𝑛𝑑 𝑓 is the data flow after the code change, 𝑘 denotes the number
of tokens in the code diff, and 𝑐<𝑡 is the token sequence generated
so far.

4.3.4 Final Loss. Following the existing studies [6, 13, 38], we treat
different pre-training tasks equally. The final loss during the pre-
training is calculated as:

𝑚𝑖𝑛
\

L𝐿𝑜𝑠𝑠 (\) = L𝐿𝑀𝐿4𝐶𝐶 (\) + L𝐿𝑀𝐿4𝐶𝑀 (\) + L𝑁𝐿2𝑃𝐿 (\)

+ L𝑃𝐿2𝑁𝐿 (\) + L𝐶𝐷𝐺 (\)

CCT5: A Code-Change-Oriented Pre-Trained Model ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

4.4 Implementation Details
Our model is implemented with the popular deep learning devel-
opment framework PyTorch.1 All the experiments are performed
on a server with 2 NVIDIA GeForce RTX 4090 GPUs. The learning
rate and batch size in the pre-training stage are set to 5e-5 and 32,
respectively. When fine-tuning our CCT5 on the downstream tasks
which are going to be introduced in the next section, we use a batch
size of 32 and a learning rate of 2e-5 for classification tasks (i.e.,
just-in-time defect prediction) and for the remaining generation
tasks, we adopt the same learning rate and batch size as we used
during the pre-training stage.

5 EXPERIMENTS
The goal of our work is to build a pre-trained model that can be
applied to code-change-related downstream tasks. To evaluate the
effectiveness of our CCT5, we perform experiments on three differ-
ent tasks, i.e., commit message generation [41], just-in-time com-
ment update [43], and just-in-time defect prediction [53]. We next
elaborate on the three tasks, the baselines, and the results.

5.1 Task 1: Commit Message Generation
5.1.1 Problem Formulation. It is reported that developers usually
do not have enough time to write high-quality commit messages
[12]. However, commit messages are of great importance in soft-
ware maintenance since they describe the intention of the code
changes and thus facilitate program comprehension. Therefore,
developers could gain considerable benefits from automatic gener-
ation of commit messages, making this task a hot topic in software
engineering community [23, 27, 41]. In this code-change-related
generation task, given the code change, we aim to automatically
generate a brief commit message that summarizes its content.

5.1.2 Baselines. We select the following state-of-the-art techniques
as the baselines of the commit message generation task.
• NNGen [41].NNGen is a state-of-the-art retrieval-based commit
message generation approach [63]. It first uses “bag-of-words”
[58] to represent code changes, after which the code change in
the training set with the most similar vector representation to
that of the test code change (calculated by the cosine similarity)
is identified, whose commit message is reused as the result. Ac-
cording to the recent replication study [63], NNGen is the most
effective non-pre-training technique so far for commit message
generation.

• FIRA [11]. FIRA is another state-of-the-art commit message
generation approach. It uses a customized graph structure to
explicitly depict the code edit operations and then adopts a graph
convolution network to represent the code change. Finally, a
Transformer layer with the dual copy mechanism is used to
generate the message.

• CodeReviewer [33]. CodeReviewer is a pre-training technique
for code changes, but it is pre-trained and evaluated only on code
review tasks such as review generation. To assess the effective-
ness of this technique on general code change tasks, we fine-tune
and evaluate the pre-trained model on our training and test sets.

1https://pytorch.org/

Table 2: Performance of different approaches measured by BLEU on
the MCMD dataset (in %).

Dataset NNGen CodeT5 CodeReviewer CCT5
MCMDjava 17.81 17.64 18.47 20.80
MCMDC# 22.92 18.76 20.36 25.53
MCMDc++ 13.69 14.41 15.94 17.64
MCMDpython 16.64 18.23 17.65 21.37
MCMDjs 18.03 21.53 19.84 24.94
Average 17.82 18.11 18.45 22.06

• CodeT5 [72]. CodeT5 is a state-of-the-art pre-trained model
with an encoder-decoder architecture. It achieves the best per-
formance on code-related generation tasks [78]. Technically, it
accepts token sequences as inputs so that it can be adapted to
code-change-related tasks by feeding it with token sequences
of code diffs. Comparing with CodeT5 can better demonstrate
the rationale of CCT5 and we also fine-tune and evaluate the
pre-trained model on our dataset.

5.1.3 Dataset &Metrics. We choose to use theMulti-programming-
language Commit Message Dataset (MCMD) [63] as our experiment
dataset, which is a recently-released large-scale benchmark for five
programming languages including Python, Java, JavaScript, C#,
and C++. The total number of commits for each language is 450k
and these commits are randomly split in 80-10-10 training/valida-
tion/test proportions. However, FIRA cannot be evaluated on this
dataset since (1) it currently only supports Java (it uses the javalang
package to perform program analysis); and (2) it requires com-
plete class files to extract ASTs, whereas the MCMD dataset only
contains commit diffs. Therefore, to compare with FIRA, we also
evaluate CCT5 on the dataset used in FIRA’s evaluation, which is a
commonly-used large-scale Java dataset extracted from 1K popular
GitHub projects [11, 27, 75]. The dataset contains 75,000 commits
as the training set, 8,000 commits as the validation set, and 7,661
commits as the test set.

BLEU is a common metric that measures lexical overlap for
evaluating text generation. Among a number of the variants of
BLEU, the case insensitive B-Norm has the highest correlation
with human evaluations [63]. Therefore, following existing studies
[44, 63], we use the B-Norm as our evaluation metric.

5.1.4 Experiment Details. Since the commit message generation is
a generation task, we use the entire encoder-decoder architecture
of CCT5 to perform such a task. The training/validation/test sets
are used to fine-tune (train)/validate/evaluate all pre-training (non-
pre-training) techniques. We reuse the code as well as the hyper-
parameter values released by NNGen, CodeT5, and CodeReviewer
to perform this experiment. We reuse the performance of FIRA
reported by Dong et al. [11] to compare it with CCT5.

5.1.5 Results. Results are shown in Table 2. We note that CCT5
consistently outperforms existing approaches concerning all five
PLs. On average, the BLEU score of CCT5 on the whole test set is
22.06%, exceeding those of the state-of-the-art pre-training tech-
niques CodeT5 and CodeReviewer, which are 18.11% and 18.45%,
by 22% and 20%, respectively. Similarly, CCT5 achieves an increase
of 24% when compared with the non-pre-training NNGen (22.06%
vs. 17.82%). We further conduct a Wilcoxon signed-rank test [73]
between the BLEU scores of CCT5 and the other three baselines on

https://pytorch.org/

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao

Table 3: The results of our human evaluation.
Approach Adequacy Conciseness Expressiveness
NNGen 2.3 2.7 4.0
CodeReviewer 3.0 3.6 4.4
CodeT5 3.2 3.7 4.3
CCT5 3.4 3.9 4.6

the sub-dataset of each programming language. The results con-
firm that the difference between the scores of CCT5 and NNGen/-
CodeT5/CodeReviewer is statistically significant at the confidence
level of 95% in all the comparisons. We also note CCT5 achieves
comparatively poor performance on C++ language. A potential
reason is that this PL is not included in the CodeChangeNet dataset
so that the domain knowledge of this PL is not learned during
pre-training. Nonetheless, CCT5 still outperforms CodeReviewer,
which is pre-trained on data written in C++ language, by around
11% (17.64% vs. 15.94%). Another interesting observation from Ta-
ble 2 is that CodeReviewer generally outperforms CodeT5 on the
MCMD dataset, which also demonstrates the benefits of training
data related to code changes.

When evaluated on the dataset used by FIRA, CCT5 achieves
a BLEU score of 19.30%, which exceeds that of FIRA (17.67%) by
9.2%. The Wilcoxon signed-rank test also shows that the difference
between the scores of CCT5 and FIRA is statistically significant at
the confidence level of 95%.

5.1.6 Human Evaluation. The evaluationmetric BLEU canmeasure
the lexical gap between the generated commit messages and the
references, but it can hardly reflect the semantic gap. Therefore,
we perform a human evaluation to further assess the quality of the
commit messages generated by different approaches.

Specifically, we recruit five Ph.D. studentswho are not co-authors
of this paper. All of them have more than 5 years of programming
experience and they are majoring in Computer Science. We ran-
domly select 100 commits from the MCMD dataset (20 for each
programming language). By applying the four approaches listed
in Table 2, we obtained a total of 400 generated commit messages
(we exclude FIRA from the human evaluation because it cannot
be evaluated on multiple PLs). Following the previous study [63],
each participant is asked to rate each generated message from the
following three aspects: (1) Adequacy, reflects the information
richness of the generated messages, (2) Conciseness, reflects to
what extent extraneous information is included in the generated
messages, and (3) Expressiveness, reflects to what extent the gen-
erated messages are readable and understandable. All these scores
are integers ranging from 1 to 5 (1 for poor, 2 for marginal, 3 for
acceptable, 4 for good, and 5 for excellent). For each commit, our
questionnaire includes the code change, the ground truth commit
message, and the commit messages generated by CCT5 as well as
the compared techniques. To avoid bias, all four techniques are
anonymous in the questionnaire and each participant fills in the
questionnaire independently.

Results are shown in Table 3. Overall, CCT5 is better than all the
baselines in the three aspects. The average scores of CCT5 for ade-
quacy, conciseness, and expressiveness are 3.4, 3.9, 4.6, respectively.
In terms of adequacy and conciseness, the results suggest that CCT5
outperforms existing approaches in capturing the semantic infor-
mation of code changes since it can generally provide abundant

Table 4: An example of the commit message generation task.

Code Change:
except socket.error:

DOCKER_HOST_FROM_CONTAINER = DOCKER_BRIDGE_IP

+ if in_docker() and not os.environ.\
get('LAMBDA_REMOTE_DOCKER', '').strip():

+ LAMBDA_REMOTE_DOCKER = True

CONFIG_FILE_PATH = \
os.path.join(expanduser("~"), '.localstack')

Ground truth: default to LAMBDA_REMOTE_DOCKER = true if run-
ning in Docker().
NNGen: fix host path of Lambda code folder for execution in Docker.
CodeT5: Merge pull request from localstack/fix/default-
LAMBDA_REMOTE_DOCKER.
CodeReviewer: Code cleanup.
CCT5: Set LAMBDA_REMOTE_DOCKER = True if running in docker.

information about the code change while generate little irrelevant
information. We also note that all the approaches achieve good per-
formance on expressiveness (the achieved scores are all higher than
4), which means that the generated commit messages are generally
readable.

5.1.7 Case Analysis. Table 4 shows the commitmessages generated
by different approaches for a commit of the localstack project.2 We
find that the message generated by CCT5 shares the identical seman-
tic information with that written by the developers (i.e., the ground
truth): they both express the meaning of setting the value of a field
when the program is executing under the docker environment. In
contrast, none of the messages generated by other approaches is
semantically relevant to the ground truth. For instance, the one
retrieved by NNGen is about bug fixing as it contains words such
as “fix”. Similarly, those produced by CodeT5 and CodeReviewer
also fail to capture the semantic of this code change since they
explain the intention of the code change as “merge pull request” or
“cleanup”. Consequently, the participants of the human evaluation
rate high scores to the CCT5’s result while the other three tech-
niques receive relatively low scores. Specifically, the average scores
of CCT5 towards the three aspects are 4.8, 5.0, and 5.0, respectively,
while none of the three baselines receives a score higher than 3
with respect to the adequacy. The only participant who gives a
score 4 towards the adequacy of CCT5’s result explains that she
feels there is a subtle semantic gap between the words “default to”
and “set”. This case shows that existing pre-training techniques,
whether designed for code-related tasks (e.g., CodeT5) or trained
on data specific to code review tasks (e.g., CodeReviewer), fall short
on capturing the semantics of code changes. By designing code-
change-oriented pre-training tasks and collecting the pairwise data
of code change and commit message, CCT5 can fill the gap well.

5.2 Task 2: Just-in-Time Comment Update
5.2.1 Problem Formulation. The task of just-in-time (JIT) comment
update aims to automatically update code comments according to
code changes, so that the comment can keep consistent with the
code during the program maintenance and evolution, which will
facilitate developers’ program comprehension activities [43]. In this

2https://github.com/localstack/localstack.

https://github.com/localstack/localstack.

CCT5: A Code-Change-Oriented Pre-Trained Model ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

Table 5: Performances of different approaches on the JIT comment
update task (in %).

Approach Accuracy GLEU
Toper 30.1 62.5
CoditT5 32.3 67.1
CodeReviewer 23.8 63.5
CodeT5 22.8 64.0
CCT5 36.1 70.7

code-change-related generation task, the inputs are the original
code comment and the code change, while the output is the new
code comment.

5.2.2 Baselines. We select the following state-of-the-art techniques
as the baselines of the JIT comment update task.
• Toper [35]. Toper is the state-of-the-art technique regarding
the task of JIT comment update, which adopts a combination
strategy: given a code change with the old comment, it first uses
a classifier to predict if the contents of the comment update can
be borrowed from the code change. If so, Toper uses a heuristic
based approach [34] to perform the update; otherwise it turns
to an deep learning updater. The DL updater embeds the code
change through comparing the differences between the old and
new code with respect to the ASTs.

• CoditT5 [79]. CoditT5 is a pre-trained model specially designed
for editing tasks. In the pre-training phase, it trains the model to
discern edit locations and then identify necessary edit operations.
It has also achieved excellent performance on comment updating.

• CodeReviewer [33] & CodeT5 [13]. These two pre-training
techniques have been introduced in the last section. We fine-tune
and evaluate them on the datasets of this downstream task.

5.2.3 Datasets & Metrics. Following existing studies [34, 35], we
use the dataset constructed by Liu et al. [43], which contains to-
tally 80,591/8,827/9,204 comment update instances for training/-
validation/test sets. These 98,622 change instances are all Javadoc
comments, which are mined from 1,496 GitHub projects. These
comment update instances are further distilled by Lin et al. [34] to
ensure that the updated contents are not related to changing case
of the word or fixing typos.

As the JIT comment update can be considered as an editing task,
we use the GLEU [48], a variant of BLEU, as our metric, following
a number of studies [42, 79]. We also focus on the Accuracy, which
is the percentage of the test samples where correct comments (i.e.,
those written by the developers) are generated.

5.2.4 Experiment Details. Again, we reuse the code and the hyper-
parameter values released by CoditT5, CodeT5 and CodeReviewer
to perform the experiments. Lin et al. [35] have provided the perfor-
mance of Toper sowe reuse the reported results. For the pre-training
techniques (i.e., CCT5, CoditT5, CodeT5 and CodeReviewer), the
input sequence includes the code diff and the old comment, which
are separated by the special symbol [𝑆𝐸𝑃].

5.2.5 Results. Results are shown in Table 5. We note that compar-
ing with the state-of-the-art approaches, CCT5 not only achieves
a higher GLEU value but also generates more correct comments.
Specifically, the GLEU value of CCT5 is 70.7%, exceeding that of the
most effective existing approach CoditT5 (i.e., 67.1%) by more than

5%. The Wilcoxon signed-rank test shows that the difference be-
tween the GLEU scores of CCT5 and Toper/CoditT5/CodeReviewer/
CodeT5 is statistically significant at the confidence level of 95%.
Also, the Accuracy of CCT5 is 36.1%, which means it can directly
output correct comments for more than one third of the test sam-
ples. This percentage is also higher than that of CoditT5 (32.3%) by
around 12%.

5.3 Task 3: Just-in-Time Defect Prediction
5.3.1 Problem Formulation. The task of just-in-time (JIT) defect
prediction aims to identify defective code changes upon the changes
were committed, so that developers can be notified that such changes
need further inspection. It is nowadays a key way to track, detect,
and fix software defects for large software companies [59, 80]. This
code-change-related understanding task is a binary classification: a
given code change is predicted as defective or not.

5.3.2 Baselines. We select the following state-of-the-art techniques
as the baselines of the JIT defect prediction task.
• JITLine [53]. JITLine fuses features from two perspectives to
train a machine learning classifier. First, it uses token-level “bag-
of-words” features of code changes. The behind intuition is quite
straightforward: code tokens that frequently appear in historical
defect-introducing code changes are more likely to trigger de-
fects in the future. Second, it uses commit-level features which
have been shown to share a relationship with the likelihood of in-
ducing defects such as the number of added lines and the number
of modified files [29, 46].

• JITFine [50]. JITFine is a hybrid approach which combines the
semantic features (SF), mined from the semantic information
and syntactic structure hidden in the defective source code, and
expert features (EF), which are defined by experts according to
their understanding on defect-inducing code changes with their
professional knowledge and experience. According to the results
of Ni et al. [50], such a combination yields the state-of-the-art
performance on JIT defect prediction. Note that CCT5 does not
involve the expert features. To fairly compare CCT5 with JITFine,
we implement a variant of JITFine which only uses the semantic
features (denoted as JITFine - EF). We also implement a variant
of CCT5 where we concatenate the code change vector generated
by CCT5 and the the expert feature vector defined in JITFine, and
use the combined vector for prediction (denoted as CCT5 + EF).

• CodeReviewer [33] & CodeBERT [13]. As reported by Zend
et al. [78], CodeBERT is more effective than CodeT5 on JIT defect
prediction task so that we use it as the representative pre-trained
model here. Note that JITFine obtains the numeric representation
of semantic features by sending the code change into the pre-
trained CodeBERT model. Hence, the performance of CodeBERT
actually represents the effectiveness of JITFine - EF on this task.

5.3.3 Datasets & Metrics. Following the existing study, we choose
to use the JIT-Defects4J [50] as the evaluation dataset, which is
built upon a previous dataset named LLTC4J [19]. Tangled commits
are commonly-observed which means there may be several kinds
of code changes in a commit such as bug fixing, code refactoring,
and new features [20]. Therefore, traditional datasets collected by
labelling the commits related to all the changed lines in a bug-fixing

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao

Table 6: Performances of different approaches on the JIT-Defects4J
dataset.

Approach F1 AUC
JITLine 0.261 0.802
JITFine 0.431 0.881
CodeBERT (JITFine - EF) 0.375 0.856
CodeReviewer 0.341 0.802
CCT5 0.451 0.871
CCT5 + EF 0.472 0.882

commit as defect-inducing, such as the one proposed by McIntosh
and Kamei [46], may be inaccurate and bring the noise to the ap-
proach evaluation. To address this challenge, Ni et al. rely on the
LLTC4J dataset which is manually labelled by 45 experienced par-
ticipants to determine the role of each changed line in bug-fixing
commits, i.e., whether the changed line is to fix bugs, change white-
space, change documentation, etc. Based on the labelling results,
Ni et al. collect the bug-introducing commits of those lines identi-
fied as “contributing to the bug-fixing” and consider such commits
as defect-inducing code changes in the JIT-Defects4J dataset [50].
Such an operation can greatly reduce the scope of defect-inducing
candidates and thus alleviate the impact of tangled commits.

The JIT-Defects4J dataset contains a total of 27,319 code changes
from 21 open-source large-scale Java projects, among which 2,332
code changes are defect-inducing and the other 24,987 code changes
are clean, making the bug ratio being around 8.5%. The training,
validation, and test sets are split by timestamp. Specifically, the top
80% of commits in each project are used for training (60% as the
training set and 20% for validation), while the rest 20% of commits
in each project are treated as test data.

Following existing studies [22, 23], we use the F1-score and the
Area Under the receiver operator characteristics Curve (AUC) as
the metrics of a model’s discriminatory power, i.e., its ability to
differentiate between defective and non-defective code changes.
When computing the F1-score, the code change which induces a
defect is treated as the positive class.

5.3.4 Experiment Details. Since the JIT defect prediction is an un-
derstanding task, we only use the pre-trained encoder of CCT5
to perform the experiment. Specifically, the representation of the
special token [CLS] in the last layer of the encoder is used as the
representation of the code change, and it is fed into a linear classifier
to produce the prediction. To perform this experiment, we reuse the
open sourced implementations of CodeReviewer and CodeBERT
and connect their encoders to a linear classifier, whose architecture
is identical to that of CCT5, to output the final results. Ni et al. [50]
have evaluated JITLine and JITFine under the same experiment
setting, so we directly reuse their results for comparison.

5.3.5 Results. Results are demonstrated in Table 6. We observe
that the vanilla CCT5 has already achieved an F1-score higher than
those of the existing techniques. Specifically, the F1-score of CCT5
is 0.451, outperforming the best-performing pre-training technique,
i.e., CodeBERT (0.375), and the best-performing non-pre-training
technique, i.e., JITLine (0.261), by around 20% and 73%, respectively.
It also outperforms the state-of-the-art hybrid approach JITFine by
around 5% (0.451 vs. 0.431). When incorporating the expert features,
CCT5 achieves the highest F1-score and AUC score among all the
techniques. Specifically, the F1-score of CCT5 increases from 0.451

Table 7: Performances of CCT5 on code review tasks.

Approach
Code Change Quality Estimation Review Generation
F1 AUC BLEU (in %)

CodeReviewer 0.715 0.742 5.32
CCT5 0.776 0.860 6.30

to 0.472 after using the extra features from JITFine. Such results
indicate that CCT5 is extensible: its performance holds the potential
for enhancement after involving more useful features.

6 DISCUSSION
6.1 Can CCT5 Generalize Well to Code Review

Tasks?
In the last section, we have demonstrated that CCT5 outperforms
CodeReviewer in three popular code-change-related tasks. This is
within our expectation since CodeReviewer is pre-trained only on
data collected from code review tasks, whose characteristics may be
different from those of our evaluation datasets. In this section, we
evaluate CCT5 on code review tasks, aiming at better investigating
the generalizability of CCT5.

We focus on one understanding task (i.e., code change quality
estimation) and one generation task (i.e., code review generation).
Code change quality estimation task is to predict whether a code
change is high-quality and can be already accepted. This is a binary
classification: a code change can be predicted as high-quality or
not. Based on the prediction results, code reviewers can give ques-
tionable code changes a higher priority to review and pay more
attention to them, saving time and effort. Code review generation
task is to automatically generate a review comment based on the
given code change, make the code reviewers free from writing
comments manually, and thus lighten the burden of reviewers.

The evaluation datasets have already been provided by Li et al.
[33]. Specifically, they crawled pull requests and reviewed com-
ments of 1,176 popular GitHub projects written in a total of nine
programming languages. For the code change quality estimation
task, all code changes with review comments are considered as
low-quality while those without comments are labelled as cor-
rect. For the code review generation task, only the code changes
with review comments are used for evaluation. Specifically, the
training/validation/test sets for code change quality estimation
contain ∼266K/∼31K/∼31K code changes respectively, and the
training/validation/test sets for code review generation contain
∼118K/∼10K/∼10K code changes respectively.

Following the evaluation setting in the last section, we use F1-
score and AUC as the metrics for code change quality estimation
(note that when performing the calculations, low-quality code
changes, i.e., those need review comments are treated as the positive
class), and we use the BLEU-4 score for code review generation.

Results are shown in Table 7. We note that CCT5 outperforms
CodeReviewer on both tasks. Specifically, the F1-score of CCT5 on
the code change quality estimation task reaches 0.776, exceeding
that of CodeReviewer (i.e., 0.715) by nearly 9%. Similarly, the BLEU
score of CCT5 on review generation is 6.30%, exceeding that of
CodeReviewer (i.e., 5.32%) by 18%.

Case Analysis. One example is shown in Table 8. In the de-
picted code change of a Go program, the return value of the func-
tion call os.RemoveAll() is passed to a local variable. However,

CCT5: A Code-Change-Oriented Pre-Trained Model ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

Table 8: An example of the code review generation task.

Code Change:
if err != nil {

t.Fatal(err)
}

- return b, func() {}

+ return b, func() { a = os.RemoveAll(dir) }

Ground truth: The body can just be ‘os.RemoveAll(dir)’.
CodeReviewer: I don’t think we need to use ‘os.RemoveAll’.
CCT5: Shouldn’t this be ‘os.RemoveAll(dir)’?
An Example in the Pre-training dataset:

return func() {

+ os.RemoveAll(dir)

}, nil

Table 9: Results of the ablation study (in %).
Model −MLM4CC −MLM4CM −NL2PL −PL2NL −CDG CCT5

GLEU 68.5 68.1 68.6 67.7 68.0 70.7

this function call actually has no return value. Therefore, CCT5
and the developer suggest only performing the function call with-
out passing the return value. In contrast, the review generated by
CodeReviewer suggests completely removeing this function call,
which is inappropriate. By investigating the pre-training dataset,
we find some similar code changes, one of which is shown in the
second part of the table. Via learning the data flow relation through
the CDG pre-training task, CCT5 could obtain the knowledge that
there should not be any data flow relation between the argument
of this function call and other variables. When evaluated on the
depicted code change, CCT5 would understand that the code is in-
correct since there is a variable that contains data flow relation
with the argument of this function call. That could be the reason
why CCT5 generates a semantically-correct review comment. This
case demonstrates that CCT5 outperforms CodeReviewer on code
review tasks probably because it can better capture the data flow
dependency of the program.

6.2 The Contribution of Each Standalone
Pre-Training Task

We have demonstrated that the well-designed pre-training tasks
help CCT5 achieve the state-of-the-art performance on diverse code-
change-related tasks. We further investigate the contribution of
each pre-training task. Specifically, we pre-train five variants of
CCT5, each of which is trained with one pre-training task removed,
and then evaluate them on downstream tasks.

Table 9 shows the results on the JIT comment update task (results
on other tasks demonstrate similar trends and we only illustrate the
results on this task due to space limitation). Overall, all pre-training
tasks contribute to the performance of CCT5. Specifically, we note
that the effectiveness of CCT5 decreases the most (3%) if the PL2NL
pre-training task is excluded. This is within our expectation since a
number of downstream tasks require the ability to generate fluent
natural language descriptions (e.g., commit message generation and
comment update). The GLEU score also decreases by 2.7% without
the CDG task, which indicates that making the model structure-
aware is critical for an effective model.

6.3 Threats to Validity
External Threats. Beyond the three widely-studied downstream
tasks evaluated in this paper, there are a number of other code-
change-related tasks such as automated patch correctness assess-
ment [36, 70], bug-fixing patch identification [23, 24], and untan-
gling commits [10, 51]. We leave evaluating the effectiveness of
CCT5 on such tasks as our future work. In addition, the emergence
of large language models (LLMs), such as ChatGPT, is reshaping
our research landscape. It would be valuable to investigate the effec-
tiveness of such LLMs on code-change-related tasks with zero-shot
or few-shot learning. We leave conducting a thorough investigation
as our future work.

Internal Threats. The success of deep learning techniques re-
lies heavily on the quality of the training data. In this study, we
only adopt simple heuristics to filter low-quality data when build-
ing the pre-training dataset, CodeChangeNet. It is thus possible
that the pre-training dataset contains some noisy data whose com-
mit message does not accurately match with the code change. As
revealed by the previous study [62], such noisy data could neg-
atively affect the effectiveness of CCT5. Our CCT5 could also be
undertrained because the CodeChangeNet dataset only contains
data from six programming languages and is thus of limited scale.
At present, other popular programming languages, such as C and
Scala, are not being considered in this study. Therefore, future re-
search efforts could be devoted to build a larger and higher quality
pre-training dataset. To compare CCT5with the existing approaches,
we reproduce a number of state-of-the-art techniques. To ensure
the reliability of our experiment results, we carefully reuse the code
as well as the hyper-parameter values released by the previous
study. Besides, to avoid the data leakage, we carefully remove all
projects that are used to build the dataset of the five downstream
tasks from our pre-training dataset, i.e., CodeChangeNet. We also
leave performing human evaluation on the comment update and
review generation tasks as our future works.

7 SUMMARY
Developers usually spendmuch effort on software maintenance, but
the literature needs an effective way to help them deal with tasks
derived from code changes. To fill this gap, we propose to build a
code-change-oriented pre-trained model which can both leverage
the domain knowledge hidden in the large-amount unlabelled data
and ensure the learned knowledge is adequately exploited during
fine-tuning on code-change-related tasks. To achieve so, we collect
a large-scale dataset for pre-training and design five different tasks
to equip the model with domain knowledge about code changes.
Our evaluation shows that the pre-trained model, CCT5, achieves
state-of-the-art performance on totally five downstream tasks.
All data in this study are publicly available at: https://github.com/
Ringbo/CCT5.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China No.61932021 and No.62202420. Zhongxin Liu gratefully
acknowledges the support of Zhejiang University Education Foun-
dation Qizhen Scholar Foundation.

https://github.com/Ringbo/CCT5
https://github.com/Ringbo/CCT5

ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu, Xin Xia, and Xiaoguang Mao

REFERENCES
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-

fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. 2655–2668.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-
based representation for predicting program properties. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 404–419. https://doi.org/10.1145/3192366.3192412

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 40:1–40:29. https://doi.org/10.1145/3290353

[4] Muna Altherwi and Andy M Gravell. 2019. A Large-Scale Dataset of Popular
Open Source Projects. J. Comput. 14, 4 (2019), 240–246.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Infercode: Self-supervised
learning of code representations by predicting subtrees. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1186–1197.

[7] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting
program changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. 33–42.

[8] Saikat Chakraborty, Toufique Ahmed, Yangruibo Ding, Premkumar Devanbu,
and Baishakhi Ray. 2022. NatGen: Generative pre-training by “Naturalizing”
source code. In Proceedings of the 30th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). ACM.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 4171–4186. https:
//doi.org/10.18653/v1/n19-1423

[10] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling fine-grained code changes. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 341–350.

[11] Jinhao Dong, Yiling Lou, Qihao Zhu, Zeyu Sun, Zhilin Li, Wenjie Zhang, and Dan
Hao. 2022. FIRA: Fine-Grained Graph-Based Code Change Representation for
Automated Commit Message Generation. In 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). 970–981. https://doi.org/10.1145/
3510003.3510069

[12] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In 2013 35th International Conference on Software Engineering (ICSE). IEEE, 422–
431.

[13] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A Pre-
Trained Model for Programming and Natural Languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020. 1536–1547.

[14] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007. Change
distilling: Tree differencing for fine-grained source code change extraction. IEEE
Transactions on software engineering 33, 11 (2007), 725–743.

[15] Thomas Fritz and Gail C Murphy. 2010. Using information fragments to answer
the questions developers ask. In 2010 ACM/IEEE 32nd International Conference on
Software Engineering, Vol. 1. IEEE, 175–184.

[16] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: a T5-based automated software vulnerability repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 935–947.

[17] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE). IEEE,
933–944.

[18] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2021. GraphCodeBERT:
Pre-training Code Representations with Data Flow. In ICLR.

[19] Steffen Herbold, Alexander Trautsch, Benjamin Ledel, Alireza Aghamohammadi,
Taher A Ghaleb, Kuljit Kaur Chahal, Tim Bossenmaier, Bhaveet Nagaria, Philip
Makedonski, Matin Nili Ahmadabadi, et al. 2022. A fine-grained data set and
analysis of tangling in bug fixing commits. Empirical Software Engineering 27, 6
(2022), 1–49.

[20] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In 2013
10th Working Conference on Mining Software Repositories (MSR). IEEE, 121–130.

[21] Robert Heumüller, Sebastian Nielebock, and Frank Ortmeier. 2021. Exploit those
code reviews! bigger data for deeper learning. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1505–1509.

[22] Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, and Naoyasu
Ubayashi. 2019. DeepJIT: an end-to-end deep learning framework for just-in-
time defect prediction. In 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 34–45.

[23] Thong Hoang, Hong Jin Kang, Julia Lawall, and David Lo. 2020. CC2Vec: Dis-
tributed Representations of Code Changes. In Proceedings of the 42nd Interna-
tional Conference on Software Engineering. ACM, 518–529. https://doi.org/10.
1145/3377811.3380361

[24] Thong Hoang, Julia Lawall, Yuan Tian, Richard J Oentaryo, and David Lo. 2019.
Patchnet: Hierarchical deep learning-based stable patch identification for the
linux kernel. IEEE Transactions on Software Engineering 47, 11 (2019), 2471–2486.

[25] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment Gener-
ation. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC).

[26] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[27] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
135–146. https://doi.org/10.1109/ASE.2017.8115626

[28] Miryung Kim and David Notkin. 2009. Discovering and representing systematic
code changes. In 2009 IEEE 31st International Conference on Software Engineering.
IEEE, 309–319.

[29] Sunghun Kim, E James Whitehead, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on software engineering 34, 2 (2008),
181–196.

[30] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering. 795–806. https:
//doi.org/10.1109/ICSE.2019.00087

[31] Meir M Lehman. 1980. Programs, life cycles, and laws of software evolution. Proc.
IEEE 68, 9 (1980), 1060–1076.

[32] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 162:1–162:30. https://doi.org/10.1145/3360588

[33] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundare-
san. 2022. Automating Code Review Activities by Large-Scale Pre-Training. In
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022).
1035–1047. https://doi.org/10.1145/3540250.3549081

[34] Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F. Bissyandé.
2021. Automated Comment Update: How Far are We?. In Proceedings of the 29th
IEEE/ACM International Conference on Program Comprehension (ICPC). 36–46.
https://doi.org/10.1109/ICPC52881.2021.00013

[35] Bo Lin, Shangwen Wang, Zhongxin Liu, Xin Xia, and Xiaoguang Mao. 2022. Pre-
dictive Comment Updating with Heuristics and AST-Path-Based Neural Learning:
A Two-Phase Approach. IEEE Transactions on Software Engineering (2022), 1–20.
https://doi.org/10.1109/TSE.2022.3185458

[36] Bo Lin, Shangwen Wang, Ming Wen, and Xiaoguang Mao. 2022. Context-Aware
Code Change Embedding for Better Patch Correctness Assessment. ACM Trans.
Softw. Eng. Methodol. 31, 3, Article 51 (may 2022), 29 pages. https://doi.org/10.
1145/3505247

[37] I-H Lin and David A Gustafson. 1988. Classifying software maintenance. In 1988
Conference on Software Maintenance. IEEE Computer Society, 241–247.

[38] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task learning based pre-
trained language model for code completion. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. 473–485.

[39] Haoran Liu, Yue Yu, Shanshan Li, Mingyang Geng, Xiaoguang Mao, and Xiangke
Liao. 2021. How to cherry pick the bug report for better summarization? Empirical
Software Engineering 26 (2021), 1–36.

[40] Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across
scales and tasks. arXiv preprint arXiv:2110.07602 (2021).

[41] Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, Zhenchang Xing, and Xinyu
Wang. 2018. Neural-Machine-Translation-Based Commit Message Generation:
How Far Are We?. In 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 373–384.

[42] Zhongxin Liu, Xin Xia, David Lo, Meng Yan, and Shanping Li. 2021. Just-In-
Time Obsolete Comment Detection and Update. IEEE Transactions on Software
Engineering (2021).

[43] Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. 2020. Automating Just-
In-Time Comment Updating. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. ACM.

[44] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. 2017. A neural archi-
tecture for generating natural language descriptions from source code changes.
arXiv preprint arXiv:1704.04856 (2017).

https://doi.org/10.1145/3192366.3192412
https://doi.org/10.1145/3290353
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3510003.3510069
https://doi.org/10.1145/3510003.3510069
https://doi.org/10.1145/3377811.3380361
https://doi.org/10.1145/3377811.3380361
https://doi.org/10.1109/ASE.2017.8115626
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1145/3360588
https://doi.org/10.1145/3540250.3549081
https://doi.org/10.1109/ICPC52881.2021.00013
https://doi.org/10.1109/TSE.2022.3185458
https://doi.org/10.1145/3505247
https://doi.org/10.1145/3505247

CCT5: A Code-Change-Oriented Pre-Trained Model ESEC/FSE 2023, 11 - 17 November, 2023, San Francisco, USA

[45] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-
ing and Generation. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1).

[46] Shane McIntosh and Yasutaka Kamei. 2018. Are Fix-Inducing Changes a Moving
Target? A Longitudinal Case Study of Just-In-Time Defect Prediction. IEEE
Transactions on Software Engineering 44, 5 (2018), 412–428.

[47] Audris Mockus and Lawrence G Votta. 2000. Identifying Reasons for Software
Changes using Historic Databases. In Proceedings of the 16th International Con-
ference on Software Maintenance. IEEE, 120–130. https://doi.org/10.1109/ICSM.
2000.883028

[48] Courtney Napoles, Keisuke Sakaguchi, Matt Post, and Joel Tetreault. 2015. Ground
truth for grammatical error correction metrics. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers). 588–
593.

[49] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and
Tien NNguyen. 2009. Clone-aware configuration management. In 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 123–134.

[50] Chao Ni, Wei Wang, Kaiwen Yang, Xin Xia, Kui Liu, and David Lo. 2022. The Best
of BothWorlds: Integrating Semantic Featureswith Expert Features for Defect Pre-
diction and Localization. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Singapore, Singapore) (ESEC/FSE 2022). Association for Computing Machinery,
New York, NY, USA, 672–683. https://doi.org/10.1145/3540250.3549165

[51] Profir-Petru Pârt,achi, Santanu Kumar Dash, Miltiadis Allamanis, and Earl T Barr.
2020. Flexeme: Untangling commits using lexical flows. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 63–74.

[52] Dewayne E Perry, Harvey P Siy, and Lawrence G Votta. 2001. Parallel changes in
large-scale software development: an observational case study. ACM Transactions
on Software Engineering and Methodology (TOSEM) 10, 3 (2001), 308–337.

[53] Chanathip Pornprasit and Chakkrit Kla Tantithamthavorn. 2021. Jitline: A simpler,
better, faster, finer-grained just-in-time defect prediction. In 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR). IEEE, 369–379.

[54] Ranjith Purushothaman and Dewayne E Perry. 2005. Toward understanding the
rhetoric of small source code changes. IEEE Transactions on Software Engineering
31, 6 (2005), 511–526.

[55] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[56] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[57] Sarah Rastkar and Gail C Murphy. 2013. Why did this code change?. In 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 1193–1196.

[58] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[59] Emad Shihab, Ahmed E Hassan, Bram Adams, and Zhen Ming Jiang. 2012. An
industrial study on the risk of software changes. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering.
1–11.

[60] Shivkumar Shivaji, E James Whitehead, Ram Akella, and Sunghun Kim. 2012. Re-
ducing features to improve code change-based bug prediction. IEEE Transactions
on Software Engineering 39, 4 (2012), 552–569.

[61] Jonathan Sillito, Gail C Murphy, and Kris De Volder. 2008. Asking and answering
questions during a programming change task. IEEE Transactions on Software
Engineering 34, 4 (2008), 434–451.

[62] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance
of Building High-quality Training Datasets for Neural Code Search. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). ACM.

[63] Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi Han, Hongyu Zhang, Dongmei
Zhang, and Wenqiang Zhang. 2022. A large-scale empirical study of commit mes-
sage generation: models, datasets and evaluation. Empirical Software Engineering
27, 7 (2022), 1–43.

[64] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How do software engineers understand code changes? An exploratory study in
industry. In Proceedings of the ACM SIGSOFT 20th International symposium on the
foundations of software engineering. 1–11.

[65] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An empirical study on learning bug-fixing
patches in the wild via neural machine translation. ACM Transactions on Software
Engineering and Methodology 28, 4 (2019), 19:1–19:29. https://doi.org/10.1145/
3340544

[66] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou Zhao, Jian Wu, and Philip
Yu. 2019. Multi-modal attention network learning for semantic source code
retrieval. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 13–25.

[67] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R. Lyu. 2022. No More Fine-Tuning? An Experimental Evaluation
of Prompt Tuning in Code Intelligence. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, New York, NY, USA, 382–394. https://doi.org/10.1145/
3540250.3549113

[68] Haoye Wang, Xin Xia, David Lo, Qiang He, Xinyu Wang, and John Grundy.
2021. Context-aware retrieval-based deep commit message Generation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 30, 4 (2021),
1–30.

[69] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic
features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering. ACM, 297–308. https://doi.org/10.1145/2884781.2884804

[70] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far are We?. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. ACM.

[71] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones
with graph neural network and flow-augmented abstract syntax tree. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 261–271.

[72] YueWang,WeishiWang, Shafiq Joty, and Steven CHHoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 8696–8708.

[73] F. Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83.

[74] Yu Wu, Jessica Kropcznyski, Raquel Prates, and John M Carroll. 2015. The rise
of curation on GitHub. In Third AAAI conference on human computation and
crowdsourcing.

[75] Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu.
2019. Commit message generation for source code changes. In IJCAI.

[76] Pengcheng Yin and Graham Neubig. 2018. TRANX: A Transition-based Neural
Abstract Syntax Parser for Semantic Parsing and Code Generation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations. 7–12.

[77] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and
Alexander L Gaunt. 2018. Learning to Represent Edits. In International Conference
on Learning Representations.

[78] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An Extensive Study on Pre-trained Models for Program
Understanding and Generation. In Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. ACM.

[79] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Glig-
oric. 2022. CoditT5: Pretraining for Source Code and Natural Language Editing. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. ACM.

[80] Michael Zhivich and Robert K Cunningham. 2009. The real cost of software
errors. IEEE Security & Privacy 7, 2 (2009), 87–90.

[81] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Advances in neural information processing
systems 32 (2019).

https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1145/3540250.3549165
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.1145/3540250.3549113
https://doi.org/10.1145/2884781.2884804

	Abstract
	1 Introduction
	2 Background and Related Works
	2.1 Code Change and Its Related Tasks
	2.2 Code Change Representation Techniques
	2.3 Existing Pre-Training Techniques

	3 The Dataset: CodeChangeNet
	3.1 Data Collection
	3.2 Data Filtering

	4 CCT5
	4.1 Model Architecture
	4.2 Input-Output Representation
	4.3 Pre-Training Tasks
	4.4 Implementation Details

	5 Experiments
	5.1 Task 1: Commit Message Generation
	5.2 Task 2: Just-in-Time Comment Update
	5.3 Task 3: Just-in-Time Defect Prediction

	6 Discussion
	6.1 Can CCT5 Generalize Well to Code Review Tasks?
	6.2 The Contribution of Each Standalone Pre-Training Task
	6.3 Threats to Validity

	7 Summary
	Acknowledgments
	References

