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ABSTRACT
A longstanding dream in software engineering research is to devise
effective approaches for automating development tasks based on
developers’ informally-specified intentions. Such intentions are
generally in the form of natural language descriptions. In recent
literature, a number of approaches have been proposed to auto-
mate tasks such as code search and even code generation based on
natural language inputs. While these approaches vary in terms of
technical designs, their objective is the same: transforming a devel-
oper’s intention into source code. The literature, however, lacks a
comprehensive understanding towards the effectiveness of exist-
ing techniques as well as their complementarity to each other. We
propose to fill this gap through a large-scale empirical study where
we systematically evaluate natural language to code techniques.
Specifically, we consider six state-of-the-art techniques targeting
code search, and four targeting code generation. Through extensive
evaluations on a dataset of 22K+ natural language queries, our study
reveals the following major findings: (1) code search techniques
based on model pre-training are so far the most effective while
code generation techniques can also provide promising results;
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(2) complementarity widely exists among the existing techniques;
and (3) combining the ten techniques together can enhance the
performance for 35% compared with the most effective standalone
technique. Finally, we propose a post-processing strategy to auto-
matically integrate different techniques based on their generated
code. Experimental results show that our devised strategy is both
effective and extensible.
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1 INTRODUCTION
Recommender systems are widely studied in software engineer-
ing research as they are concrete building blocks for improving
developers’ productivity [3]. A highly-sought achievement in this
domain is to effectively transform developers’ intentions, which
are generally specified in natural language, into pieces of code [39].
Addressing such a challenge will alleviate some software develop-
ment burdens, and facilitate critical designs and implementation
choices such as selecting the appropriate programming interfaces
to use [25]. Indeed, developers in all levels of programming profi-
ciency frequently ask questions of varying complexity about how to
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implement specific functionalities [62]. For example, it is typical to
see developers having the intention to “remove a specific item from
an array” look for related code in Q&A forums.1 Recent advances
in deep learning have enabled the development of promising tech-
niques in two lines of research towards transforming developers’
informally-specified intentions (a.k.a queries that are generally in
the form of natural language descriptions) into source code: (1) code
search aims at retrieving a relevant piece of code within a large
codebase [8, 51, 64], while (2) code generation aims to synthesize
code from scratch [32, 65, 66]. In practice, to obtain the desired code,
a developer may leverage code generation techniques to generate
code directly, or retrieve relevant code snippets from a large-scale
codebase such as StackOverflow. As a result, the application scenar-
ios of these two types of techniques could overlap with each other
to a certain degree [58, 62]. We refer to all such relevant literature
techniques as Natural Language to Code (NL2Code) techniques.

NL2Code techniques differ in terms of various design aspects.
First, at a high level, the theoretical working mechanisms of code
search and code generation are different: code search focuses on
mapping the semantic relevance between the query and an exist-
ing code snippet and directly returns the code with the highest
relevance score; code generation, in contrast, constructs a piece
of code from scratch. Second, they can be differentiated according
to whether a pre-trained model is used. Those that build on pre-
training techniques, such as GraphCodeBERT [18] and CodeT5 [59],
adopt a pre-training and fine-tuning pipeline where deep learn-
ing models are first pre-trained on a large-scale corpus aiming at
capturing the semantic relation between natural language and pro-
gramming language, and then fine-tuned on specific downstream
tasks. In contrast, those that do not rely on pre-trained models (re-
ferred to as non-pre-training techniques), such as MMAN [57] and
Tranx [66], train their models from scratch on relatively small-scale
labelled datasets. These training methods can significantly affect
the effectiveness of NL2Code techniques. For instance, Zeng et al.
observed that pre-training techniques outperform non-pre-training
techniques on a number of code intelligence tasks such as code
clone detection [69]. Furthermore, according to the intrinsic differ-
ence between code search and code generation, the former may
produce high-quality results if there exists a code snippet that is
similar to the intended functionality; on the contrary, the latter
may generate more reasonable results if there is no code snippet
for reference whose semantic is similar to the intention.

Although enormous efforts have been made towards advancing
the NL2Code techniques [3, 12, 31, 48], the effectiveness of exist-
ing techniques has not been systematically studied and compared.
Particularly, in the literature, code generation and code search tech-
niques are often evaluated separately [17, 57, 66, 69], which means
that code generation techniques are compared to each other with-
out considering code search techniques, and vice versa. As a result,
little is known about their complementarity with each other, i.e.,
can the query ineffectively handled by one technique be addressed
well by another? There is thus an urgent need for a comprehensive
empirical study comparing and analyzing the effectiveness of the
state-of-the-art NL2Code techniques based on a large number of
NL descriptions. Such a study is necessary and essential, which can

1A related question: https://stackoverflow.com/questions/5767325

help us find the answers to important questions when designing
NL2Code techniques in the future. For instance, which is the most
effective NL2Code technique so far and what is the common weak-
ness of existing NL2Code techniques? Moreover, to what extent do
existing NL2Code techniques complement each other and whether
the integration of them can enhance the performance? Answering
such questions can provide practical guidance for studies within
this field. Driven by this, Xu et al. [62] took the first step in this
direction, but their user study is limited in its scale due to the exten-
sive human intervention. Specifically, only 14 functionalities and
two NL2Code techniques were investigated.

In this paper, we aim at fill the gap by performing the first large-
scale empirical study that evaluates the effectiveness of both code
generation and code search techniques collectively under a con-
trolled experiment setting. Specifically, our study covers ten state-of-
the-art NL2Code techniques, including six code search techniques
and four code generation techniques, on a comprehensive bench-
mark containing 22K+ natural language queries. Our experiment
setting is user-oriented. First, we aim to evaluate how similar the
code returned by an NL2Code technique is to the oracle and we
use the CodeBLEU metric [46] to compare the similarity between
the returned result and the oracle code with respect to the tokens,
syntactic structures, and data flows. Second, to mimic real-world
scenarios, we remove the oracle code (i.e., the code snippet that
corresponds to each query) from the search space of code search
techniques. The rationale behind this is that in practice, devel-
opers can hardly find exactly what they want from the codebase
[6, 7, 15, 62]. Third, we evaluate the effectiveness of current tech-
niques to generate method-level code snippets, which is the most
desirable granularity for developers compared with other granular-
ities (e.g., variables and statements) [37, 50].

Our study makes the following important findings:

F1: The effectiveness of code generation techniques is promis-
ing and exceeds that of the non-pre-training code search
techniques. However, the state-of-the-art pre-training based
code search technique is still the most effective one among
the NL2Code techniques.

F2: Accurately generating program identifiers is a universal chal-
lenge for both code search and code generation techniques
since they generally achieve relatively low token similarities
to the oracle.

F3: Existing NL2Code techniques complement each other well: if
we combine all the ten selected techniques, we can enhance
the performance of over 35%with respect to Top-1, compared
to the most effective standalone technique.

F4: Combining code search with code generation or different
code search techniques demonstrates promising results.

Moreover, we design a post-processing strategy that re-ranks
the results from different techniques based on the number of over-
lapped tokens with the query. Our results show that such a combi-
nation strategy is effective: by combining the most effective code
search and code generation techniques, we can gain an effective-
ness improvement of 16% and 35% with respect to the top-1 results,
compared with each standalone technique. Furthermore, it is also
extensible: further effectiveness enhancement could be achieved
by involving more techniques for combination.

https://stackoverflow.com/questions/5767325
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2 BACKGROUND AND RELATEDWORKS
2.1 Code Search
Code search (CS) aims at helping developers retrieve some im-
plementations that can serve as references for their development
activities [9, 38, 47, 61]. Given a natural language (NL) query from
the developer, CS searches for the relevant code snippets from a
large-scale code corpus. Traditionally, this process is mainly done
by the information retrieval technique such as keyword matching
[34, 37]. However, these techniques are known to be suboptimal
at capturing the semantic relations between code and natural lan-
guage queries [17]. Later on, researchers have proposed various
deep-learning-based approaches to bridge the semantic gaps. For
instance, Gu et al. [17] propose DeepCS which jointly embeds code
snippets and natural language descriptions into a high-dimensional
vector space, where code snippets and queries can be matched ac-
cording to their similarities. Wan et al. [57] design a multi-modal
attention network that aggregates information from the token se-
quence, abstract syntax tree (AST), and control flow graph (CFG)
for representing programs.

2.2 Code Generation
Code generation aims at directly generating source code according
to software requirements [32]. Traditional approaches leverage for-
mal methods to automatically generate source code [19, 60], but the
formal specifications are hard to create [32]. With the advances in
deep learning, researchers propose to automatically learn the trans-
formations from the requirements to source code. Specifically, Ling
et al. [29] treat code generation as sequence-to-sequence translation
and build a neural network that targets general-purpose program-
ming languages like Python. Dong et al. [13] explore the idea of
using two decoders in the code generation task, where the first one
aims at predicting a rough program sketch and the second one fills
in the details.

2.3 Pre-Training Techniques
Training a deep learning model from scratch usually needs a large
amount of task-specific annotated data, which is hard to collect
in practice. To overcome this limitation, pre-training techniques
have been proposed in recent years. The core idea is to pre-train a
model on one or more self-supervised tasks where large amounts
of training data are readily available so that the network weights
can encode some commonsense knowledge compared with ran-
domly initialized. After that, with a small amount of task-specific
data, the pre-trained models can be fine-tuned in the traditional
supervised manner. Recently, researchers have build several pre-
trained models for programming language (PL) by using the large
amount of bimodal instances of NL-PL pairs (i.e., the source code
and its corresponding comments) [18, 36, 59]. A recent study [69]
investigated the existing pre-trained models for PL on standalone
downstream tasks (i.e., code search and code generation are sepa-
rately evaluated). In contrast, our study includes both pre-training
and non-pre-training techniques and investigates their strengths
and weaknesses in a controlled Natural Language to Code experi-
ment setting (i.e., using the identical queries and the oracle code is
removed from the search space for code search techniques).

Table 1: Selected techniques in this study.
Code Search Code Generation

w/o pre-training

Self-attention [23],
Tree-LSTM [55],
GGNN [68],
Multi-modal [57]

Tranx [66]

w/ pre-training
CodeBERT [14],
GraphCodeBERT [18]

CodeT5 [59],
NatGen [10],
SPT-Code [42]

3 STUDY DESIGN
3.1 Selected Techniques
Over the years, a large number of code search and code genera-
tion techniques have been proposed [26, 31]. Therefore, it requires
tremendous engineering efforts to evaluate all of them. In this study,
we select representative techniques and we leave the exploration of
more techniques as our future work. Totally, we use ten NL2Code
techniques, including six code search techniques and four code
generation techniques. Those techniques can be classified into two
types according to whether they use pre-training and Table 1 lists
the categorization. The selected techniques have served as the base-
lines for a number of studies [49, 53, 54, 72] and achieved promising
results in recent replication studies [9, 32, 52, 69], and thus they
can represent the state of the art well. For instance, through a com-
prehensive comparison among existing pre-training techniques
(e.g., PLBART [2] and CodeGPT [33]), Zeng et al. [69] found that
GraphCodeBERT and CodeT5 achieve the best performance on code
search and code generation, respectively. The following briefly in-
troduces each of the selected techniques.
3.1.1 Code Search. Typically, a code search technique should em-
bed both the code snippet and the query into vectors, after which
the relevance between the code and the query can be calculated. For
the selected four non-pre-training techniques, the approach used to
embed queries is identical: we use an encoder with six Transformer
blocks [56] to deal with the natural language token sequence plus
with byte-pair encoding (BPE) [16] to split tokens. In the following
four paragraphs, we introduce how to embed the code snippets.

Self-attention. This is a baseline proposed by Husain et al. [23].
It treats code as token sequences and uses an encoder of the Trans-
former architecture to embed such sequences. This approach mim-
ics the workflow of the well-known DeepCS [17] (i.e., both ap-
proaches treat programs as code tokens) but is expected to establish
a more advanced effectiveness baseline, as the Transformer archi-
tecture is known to perform well on the long-term dependency
problem faced by the Recurrent Neural Networks (RNN) [56], which
is used by DeepCS.

Tree-LSTM. Tree-LSTM is an approach that generalizes the Long
Short-Term Memory (LSTM) network to tree-structured topologies.
Initially, it targeted at capturing the syntactic properties of natural
languages [55] and it was firstly applied to the ASTs of programs
by Wan et al. [57].

GGNN. Zeng et al. [68] propose to construct the variable-based
flow graph that depicts data and control flows in the program. Such
graphs are constructed by transforming the programs into their
Intermediate Representations (IRs) [1], extracting the identifiers
in each IR instruction as nodes, and building dependencies among
nodes. After that, a Gated Graph Neural Network (GGNN) is used
to generate the embedding for the graph, which is also the repre-
sentation of the code.
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Multi-modal.With the intuition that aggregating information
from multiple modalities of source code can enrich its representa-
tion,Wan et al. [57] proposeMMAN that utilizes the token sequence,
the AST, as well as the graph information of a program. In this pa-
per, we rebuild the multi-modal learning model via fusing the three
aforementioned approaches (Self-attention + Tree-LSTM + GGNN).
It should be noted that the rebuilt multi-modal learning model is
supposed to perform better than the vanilla MMAN, since MMAN
only involves control flow information while the GGNN approach
involves both data and control flow information.

CodeBERT. CodeBERT [14] is a Transformer-based pre-trained
model for programming languages like Python and Java. It has
two tasks in the pre-training stage which are masked language
modeling and replaced token detection. To apply the pre-trained
model on the code search task, the representation of a special token
[CLS] (the beginning token of the input) is used to measure the
semantic relevance between the code snippet and query.

GraphCodeBERT. Guo et al. [18] take data flow information
into consideration in the pre-training stage. In addition to masked
language modeling, there are two newly-proposed structure-aware
tasks in the pre-training, i.e., edge prediction and node alignment.
Then, the workflow of applying the pre-trained model to code
search is identical to that of CodeBERT.
3.1.2 Code Generation. Tranx. Tranx [66] predicts a sequence of
actions to construct an AST, based on which the source code is
generated. It first defines an abstract syntax description language
framework, which is a grammatical formalism of ASTs. Based on
that, three types of actions are predicted at each time step to expand
the tree until the whole tree is constructed. Note that a number of
follow-up studies rely on the grammar rules introduced by Tranx
to construct ASTs [24, 53, 54]. Therefore, we select Tranx as the
representative technique.

CodeT5. CodeT5 [59] follows the T5 architecture [45] with the
input being the sequence of code and text tokens and the output
also in a sequential format. One specially-designed pre-training
task is NL-PL dual generation in which the model learns to generate
code from texts and generate texts for code simultaneously. After
pre-training, CodeT5 can be naturally adapted to code generation
due to its encoder-decoder framework. A number of follow-up
studies rely on the pre-trained parameter values of CodeT5 [27],
so we select CodeT5 as the representative pre-training-based code
generation approach. The authors of CodeT5 provide two versions
of this model, which have different parameter sizes. We use CodeT5-
base in this study since it is more effective [59].

NatGen. NatGen [10] is designed based on CodeT5 and incor-
porates an extra pre-training task, “Code Naturalizing”, which is
designed to teach the model how to transform unnatural code into a
more natural, human-written form. This additional task is intended
to encourage the model to better understand the underlying se-
mantics of the code, and thus enhance the model’s capability on
generating code that closely resembles human-written ones.

SPT-Code. SPT-Code [42] is another state-of-the-art pre-trained
model with the encoder-decoder framework. The input to the
SPT-Code model during the pre-training stage differs from that
of CodeT5 in two ways. First, its input includes the Abstract Syntax
Tree (AST) of the code, which enables it to leverage syntactic infor-
mation. Second, to eliminate the need for a bilingual corpus (i.e.,

a code snippet paired with a corresponding comment), SPT-Code
leverages the method name and the names of the methods that are
called within that method as a natural language description of the
source code being analyzed.

Exclusion. A branch of study focuses on utilizing the retrieval
results to guide code generation [20, 21]. We exclude them from
this study since (1) the retrieval-and-edit approach [20] assumes
that the input and output of the method is already known and the
method is partially written, which is unfair to our study subjects
(i.e., we do not require prior knowledge); and (2) ReCode [21] is built
on top of a set of suboptimal grammar rules, which is not as general
as Tranx. We also exclude a recently-proposed code generation
approach, PyCodeGPT [67], since it only supports generating code
that reuses the third-party libraries Pandas and NumPy, which is
not general enough.

3.2 Dataset
We select the widely-used CodeSearchNet dataset [23] as our eval-
uation benchmark, which is mined from popular GitHub projects
(in terms of the number of stars and forks). In our study, we focus
on the bimodal data (i.e., the code snippet and its associated docu-
mentation) by treating the documentation as the natural language
query and the code snippet as the ground truth. Code in this dataset
are all method-level snippets, and our study thus focuses on the
effectiveness of existing techniques at the method level. To keep in
high-quality, this dataset has already been pre-processed by several
steps. For instance, any documentation shorter than three tokens
is removed since it might not be informative, and any code snippet
shorter than three lines is also removed since it is likely to be get-
ters and setters. We explicitly focus on the Python language in this
study since Python is the most widely targeted general-purpose
programming language in the code generation domain [32, 65, 66],
and our selected Tranx only supports the Python language so far.
The dataset has already been split into the training/validation/test
sets by the authors of CodeSearchNet, and the training set has
been used for pre-training, which means the cross-validation on the
whole dataset is inappropriate (doing so will favor pre-training tech-
niques due to the data leakage). Therefore, we evaluate NL2Code
techniques on the fixed test set, following existing studies [18, 59].
In the end, our dataset contains 412,178/23,107/22,176 code-query
pairs for training/validation/testing, respectively.

3.3 Research Questions
RQ1: How effective are existing techniques on transform-
ing natural language descriptions into source code?We first
systematically investigate the effectiveness of each individual tech-
nique as summarized in Table 1 on generating method-level code
snippets based on natural languages. Beyond the traditional setting
where the oracle code snippets are within the search space of code
search techniques, we design a new experiment setting in this RQ
where we assume the oracle does not exist in the search space and
perform the search on the left 22,175 code snippets in the test set.
Previous studies have shown that developers usually need to mod-
ify the retrieved code snippets to adapt them to the local contexts
[6, 7, 15, 62], which means that, in a realistic scenario, the desired
code snippets can rarely be directly retrieved. Specifically, Gabel
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and Su [15] investigated the syntactic uniqueness of source code and
found that redundancy usually exists only at the line level, while at
the method level, which is our investigated granularity, near-total
uniqueness was observed. More recently, in the user study per-
formed by Xu et al. [62], users modified 18 tokens of the retrieved
code chunks (several lines of code) on average, and such a number
is expected to increase when it comes to the method level. Con-
sequently, our oracle-excluded setting mimics the real application
scenario where the users search for the results from a large-scale
corpus that does not contain the exactly desired code snippet and
see how useful the retrieved results could be. Evaluations under
such a user-oriented setting can help us better understand the use-
fulness of code search techniques in real-world scenarios. This is
thus the basic setting of this study and our follow-up investigations
are based on the results obtained from this setting.

RQ2: Do different techniques complement each other? In
this RQ, we aim to investigate if different techniques tend to per-
form similarly on the same queries or if they exhibit performance
differences on certain queries. As we have introduced, existing tech-
niques can be characterized in different aspects, such as using either
search or generation strategy, with or without pre-training. This
question investigates whether such differences in the design spaces
lead to certain complementarities with respect to their effective-
ness. The answer is essential to our further investigations: we could
be able to design a combinational strategy to integrate different
techniques only if they demonstrate certain complementarities.

RQ3. Can we go beyond the state of the art by combining
existing techniques? Based on the experimental outputs obtained
from the previous RQs, we further seek to investigate whether
combining different techniques can achieve better performance.
We propose to investigate two sub-questions:

• RQ3.1 What is the best performance achievable by combining dif-
ferent techniques?Wefirst aim to investigate the best performance
achievable via combining different techniques, whose results will
pave the way for the following question:

• RQ3.2 Can we automatically combine different techniques? Reach-
ing the best performance requires manually inspecting a number
of results, which would be time-consuming. We further seek to
design a novel strategy that is able to combine different tech-
niques automatically.

3.4 Effectiveness Assessment
To jointly evaluate code generation and code search, we focus on
assessing the similarity between the predicted result and the oracle
code. Specifically, we decide to use four metrics following the exist-
ing study [10], including Token match (TM) which is calculated
by the standard BLEU [43] and aims to reflect the similarity be-
tween the token sequences of the predicted and oracle code; Syntax
match (SM) which aims to evaluate code quality from the natural
tree structure of programming language (i.e., the AST); Dataflow
match (DM) which aims to evaluate the semantic information
of code through the dependency relations among variables; and
CodeBLEU (CB)which is a combination of the above three metrics
and provides a holistic perspective to the quality of generated code.
Readers can refer to [46] for more details about these metrics.

Table 2: Effectiveness of Each Selected Technique (in %).

Techniques Top-1 Top-5
TM SM DM CB TM SM DM CB

Tranx 2.5 19.2 25.5 12.7 2.7 21.3 28.2 14.0
CodeT5 9.2 27.3 39.5 22.2 10.2 29.2 42.3 23.9
NatGen 9.5 24.2 36.2 21.0 9.6 25.0 38.1 21.7
SPT-Code 3.4 16.9 37.2 16.3 3.8 18.8 40.8 17.9
Self-attention 32.1 47.6 58.7 42.8 55.8 69.2 79.8 65.4
Tree-LSTM 21.4 39.3 52.1 33.8 43.1 60.4 73.9 55.5
GGNN 21.6 39.5 52.2 34.0 43.8 60.9 74.3 56.0
Multi-modal 34.0 49.0 60.0 44.5 56.7 69.8 80.2 66.1
CodeBERT 60.2 70.4 74.9 66.8 82.0 87.8 90.7 85.9
GraphCodeBERT 61.6 71.5 76.0 68.1 83.1 88.6 91.4 86.8
Self-attention w/o oracle 1.4 23.8 40.0 16.9 1.7 31.6 54.9 23.0
Tree-LSTM w/o oracle 1.4 23.9 40.1 17.0 1.7 31.7 54.9 23.0
GGNN w/o oracle 1.4 23.9 40.0 17.0 1.7 31.6 54.9 23.0
Multi-modal w/o oracle 1.4 23.8 40.2 17.0 1.7 31.6 54.8 23.0
CodeBERT w/o oracle 9.9 33.5 44.3 25.4 15.9 44.0 56.8 34.7
GraphCodeBERT w/o oracle 10.2 33.9 44.7 25.8 16.4 44.5 57.1 35.1

The bold name means the technique requires pre-training. The green cell
denotes the oracle is excluded from the search space of code search techniques.
The optimum performances of generation/search techniques are in bold.

In this study, we calculate the similarity for the top-1 results
of each technique as well as the maximum values from the top-
5 results. The rationale is that as suggested by the prior study,
developers only inspect a few results returned by recommendation
tools [44].

3.5 Experiment Setting
All our experiments were performed on a server which possesses 8
NVIDIA Tesla V100 with 32GBmemory. Note that to alleviate poten-
tial reproducible bias [69], the selected non-pre-training techniques
are trained from scratch and the pre-training ones are fine-tuned by
ourselves. Since all of our selected techniques open sourced their
artifacts on GitHub, we reused the original implementations as well
as the values of the hyper-parameters selected for fine-tuning, to
avoid potential bugs in our implementation as well as enhance the
reliability of our results. Note that initially GGNN [68] targeted C
language. To apply it to Python, we use the Dismodule2 to generate
the IRs, after which the graph can be generated based on the scripts
released by the authors. SPT-Code was not evaluated on the code
generation task in the original study [42]. To fine-tune it on this
task, we reuse the hyperparameters used to fine-tune this model on
the code summarization task, which can be considered as another
generation task.

4 STUDY RESULTS
4.1 RQ1: Effectiveness of Existing Techniques
For each technique, we calculate the metrics of the code produced
by them for each query and the mean values on the whole test set
are shown in Table 2. The mean value is one of the most repre-
sentative statistics and it has been widely used by existing studies
to assess the performances of different techniques [10, 53, 59, 69].
From the results, we first note that compared with non-pre-training
techniques, pre-training techniques generally achieve better per-
formances. For instance, the CB of CodeT5 with respect to the top-1
result is 22.2%, which exceeds that of Tranx (i.e., 12.7%) by 75%. Simi-
larly, the CB of CodeBERTwith respect to the top-1 result, when the
oracle is excluded from the search space, is 25.4%, which exceeds
that of Multi-modal (i.e., 17.0%) by around 50%. Furthermore, we

2https://pypi.org/project/dis/

https://pypi.org/project/dis/
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note from the results that the most effective NL2Code technique so
far is GraphCodeBERT, with the CB score of 25.8%. This is within
our expectation considering that pre-training techniques require
much more data (e.g., GraphCodeBERT and CodeT5 are pre-trained
on data from six programming languages) and thus can preserve
more domain knowledge [69]. We also note that compared with
the other two pre-training-based code generator (i.e., CodeT5 and
NatGen), SPT-Code achieves comparatively low performances. One
possible explanation, as introduced in Section 3.1, is that the pre-
training phase of SPT-Code relies on method names (which may
be syntactically incomplete) to approximate the natural language
description of the code. This setting could potentially reduce its
ability to align natural language and programming language and
generate code from natural language inputs.

Finding-1 ☞ The pre-training techniques achieve better perfor-
mances than non-pre-training techniques for both code generation
and code search. The most effective NL2Code technique so far is
GraphCodeBERT with the CodeBLEU of 25.8%.

We also find that with removing the oracle from the search space,
the effectiveness of code search techniques decreases significantly.
Specifically, the CB of the state-of-the-art code search technique,
i.e., GraphCodeBERT, with respect to the top-1 results when the
oracle code is involved/excluded is 68.1%/25.8%, respectively, and
the other five search techniques undergo the similar decreases
when the oracle is excluded. By further investigating its search
results, we find that with oracle involved, it can rank the oracle
code at top-1 for 12,672 queries, which account for nearly 60%
of the total queries (12,672/22,176). That is why it can achieve a
high CBwith the oracle involved. Among the non-pre-training code
search techniques,Multi-modal achieves the best performancewhen
the oracle is involved with the CB of 44.5%. However, these four
techniques achieve nearly identical effectiveness when the oracle is
excluded, with respect to both top-1 and top-5 results. Specifically,
their CBs with respect to the top-1 and top-5 results are all around
17.0% and 23.0% respectively. Such results may indicate that there
is a gap between the current evaluation of code search techniques
and their real usefulness in practice. Indeed, the current evaluation
always assumes the existence of the exactly matched code in the
search space [17, 52, 57], which amplifies the usefulness of code
search techniques. We thus call for a user-oriented evaluation for
future studies, that is, to investigate to what extent the retrieved
results could help developers when what they exactly need may
not be retrieved.

Finding-2 ☞ If the oracle does not exist in the search space, the
effectiveness of code search techniques decreases significantly.

Another phenomenon we observe is that comparing with focus-
ing only on the top-1 results, the effectiveness of the code search
techniques increases significantly if the top-5 results are consid-
ered, while that of the code generation techniques nearly remains
unchanged. Specifically, without the oracle, the CBs of GraphCode-
BERT when considering top-1/top-5 results are 26.1%/35.3% respec-
tively, an increase of 35% when all the top-5 results are considered.
In contrast, those of CodeT5 are 22.2% and 23.9% respectively, with

Figure 1: The CBs of the syntactically correct (incorrect) top-1 code
snippets generated by CodeT5.

only slight enhancement. Such results suggest that the most quali-
fied candidate code snippets are sometimes not ranked at the top-1
positions for code search techniques while the top-1 generated
code snippets usually reach the optimum. Therefore, recommend-
ing more results from the returned lists to the users could be useful
for code search, but such usefulness would not be significant for
code generation. Despite that, we find the top-1 results from code
generation techniques are already promising: they can be more
similar to the oracle code compared with the retrieved results of
certain code search techniques. For instance, the CB of CodeT5
with respect to the top-1 results is 22.2% while those of the four
non-pre-training code search techniques are around 17.0%.

Finding-3 ☞ Unlike code search techniques that sometimes do
not rank the best candidates at the top-1 positions, code generation
techniques usually predict the optimum results at the top-1 posi-
tions, and their effectiveness can exceed that of non-pre-training
code search techniques.

We further investigate the promising results achieved by CodeT5,
the best performing code generation technique. Since it directly
generates the token sequence without any grammatical guideline
(unlike Tranx), one critical concern is that the generated code might
be syntactically incorrect. Our investigation shows that the gener-
ated top-1 code snippets are syntactically correct for 19,340 queries,
accounting for 87% of the queries in the test set. We also dissect
the CBs of these syntactically correct/incorrect code snippets and
demonstrate the results in Figure 1. We find that the medians of the
CBs of syntactically correct/incorrect code are very similar (22.3%
vs. 21.0%) and the differences between the two groups are not sta-
tistically significant (i.e., with the p-value > 0.05 in a one-sided
Mann-Whitney U-Test [35]). This indicates that being syntactically
correct or not does not necessarily affect the metric value of the gen-
erated code. It also indicates that more metrics are needed to better
reflect the syntax differences of different code. We perform further
analysis towards such incorrect cases and find that CodeT5 often
generates a block of code recurrently. The incorrectness happens
when the token sequence exceeds a pre-defined length determined
by the hyper-parameter (which means CodeT5 stops generating
more tokens) while the current line is not finished. Therefore, such
incorrect code still fulfills certain functionalities and thus can have
high CBs. We give an example in our online repository.

Finding-4 ☞ Being syntactically correct or not does not neces-
sarily affect the CBs of code generated by CodeT5.

We also carefully check our experiment results. We find that our
results are generally consistent with those reported in previous
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studies. For instance, for four non-pre-training code search tech-
niques, our results show that if the oracle is involved, combining
information from multiple modalities can achieve the best perfor-
mance and the token sequence information is the most rewarding
single modality (i.e., Self-attention achieves higher CB than Tree-
LSTM and GGNN). This is identical to the phenomenon reported
by Wan et al. [57]. We note the TM of Tranx (2.5%) is significantly
lower than the value reported in the previous study [32], which
is 18.4%. After further investigation, we find that their dataset is
from contest programs in which the identifiers are usually simple
but meaningless like i, j, and k. On the contrary, our dataset is
from real-world open-source projects in which each identifier is ex-
pected to express rich semantic information and thus may be more
complex (e.g., camel cases and underscore naming conventions [5]).
Since TM, the standard BLEU, focuses on the identifier matching
relations, we consider our result as reasonable: it reflects that cur-
rently semantic-meaningful identifiers in real-world projects are
difficult to predict.

Indeed, our results illustrate that for all the involved techniques,
their TMs are significantly lower than their SMs and DMs, indicat-
ing that the inability to accurately generate identifiers is a universal
weakness of the existing code generation/search techniques (please
note the identifier name is ignored when calculating SM and DM).
This can be explained by the fact that program identifiers usually
demonstrate uniqueness. For instance, Nguyen et al. [41] found
that more than 60% of the method names occur only once among
14K+ projects. Suppose an identifier in the oracle code is unique,
the retrieved results will not match with it, and similarly, the gen-
eration techniques seem unlikely to generate it since it may not
be involved in the vocabulary from which the output is predicted.
A concrete example is shown in Listing 1. In this case, the query
expresses the intention to remove quotes from a string. We find that
the semantics of the code generated by CodeT5 is nearly identical to
that of the oracle code, except that it fails to check if the string starts
and ends with double quotes (in Python, a string can be wrapped
with either single or double quotes). Therefore, the SM and DM of
CodeT5 are extremely high, both exceeding 70%. However, CodeT5
fails to accurately predict the names of the identifiers. For instance,
it uses s to represent the input string parameter while in the oracle,
this identifier is named as istr. Since this identifier occurs for
many times in the code, the TM of CodeT5 is thus only 13.1%, a
relatively low value. This case also reveals that relying solely on
the BLEU value to evaluate the generated code is potentially biased,
demonstrating the rationale of a more comprehensive metric like
CodeBLEU.

Finding-5 ☞ Producing accurate program identifiers is a univer-
sal challenge for both generation and search techniques.

4.2 RQ2: Complementarity of Existing
Techniques

To investigate the complementarity of existing NL2Code techniques,
for each technique pair, we compute the Pearson correlation (𝑟 ) [4]
with respect to their CBs achieved on each query (we focus on CB
here since it represents the overall effectiveness). Pearson correla-
tion is a widely used metric to assess the correlation degree between

1 # Code generated by CodeT5
2 def _remove_quotes(s):
3 if s[0] == "'" and s[-1] == "'":
4 return s[1:-1]
5 else:
6 return s
7
8 # Oracle code
9 def unquote_ends(istr):
10 if not istr:
11 return istr
12 if (istr[0]=="'" and istr[-1]=="'") or \
13 (istr[0]=='"' and istr[-1]=='"'):
14 return istr[1:-1]
15 else:
16 return istr
17
18 # Code retrieved by GraphCodeBERT
19 def strip_email_quotes(text):
20 lines = text.splitlines()
21 matches = set()
22 for line in lines:
23 prefix = re.match(r'^(\\s*>[ >]*)', line)
24 if prefix:
25 matches.add(prefix.group(1))

Listing 1: The code generated by CodeT5, the oracle code, and the
code retrieved by GraphCodeBERT for the query “Remove a single
pair of quotes from the endpoints of a string”.

two sets of data [11, 22]. Theoretically, a high Pearson correlation
coefficient suggests that the two sets of data follow a similar trend.
In our context, it means two techniques may have similar CBs for
a specific query. In contrast, if two techniques have a relatively
low Pearson value, it suggests that there is little or no correlation
between their CBs. This indicates the potential existence of queries
on which the two techniques achieve rather different CBs. In such
cases, they could be considered as complementary to each other.
For instance, if two techniques exhibit identical performances on
each query, their Pearson value would reach the maximum value of
1. However, they may not complement each other well because they
share similar effectiveness towards the same inputs. Our interpreta-
tion of 𝑟 is based on the previous study [22]: negligible correlation
(|𝑟 | < 0.3), low correlation (0.3 ≤ |𝑟 | < 0.5), moderate correlation
(0.5 ≤ |𝑟 | < 0.7), high correlation (0.7 ≤ |𝑟 | < 0.9), and very high
correlation (0.9 ≤ |𝑟 | < 1).

Results are shown in Figure 2. We observe that according to the
Pearson correlation values, the selected techniques can generally
be classified into three clusters as highlighted: the code generation
techniques, the non-pre-training code search techniques, and the
pre-training code search techniques. For techniques in each cluster,
they have a relatively high correlation with each other, and a rela-
tively low correlation with those from other clusters. Specifically,
in Figure 2a, Tranx and CodeT5 have moderate Pearson correlation
between them (i.e., 0.54). Similarly, CodeBERT and GraphCodeBERT
have high Pearson correlation (i.e., 0.76). As for the four non-pre-
training code search techniques, they all have moderate Pearson
correlation between each other (e.g., the value between Tree-LSTM
and GGNN is 0.65). In contrast, the Pearson correlation between
cross-cluster techniques is usually low or negligible (e.g., the value
between Multi-modal and GraphCodeBERT is 0.22), demonstrating
the effectiveness of such techniques is weakly correlated. We also
note that the highest Pearson value (i.e., 0.76 between GraphCode-
BERT and CodeBERT) is still lower than 0.9 (the threshold of the
very high correlation degree). This indicates that the effectiveness
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(a) Pearson correlation for CBs of the top-1 results (b) Pearson correlation for CBs of the top-5 results
Figure 2: Pearson correlation results for the selected techniques.

of two highly-correlated techniques may still differ to a certain
degree on specific queries. We also observe the similar trend in
Figure 2b. Such results indicate that complementarities widely exist
among existing techniques.

Figure 3 illustrates the relationship among three representative
techniques of each cluster (the ones with the highest effectiveness
in each cluster, i.e., GraphCodeBERT, CodeT5, andMulti-modal) via a
Scatter plot. The x and y values of each scatter denote the CodeBLEU
values of two different techniques achieved on a specific query. We
investigate both top-1 and top-5 results and find similar trends, so
we only show the top-1 results here. For ease of comparison, we also
draw the line y=x in the figure. Scatters above this line represent
that the technique denoted by the vertical axis outperforms the
technique denoted by the horizontal axis on those queries and vice
versa. We observe that no technique can consistently outperform
the other competitor: even the most effective one, GraphCodeBERT,
can still perform worse on specific queries, compared with CodeT5
or Multi-modal. This further shows the complementarity of the
existing techniques.

Finding-6 ☞ Existing NL2Code techniques are complementary
since (1) they can generally be classified into three clusters with
high intra-cluster Pearson correlations and low inter-cluster Pear-
son correlations; and (2) no technique can consistently outperform
the others on all the queries.

Case analysis. To demonstrate the complementarity of existing
techniques, we analyze two cases here. The first is shown in Listing 1
where we also list the retrieved result from GraphCodeBERT for
the same query. Due to space limitation, we only show the first
several lines. We recall that CodeT5 achieves a high CB on this query
(i.e., higher than 50%). We note that both the syntactic structure
and the tokens of the code returned by GraphCodeBERT are very
dissimilar to the oracle. For instance, the oracle code uses an if-else
structure while the code returned by GraphCodeBERT contains a
loop structure. Therefore, the CB of GraphCodeBERT on this query
is only 15%, which is much lower than that of CodeT5.

Another example is shown in Listing 2. The intended functional-
ity is to migrate data from one dataset to another. The oracle code
fulfills this by checking if the ID of the source dataset is provided,

1 # Code generated by CodeT5
2 def migrate(self, target, **kwargs):
3 if 'commit_mode' not in kwargs:
4 kwargs['commit_mode'] = self.commit_mode
5 if 'commit_mode' not in kwargs:
6 kwargs['commit_mode'] = self.commit_mode
7 return self._migrate(target, **kwargs)
8
9 # Oracle code
10 def migrate(self, target, follow=True, **kwargs):
11 if 'id' not in self or not self['id']:
12 raise Exception('No source dataset ID found.')
13 if isinstance(target, Dataset):
14 target_id = target.id
15 else:
16 target_id = target
17 migration = DatasetMigration.create(source_id=self['id'],
18 target_id=target_id, **kwargs)
19 return migration
20
21 # Code retrieved by GraphCodeBERT
22 def migrate(self, target, follow=True, **kwargs):
23 if isinstance(target, Dataset):
24 target_id = target.id
25 else:
26 target_id = target
27 limit = kwargs.pop('limit', None)
28 params = self._build_query(limit=limit)
29 migration = DatasetMigration.create(source_id=self._dataset_id,
30 target_id=target_id, source_params=params, **kwargs)
31 return migration

Listing 2: The code generated by CodeT5, the oracle code, and the
code retrieved by GraphCodeBERT for the query “Migrate the data
from this dataset to a target dataset”.

obtaining the ID of the target dataset, and finally performing the
migration. The code retrieved by GraphCodeBERT is only slightly
different from the oracle code since it initializes a variable which
is not used by the oracle code during migration (i.e., params). The
code generated by CodeT5 differs significantly to the oracle code
since (1) it does not perform the sanity check, (2) it generates a
block of code recurrently as we have mentioned before, and (3)
it does not rely on the DatasetMigration package to perform the
migration. Consequently, the CB of GraphCodeBERT on this query
is much higher than that of CodeT5 (57.1% vs. 29.2%).

These two cases demonstrate that different techniques perform
well on different queries and thus complement each other.
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(a) GraphCodeBERT vs. CodeT5 (b) GraphCodeBERT vs. Multi-modal (c) CodeT5 vs. Multi-modal
Figure 3: Scatter plots of CodeBLEUs of three representative techniques with respect to the top-1 results. We also draw the line y=x for
comparison.
Table 3: The highest CodeBLEU values achievable by combining
different strategies (in %).

Combinations CB (Top-1) CB (Top-5)
CodeT5 22.2 23.9
Multi-modal 17.0 23.0
GraphCodeBERT 25.8 35.1
CodeT5 + Tranx 22.4 24.1
Multi-modal + Self-attention 19.6 24.8
GraphCodeBERT + CodeBERT 28.4 37.0
GraphCodeBERT + CodeT5 30.2 37.4
GraphCodeBERT + Multi-modal 27.5 36.0
CodeT5 + Multi-modal 24.1 27.6
GraphCodeBERT + CodeT5 + Multi-modal 31.0 38.0
GraphCodeBERT + CodeT5 + CodeBERT 32.0 38.9
All (10 techniques) 35.1 40.8

4.3 RQ3: Combination of Existing Techniques
4.3.1 RQ3.1: what is the best performance achievable by combining
different techniques? To investigate this RQ, for each query, we
suppose all the results from a set of techniques can be inspected by
the developer and the most qualified code (the one with the highest
CB score) can be identified and used as the final result of such
a technique combination. We calculate the overall performance
on the whole test set obtained in such a manner and results are
shown in Table 3. We first observe that several techniques together
can work better than standalone techniques, which shows that
combinations of different techniques are promising. Specifically,
if we take all the ten techniques into consideration, the CB of the
Top-1 results can reach 35.1%, outperforming the best search and
generation techniques (i.e., GraphCodeBERT and CodeT5) by 36%
and 58%, respectively.

Finding-7 ☞ Combining the ten techniques can gain at least 35%
effectiveness enhancement compared with standalone techniques.

Obtaining the results of all the eight techniques, however, re-
quires much computation resource, which may not be affordable
in practice. Therefore, we also investigate the effectiveness of com-
bining a pair of techniques. Specifically, we combine techniques
from the same clusters (e.g., CodeT5 + Tranx shown in the second
part) and techniques across different clusters (e.g., GraphCodeBERT
+ CodeT5 shown in the third part). Surprisingly, we find that al-
though the latter is more effective than the former in general (e.g.,
combining CodeT5 with Multi-modal works better than combining
it with Tranx), combining GraphCodeBERT with CodeBERT is the
most effective way for search-search intra-combinations: such a

strategy can achieve higher CBs than combining GraphCodeBERT
withMulti-modal and its CB with respect to the top-5 results nearly
equals to that of GraphCodeBERT + CodeT5 (37.0% vs 37.4%). This
could be explained through Figure 3 where we note that for the sub-
figure comparing GraphCodeBERT and Multi-modal, the majority
of the scatters are below the line y=x, which means the latter only
outperforms the former on a limited set of queries. As a result, com-
bining these two techniques may not boost the effectiveness to a
large extent, although they have relatively low Pearson correlation.
Similarly, we also try to combine three representative techniques
from different clusters (shown as GraphCodeBERT + CodeT5 +Multi-
modal) but this is still outperformed by replacing Multi-modal with
CodeBERT. Consequently, if we are able to use only two techniques
under a resource-constrained situation, search-generation inter-
combination of GraphCodeBERT with CodeT5 and search-search
intra-combination of GraphCodeBERT with CodeBERT can provide
promising results.

Finding-8 ☞ Search-generation inter-combination of Graph-
CodeBERT with CodeT5 and search-search intra-combination of
GraphCodeBERT with CodeBERT show promising results.

4.3.2 RQ3.2: can we automatically combine different techniques?
To achieve an automatic combination, we design a post-processing
strategy where we re-rank results obtained from different tech-
niques to generate the final outputs, inspired by a recent study [70].

Intuition. To achieve our target, we need a predictor to assess
the quality of each generated code snippet. Recall that one of our
observations is that existing techniques usually have relatively poor
performance towards TM (cf. Table 2). That is to say, if a gener-
ated code snippet has a high TM value, it is likely to achieve good
overall performance (i.e., CB). Inspired by previous studies which
point out that query tokens may represent key concepts in the
requirements [30, 37], we postulate that a code snippet with more
overlapped tokens with the query may contain more meaningful
identifier names and thus has higher value towards TM (so as CB).
For instance, the code to implement the functionality required by
the query “convert string to int” needs to include the API int()
and it thus contains the overlapped token int. Given a query, we
denote its number of tokens as 𝑁𝑈𝑀𝑡 and the number of its tokens
contained in a generated code snippet as 𝑁𝑈𝑀𝑜 . We propose to
rely on the overlap degree, which is calculated as 𝑁𝑈𝑀𝑜

𝑁𝑈𝑀𝑡
, to help

assess the quality of the generated code snippet: a code snippet
with a higher overlap degree is considered to be more qualified.
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Table 4: The CodeBLEU values achieved by different combinations
using our strategy (in %).

Combinations CB (Top-1) CB (Top-5)

GraphCodeBERT + CodeBERT 28.3/28.4 36.5/37.0
GraphCodeBERT + CodeT5 30.0/30.2 36.9/37.4
GraphCodeBERT + CodeT5 + CodeBERT 31.8/32.0 37.9/38.9

Specifically, to perform such analysis, the code and query are tok-
enized by the NLTK package and program identifiers are further
split into multiple tokens based on the camel cases and underscore
naming conventions.

Hypothesis Validation. To validate our intuition, we split the
overlap degree into five different intervals and calculate the CBs
of the top-1 code snippets returned by different techniques whose
overlap degrees fall in each interval.

Results are shown in Figure 4. We note that code snippets with
higher overlap degrees are generally more similar to the oracle code
(with higher CBs), for all three representative techniques. Specifi-
cally, when the overlap degree is in the [0.8, 1] interval, the median
value of the CBs of the top-1 results returned by GraphCodeBERT
is around 40%, nearly as twice as that of the code snippets whose
overlap degree is in the [0, 0.2) interval (which is only around 20%).
We also perform the one-sided Mann-Whitney U-Test [35] to ana-
lyze the statistical significance of the CB differences for code snip-
pets from adjacent intervals. Our Null hypothesis is that H0: code
with higher overlap degrees to the query will not achieve
significantly higher CBs, and the Alternative hypothesis is H1:
code with higher overlap degrees to the query will achieve
significantly higher CBs. Results reveal that the differences are
statistically significant (i.e., p-value < 0.05) under all the cases, in-
dicating that H0 can be rejected with a confidence level of over
0.95. Such results indicate that the overlap degree with the query
could be a competent indicator to re-assess the quality of the code
snippets returned by existing techniques.

Strategy. Motivated by our validation, we design a combination
strategy to integrate the results from different techniques whose
overall process is straightforward. Given a natural language descrip-
tion (i.e., the query), different techniques are executed and their
results are stored into a candidate code snippet pool. After that, we
use a heuristic that assesses the overlap degree between the query
and each candidate code snippet to re-rank those candidates: code
snippets possessing high overlaps with the query are ranked at
the top positions. Consequently, results from different techniques
are re-ranked together and integrated into one list at this step, and
the output is the final combination result. In this study, to keep
reasonable trade-offs between the effectiveness and efficiency, we
combine the top-5 results of each selected technique.

Evaluation Results. To investigate the effectiveness of our
proposed combination strategy, we select the three representative
techniques (i.e., GraphCodeBERT, CodeBERT, and CodeT5) identified
through our analysis in Section 4.3, and evaluate the performances
after combining two or all of them. Results are shown in Table 4
where the data in the format “x/y” denotes the effectiveness ob-
tained by our strategy/the best performance achievable by different
combinations.

We find that our combination strategy is generally effective: all
the combinations can nearly reach their maximum potential. For

instance, if for each query, the maximum CodeBLEU value from
GraphCodeBERT and CodeT5 is achieved, then the average Code-
BLEU value of the top-1 results is 30.2%. By using our strategy,
such a combination can have a CodeBLEU of 30.0% with respect
to the top-1 results. Moreover, given the data in Table 2, such an
automatic combination can outperform each standalone technique
by 16% (30.0% vs. 25.8%) and 35% (30.0% vs. 22.2%), respectively. We
also note that search-generation inter-combination works more
effectively than search-search intra-combination: the combination
of GraphCodeBERT + CodeT5 achieves higher CodeBLEUs than
the combination of GraphCodeBERT + CodeBERT with respect to
both top-1 and top-5 results, especially when we only focus on the
top-1 results (30.0% vs. 28.3%). This indicates that in a resource con-
strained scenario where we can only execute a few techniques (e.g.,
two), combining code search and code generation techniques is rec-
ommended. Furthermore, our strategy is also extensible: the effec-
tiveness of the combination keeps increasing when involving more
techniques. Specifically, the CodeBLEU value of the top-1 results
increases by nearly two percentage points when all three represen-
tative techniques are combined, compared with only considering
two of them (31.8% vs. 30.0%). As a result, further effectiveness
enhancement is expected when involving more techniques.

Finding-9 ☞ A simple heuristic-based post-processing strategy
can lead to significant effectiveness enhancement compared with
each standalone technique.

5 DISCUSSION
5.1 Implications: It Takes Two to Tango
Our investigation shows that code search and code generation
techniques share certain complementarities: a query that is not
handled effectively by one technique may be addressed well by the
other. Therefore, developers may consider using both of them in
their development activities to boost their productivity. Our study
proposes a post-processing approach for combining these two types
of techniques. In fact, we also explore a pre-processing way for
combination where we train a model to predict whether a search or
generation technique should be used for a given query. Specifically,
we use a pre-trained BERT model to embed the query and train a
fully-connected layer to predict if GraphCodeBERT or CodeT5 is to
be used (as a preliminary exploration, we focus on combining the
most effective search and generation techniques), but the accuracy
is only 60% on our dataset. Therefore, for researchers, efforts could
be devoted to devise more effective way for combination in the
future.

5.2 Comparison with ChatGPT
ChatGPT is a hot chatbot that can interact with humans in a con-
versational way.3 To compare it with the study subjects in this
paper, we also investigate its code generation performance on our
test set. To perform this experiment, we leverage the ChatGPT API
(accessed on May 9, 2023) with the prompts to the model in the
form of “Assume that you are a Python programmer. Please write
a Python function that ...”, followed by the query contents. The

3https://chat.openai.com/chat

https://chat.openai.com/chat
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(a) GraphCodeBERT (b) CodeBERT (c) CodeT5
Figure 4: The performances of three representative techniques under different overlap degrees.

first sentence is to prepare ChatGPT for the code generation task
while the second one describes the detailed requirement. We set the
temperature parameter to be 0, which ensures that ChatGPT always
return the code with the highest probability. Results show that on
average, the CodeBLEU score of the code returned by ChatGPT is
21.1%, which is slightly lower than that of the state-of-the-art code
generation techniques such as CodeT5. Such results indicate that
although ChatGPT can provide detailed instructions to develop-
ers, its performance may not exceed those of the state-of-the-art
NL2Code techniques if we only focus on the generated code. One
possible explanation could be that the state-of-the-art code gen-
eration techniques have been adequately fine-tuned for this task,
whereas ChatGPT is optimized for artificial general intelligence
(AGI) and not specifically optimized for the task of code generation.

5.3 The Existence of Code Similar to the Oracle
In this study, to mimic the real scenario of applying code search
techniques, we remove the oracle code from the search space for
each query. One following question is that is there any code snippet
in the search space similar to the oracle one? To investigate such a
question, we utilize a state-of-the-art code clone detector, NIL [40],
to identify code clone pairs among our test set. We recall that NIL is
a token-based clone detector since it identifies code clones based on
the N-gram representation and the longest common subsequence
of code token sequences. That is to say, the detected clones of
the oracle code can be transformed to the oracle through minor
modifications on their code tokens. Results show thatmore than 75%
(i.e., 17,068/22,176) of the code snippets have the corresponding
clones in the search space. This indicates that for most queries,
code snippets that can match the query with minor modifications
exist in the search space and a qualified code search technique is
supposed to rank such code snippets at top positions. By analyzing
the search logs of developers, the previous study [47] concludes
that developers sometimes get nothing from their searches. This
observation suggests that in a realistic setting, it is not always
possible for all the queries to have code snippets that are similar to
the oracle, as otherwise developers could always obtain a solution
by making minor modifications to the oracle’s clones. Our setting
is aligned with this assumption and is well-suited for practical
scenarios.

5.4 Threats to Validity
External Threats. Code search and code generation are active
research fields with a number of approaches being proposed during

the last years. It is thus quite hard to involve all of them in this
study. The selected approaches in this paper are state-of-the-art
and have served as baselines for many studies [32, 52], and thus
can be considered as representative ones safely.

Internal Threats. In our study, we use the code comment as
the query, which is widely adopted by existing studies [28, 49, 57,
59, 63]. The rationale is that the comment usually summarises the
main functionality of the code, making the code-comment pair
close to actual use scenarios. Existing studies have shown that
common queries from developers are similar to the comments (i.e.,
either being identical to the comment or by slightly prepending the
comment with “how to”/“how do I”) [17, 34].

We rely on the CodeBLEU score to serve as a proxy of code
quality, following existing studies [10, 33, 69, 71]. The previous
study [46] has demonstrated that CodeBLEU is strongly related
with human evaluations, which means code with higher CodeBLEU
scores is more qualified to fulfill the intended functionality, as
judged by humans. Our case analysis also shows that code with
higher CodeBLEU scores is more semantically similar to the oracle
code. As a result, we leave assessing the usefulness of the generated
code from the developers’ perspective as our future work.

6 CONCLUSION
In this paper, we evaluate the effectiveness of ten representative
NL2Code techniques on a large-scale dataset. Through in-depth
analysis of their correlation degrees and case analysis, we show
that existing NL2Code techniques complement each other well. We
also investigate the theoretical upper-bound effectiveness which
can be achieved by combining different techniques and find that
it outperforms those of standalone techniques to a large extent.
Therefore, future studies could be undertaken to further utilize the
complementarity of NL2Code techniques. Moreover, we design a
strategy to automatically combine results from different techniques
and achieve promising results. All code and data in this study are
publicly available at: https://doi.org/10.5281/zenodo.7546358.
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