
Automated Patch Correctness Assessment: How Far are We?

Shangwen Wang∗
wangshangwen13@nudt.edu.cn
College of Computer Science,
National University of Defense

Technology
Changsha, China

Ming Wen∗†
mwenaa@hust.edu.cn

School of Cyber Science and
Engineering, Huazhong University of

Science and Technology
Wuhan, China,B

Bo Lin
linbo19@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Hongjun Wu
wuhongjun15@nudt.edu.cn
College of Computer Science,
National University of Defense

Technology
Changsha, China

Yihao Qin
qinyihao15@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Deqing Zou†‡
deqingzou@hust.edu.cn

School of Cyber Science and
Engineering, Huazhong University of

Science and Technology
Wuhan, China

Xiaoguang Mao
xgmao@nudt.edu.cn

College of Computer Science,
National University of Defense

Technology
Changsha, China

Hai Jin†§
hjin@hust.edu.cn

School of Computer Science and
Technology, Huazhong University of

Science and Technology
Wuhan, China

ABSTRACT
Test-based automated program repair (APR) has attracted huge
attention from both industry and academia. Despite the significant
progress made in recent studies, the overfitting problem (i.e., the
generated patch is plausible but overfitting) is still a major and
long-standing challenge. Therefore, plenty of techniques have been
proposed to assess the correctness of patches either in the patch
generation phase or in the evaluation of APR techniques. However,
the effectiveness of existing techniques has not been systematically
compared and little is known to their advantages and disadvantages.
To fill this gap, we performed a large-scale empirical study in this
paper. Specifically, we systematically investigated the effectiveness
of existing automated patch correctness assessment techniques,
including both static and dynamic ones, based on 902 patches au-
tomatically generated by 21 APR tools from 4 different categories.

∗The first two authors contributed equally to this work, and Ming Wen is the corre-
sponding author.
†National Engineering Research Center for Big Data Technology and System, Services
Computing Technology and System Lab, Hubei Engineering Research Center on Big
Data Security, HUST, Wuhan, 430074, China
‡Shenzhen HUST Research Institute, Shenzhen, 518057, China
§Cluster and Grid Computing Lab, HUST, Wuhan, 430074, China

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3416590

Our empirical study revealed the following major findings: (1) static
code features with respect to patch syntax and semantics are gener-
ally effective in differentiating overfitting patches over correct ones;
(2) dynamic techniques can generally achieve high precision while
heuristics based on static code features are more effective towards
recall; (3) existing techniques are more effective towards certain
projects and types of APR techniques while less effective to the oth-
ers; (4) existing techniques are highly complementary to each other.
For instance, a single technique can only detect at most 53.5% of the
overfitting patches while 93.3% of them can be detected by at least
one technique when the oracle information is available. Based on
our findings, we designed an integration strategy to first integrate
static code features via learning, and then combine with others
by the majority voting strategy. Our experiments show that the
strategy can enhance the performance of existing patch correctness
assessment techniques significantly.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation; Software testing and debugging.

KEYWORDS
Patch correctness, Program repair, Empirical assessment.

ACM Reference Format:
Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing
Zou, Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness
Assessment: How Far are We?. In 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual
Event, Australia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3324884.3416590

https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/3324884.3416590

ASE ’20, September 21–25, 2020, Virtual Event, Australia Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin

1 INTRODUCTION
Automated Program Repair (APR) has gained huge attention from
both industry and academia recently. Over the years, substantial
APR tools have been proposed [27, 38, 44, 46, 47, 74, 77, 80, 82] with
the aim to reduce the excessively high cost in bug fixing. APR tools
have shown to be promising towards both practical significance
and research value. For instance, SapFix, which was proposed by
Facebook to automatically generate and suggest fixes [52], has
already been deployed in real products that collectively consist of
millions of lines of code and are used bymillions of users worldwide.

Despite the tremendous effectiveness achieved, existing APR
tools still face a significant and long-standing challenge: the over-
fitting problem [37, 68, 71]. The overfitting problem arises when
the measurements used to assess the correctness of an automated
generated patch is imperfect. Due to the absence of formal speci-
fications of the desired behavior, most of the APR tools leverage
the developer-provided test suite as partial specifications to assess
whether a patch is correct currently. Such a measurement assumes
a patch that passes all the test cases to be correct, and incorrect
otherwise. However, test suites in real world projects are often
weak and inadequate [26, 64], and thus a patched program passing
all the tests might be simply overfitting to the test suite and still be
faulty. Later on, people denote a patch that passes the test suite as
a plausible patch [64]. A plausible patch that indeed fixes the target
bug is deemed correct, otherwise is regarded as an overfitting patch.
As revealed by recent studies [26, 37, 64], existing APR techniques
are widely suffering from the overfitting problem, that is they gen-
erate more overfitting patches than correct ones on real bugs, thus
leading to a low precision of their generated patches.

The low precision of the generated patches significantly affected
the practical usefulness of existing APR techniques. Therefore,
growing research efforts have been made to identify correct patches
among plausible ones automatically [33, 34, 70, 77, 79, 81, 85, 86, 88].
For instance, DiffTGenwas initially proposed to identify overfitting
patches through automated test generation based on the developer-
provided patch [79], which is denoted as the oracle patch in this
study. It first tries to enhance the adequacy of the provided test
suite via generating an extra set of test cases, and then assumes
a generated patch whose test outcome based on such tests differs
from that of the oracle patch to be an overfitting patch. To ease our
presentation, we denote those techniques designed for Automated
Patch Correctness Assessment as APCA techniques in this study.

Existing APCA techniques differentiate themselves in diverse de-
sign spaces. First, they can be either static or dynamic depending on
whether they execute test cases. Static techniques prioritize or filter
out incorrect plausible patches via analyzing the characteristics of
patches statically (e.g., Anti-patterns [70]). On the contrary, dy-
namic techniques generally leverage automated test generation tools,
such as Randoop and Evosuite, to identify correct patches among
plausible ones (e.g., DiffTGen [79], PATCH-SIM [81]). Second, they
can be differentiated in whether the oracle patch is required. Those
techniques require the oracle patch, such as DiffTGen [79], run au-
tomated test generation tools based on the oracle program (i.e., the
program after applying the oracle patch), and then leverage those
automated generated tests to identify overfitting patches. Those
techniques do not require the oracle patch (e.g., PATCH-SIM [81]

and Opad [86]) generate extra tests based on the buggy version, and
then leverage other information or certain heuristics as the oracle
to identify overfitting patches. Techniques designed without the
oracle patch can be applied to the process of patch generation
with the aim to prioritize and filter out overfitting patches, and
thus to enhance the precision of APR techniques [77, 81]. On the
contrary, techniques requiring the oracle patch are often used for
patch evaluation, that is to assess the effectiveness of APR tech-
niques [33, 88]. Both of these two directions of APCA techniques are
reported to be significant to the APR community [33, 79, 81, 86, 88].
For instance, manually annotating the correctness of patches is sub-
jective and rather expensive as reported by existing studies [33, 88],
and thus APCA techniques, with the oracle information, are useful
to facilitate the evaluation of APR techniques.

Although huge efforts have been made towards automated patch
correctness assessment, the effectiveness of existing techniques
has not been systematically studied and compared. Besides, little
is known to their advantages and disadvantages. A recent study
reported that DiffTGen and Randoop can only identify fewer than
a fifth of the overfitting patches through an empirical study based
on 189 patches [33]. However, the behind reasons and the effec-
tiveness of other advanced APCA techniques remain unknown.
Therefore, there is an urge need for a comprehensive empirical
study comparing and analyzing the effectiveness of all the state-
of-the-art APCA techniques based on a larger number of patches.
Such a study is necessary and essential, which can help us find the
answers to important questions when designing APCA techniques.
For instance, whether existing APCA techniques are more effective
towards certain types of patches or APR techniques? Besides, are
existing techniques complementary to each other and whether the
integration of them can enhance the performance? Answering such
questions can guide researchers to design more effective techniques.

This study aims to bridge this gap, which performs a system-
atic empirical study for automated patch correctness assessment
including 9 different techniques and 3 heuristics based on 8 static
code features on the most comprehensive patch benchmark so far
(i.e., 902 patches in total). Via investigating how many overfitting
patches can be identified by each APCA technique, we understood
the effectiveness of existing techniques, including the advantages
and disadvantages, and pointed out how they can be improved.
For instance, PATCH-SIM can be enhanced by test case purification
while Daikon can be improved by considering the characteristics of
invariants. Our study also makes the following important findings:

F1: Heuristics based on static features gauging patch syntax and
semantics are generally effective in differentiating overfitting
patches over correct ones, which can achieve high recalls.

F2: Dynamic APCA techniques can achieve high precision while
most of themwill label correct patches as overfitting. Besides,
those techniques with the oracle information are generating
a fewer number of false positives (i.e., fewer than 10.0%).

F3: Existing techniques aremore effective towards certain projects
and types of APR techniques while less effective to the others
(e.g., project Lang and constraint-based APR techniques for
static code features; and project Closure and learning-based
APR techniques for dynamic ones).

Automated Patch Correctness Assessment: How Far are We? ASE ’20, September 21–25, 2020, Virtual Event, Australia

F4: Existing techniques are highly complementary to each other.
A single technique can only detect at most 53.5% of the
overfitting patches while 93.3% of them can be detected by at
least one technique when the oracle information is available.

Based on our findings, we designed an integration strategy to first
integrate different static code features via leveraging machine-
learning models, and then combine the learned model with other
APCA techniques by the majority voting strategy. Our experiments
show that the strategy can enhance the performance of existing
APCA techniques significantly. Specifically, our strategy can iden-
tify 66.5% of the overfitting patches while preserve a high precision
of 99.1%with the oracle information. Such a high recall outperforms
the current most effective technique by 25.0%.

2 BACKGROUND AND RELATEDWORKS
This section presents the background and related works.

2.1 Automated Program Repair Techniques
Generally, APR techniques can be divided into two categories which
are search-based techniques and semantic-based techniques, respec-
tively [39]. Search-based techniques aim to search for candidate
patches within a predefined space, with or without templates as
the guidance for code transformation [45]. When without tem-
plates, the applied techniques (also known as heuristic-based ap-
proach) leverage genetic programming [38], random search [63],
or multi-objective genetic programming [90] to guide the search of
correct patches. Researchers also mine fix templates (also known
as template-based approach) from history of large-scale open-
source projects [29, 36] or from static analysis tools [42]. These
templates are applied to generate patches, aiming at producing
more correct patches [27, 32, 41, 43, 77]. Semantic-based techniques
(also known as constraint-based approach) synthesize a patch
directly using semantic information via symbolic execution and
constraint solving [16, 34, 56, 58, 82, 83]. These approaches usually
focus on single conditional statements or assignment statements
[56, 58, 83]. Recently, approaches have been proposed to generate
patches directly via using deep learning models (e.g., SequenceR
[10]), which is denoted as learning-based approach [10, 45, 65].

2.2 The Overfitting Problem
Traditionally, a patch is considered as correct if it can pass all the
test cases [38, 63, 75]. Qi et al. [64] first investigated the quality
of automated generated patches. Long et al. [48] first pointed out
that conventional criterion to examine patch correctness is ques-
tionable since test suites in practice are usually inadequate to guar-
antee the correctness of the generated patches. As a result, those
generated patches that pass all the tests (also known as plausible
patches) may fix the bug incorrectly; not fix the bug completely or
break some intended functionalities, and thus become overfitting
patches [79, 89]. After that, researchers begin to adopt plausibil-
ity (i.e., how many plausible patches an APR tool can generate)
and correctness (i.e., how many generated plausible patches are
really correct) as metrics for assessing the repairability of APR
tools [9, 23, 25, 27, 32, 42, 43, 46, 77]. Meanwhile, an increasing
number of studies aimed at detecting overfitting patches have been
proposed [70, 72, 79, 81, 85, 86], including DiffTGen, PATCH-SIM

Table 1: Selected Techniques in this Study.
Oracle Required No Oracle Required

Dynamic
Evosuite [19], Randoop [59],
DiffTGen [79], Daikon [18]

PATCH-SIM [81], E-PATCH-SIM,
R-Opad [86], E-Opad [86]

Static
⊗ ssFix† [80], CapGen† [77],

Anti-patterns [70], S3† [34]
† We use ssFix, CapGen, and S3 to denote the heuristics based on the corresponding static features.

and so on. Recently, Yu et al. [89] introduced a method to classify
overfitting patches into two categorizations (i.e., incomplete fixing
and regression introduction). However, their method can only be
applied to those overfitting patches that can be detected by the gen-
erated test cases. Consequently, it cannot be applied to the whole
set of patches included in this study. As a result, we do not analyze
the performance (i.e., precision and recall as we will introduce in
Section 3.3) of different APCA techniques from this perspective.

2.3 Empirical Studies in APR
In recent years, plenty of empirical studies have been conducted
concerning different aspects of APR [15, 41, 45, 73]. For instance,
Liu et al. found that Fault Localization (FL) strategies [76, 78] uti-
lized by different APR techniques are diverse and the FL results
can significantly influence the repair results [41]. Long et al. inves-
tigated the search space of repair tools and revealed that correct
patches are sparse while the overfitting patches are much more
abundant [48], which is further confirmed by [45]. Durieux et al.
[15] andWang et al. [73] focused on benchmark overfitting problem
and reached the conclusion that more bugs should be considered
when evaluating APR techniques’ performance. Recently, Lou et al.
explored the idea of unified debugging to combine fault localization
and program repair in the other direction to boost the performance
of both areas[5, 49].

3 STUDY DESIGN
This section presents the design details of this empirical study.

3.1 APCA Techniques Selection
Our study selects all the state-of-the-art techniques targeting as-
sessing patch correctness of Java program. This study focuses on
Java since it is the most targeted language in the community of
program repair. Furthermore, there is a wide range of APR tools
that have been evaluated in real-world Java programs, providing
on-hand patches for our study. Specifically, we consider the living
review of APR by Monperrus [57] to identify these techniques.

3.1.1 Inclusion. Overall, our study takes totally 9 APCA techniques
and 3 heuristics based on 8 static code features into consideration,
which can be classified from two aspects as mentioned in Introduc-
tion. First, it can be categorized by whether it requires the oracle
patch. This corresponds to two different application scenarios: those
do not require oracles can be integrated into patch generation
process and thus help to increase the precision of APR tools while
those require oracles are usually used for patch evaluation that
is to help assess the effectiveness of APR techniques. Second, it can
be either dynamic or static, which is differentiated by whether it
needs to execute test cases. Table 1 lists the categorized selected
techniques and the following presents the detail of each of them.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin

Simple Test Case Generation: The intuition of this method is
straightforward: since most overfitting patches are generated due to
the inadequacy of test suites provided by real-world programs [48],
researchers proposed to utilize automated test generation tools to
generate independent test suites based on the oracle program to
examine whether patches are overfitting [35, 68, 69]. If a plausible
patch fails in any of these test cases, it is detected as overfitting.
Following the previous studies [66, 88], in our experiment, we select
Randoop [59] and Evosuite [19] as the test generation tools since
they are widely-used in software testing tasks [20, 21, 81].

DiffTGen: DiffTGen is a tool that identifies overfitting patches
through test case generation [79]. The tool employs an external test
generator (i.e., Evosuite) to generate test input which is designed
to uncover the syntactic differences between the patched and the
original buggy program (note that this is the difference between this
tool and simple test case generation where the tests are generated
randomly). To achieve so, DiffTGen creates an extended version
of the patched program with dummy statements inserted as the
coverage goals to advocate test generator. When executing the
generated test inputs on the buggy and the patched programs, if
the output of the patch is not the same with that of the oracle, it is
regarded as overfitting.

Daikon: Some recent studies concentrate on applying program
invariant to APR tasks [8, 14, 85]. Specially, Yang et al. focus on
the impacts on program runtime behaviors from different patches
[85]. They found that a large amount (92/96) of overfitting patches
will expose different runtime behaviors (captured by Daikon [18],
an invariant generation tool) compared with their corresponding
correct versions. Based on their findings, in this study, we adopt a
simple heuristic that is to see if the inferred invariant of a generated
patch is different from that of the oracle program. If difference exists,
we then consider it as overfitting. In the rest of this paper, we use
Daikon to represent this method.

Opad: Opad uses fuzzing testing to generate new test cases based
on the buggy program, it then uses two predetermined oracles that
patches should not introduce new crash ormemory-safety problems
to detect overfitting patches [86]. To apply it on Java, we adopt the
method provided by a recent study [81] that is to uniformly detect
whether a patch introduces any new runtime exception on test
runs. Note that the original fuzz technique does not work on Java
programs. As a result, in this study, we use Randoop and Evosuite
to generate test cases on the buggy programs and denote them as
R-Opad and E-Opad respectively.

PATCH-SIM: PATCH-SIM is a similarity-based patch validation
technique [81] which does not require the oracle information. It
first utilizes a test generation tool (Randoop in the original study)
to generate new test inputs. It then automatically approximates
without the oracle under the hypothesis that tests with similar
executions are likely to have the same results. Finally, it uses the
enhanced test suite to assess patch correctness considering that a
correct patch may behave similarly on passing tests while differ-
ently on failing tests compared with the buggy program. In our
study, to better explore the performance of this technique, we also
implemented another version of this tool by replacing the adopted
Randoop with Evosuite for test generation. We use E-PATCH-SIM
to represent our Evosuite-based PATCH-SIM.

Anti-patterns: Anti-patterns is originally designed for C lan-
guage [70]. The authors defined seven categories of program trans-
formation (for details, cf. Table 1 in [70]). To apply it on Java, we
follow the strategy adopted by a recent study [81] that is if the code
transformation in the patch falls into any category, it is considered
as overfitting.

Static Code Features: Many studies have proposed to leverage
static code features to prioritize correct patches over overfitting
ones [34, 77, 80] and a recent study [2] demonstrates the effective-
ness of these features. For instance, ssFix [80] proposed to utilize
the token-based syntax representation of code to identify syntax-
related code fragments with the aim to generate correct patches.
S3 proposed six features to measure the syntactic and semantic
distance between a candidate solution and the original buggy code
[34], and then leveraged such features to prioritize and identify cor-
rect patches. These features are named as AST differencing, cosine
similarity, locality of variables and constants, model counting, output
coverage and anti-patterns. CapGen proposed three context-aware
models to prioritize correct patches over overfitting ones, which
are the genealogy model, variable model, and dependency model re-
spectively [77]. Although such features are often used to prioritize
overfitting patches during patch generation, we still include them in
this study with the aim to investigate patch correctness assessment
from the view of static features. Note that for S3, the proposed
model counting can only be applied to Boolean expressions, and
output coverage can only be applied to program-by-examples based
APR. Therefore, they cannot be generalized to all the patches gener-
ated by a wide range of APR techniques. Besides, Anti-patterns
is used as a stand-alone technique in this study. As a result, we
exclude those features for S3 in this study, and Table 2 displays the
details of the selected eight features in total. We follow the original
studies [34, 77, 80] to compute the values for each feature, and we
do not list the formulas in detail due to page limit.

3.1.2 Exclusion. In our study, we also discard some methods that
have been exploited by previous studies.

We note that researchers also utilize AgitarOne [1], another test
generation tool which is reported to be able to achieve 80% code
coverage, to generate tests [66]. We do not take it into considera-
tion since it is a commercial product. KATCH [53] and KLEE [7] are
both test generators which leverage symbolic execution and can
achieve high coverage. We discard them since they only support
C language currently while we focus on Java. UnSatGuided is a
method that utilizes test case generation to alleviate overfitting
in test suite based program repair [89]. We discard this method
since that it only works for synthesis-based repair techniques such
as Nopol, and thus cannot be generalized to a wide range of APR
techniques selected in this study. A recent study also utilizes code
embedding technique to identify correct patches [13]. However, it
requires tremendous efforts to train the embedding model and thus
is discarded in this study. Besides, we note that Ye et al. proposed to
use 4,199 static code features to identify overfitting patches recently
[87]. However, their tool and data is not publicly available. Besides,
their proposed features are atomic ones which are encoded at the
level of ASTwhile those selected in this study are high-level features
used to encode code syntax and semantics. Therefore, we exclude
this method in our empirical study. We also note there are many

Automated Patch Correctness Assessment: How Far are We? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 2: Static Code Features Used to Prioritize Correct Patches Over Overfitting Ones
Short Name Metric Source Description
TokenStrct Structural token similarity ssFix [80] The similarity between the two vectors representing the structural tokens obtained from the buggy code chunk and the generated patch.
TokenConpt Conceptual token similarity ssFix [80] The similarity between the two vectors representing the conceptual tokens obtained from the buggy code chunk and the generated patch.
ASTDist AST Difference S3 [34] The number of the AST node changes introduced by the patch.
ASTCosDist Cosine Similarity Distance S3 [34] One minus the cosine similarity between the vectors representing the occurrences of distinct AST node types before and after the patch.
VariableDist Locality of the variables and

constants
S3 [34] The distance is measured by the Hamming distance between the vectors representing the locations of variables and constants.

VariableSimi Variable Similarity CapGen [77] The similarity between the variables involved in the original buggy code element and the applied patch.
SyntaxSimi Genealogy Similarity CapGen [77] The similarity between the syntactic structures (the ancestor and sibling nodes of the corresponding AST) of the original buggy code

elements and the applied patch.
SemanticSimi Dependency Similarity CapGen [77] The similarity between the contextual nodes affected by the buggy code elements and the applied patch with respect to their dependencies.

other test generation tools in the literature such as JCrasher [12]
and TestFul [4]. We discard them since they are not the state-of-
the-art and many of them are no longer maintained (e.g., TestFul).
Our selected subjects (i.e., Randoop and Evosuite) are the most
widely-used open-source tools to generate tests [11, 21, 33, 67].

3.2 Patch Selection
This section presents the large-scale patches selected in our study.

3.2.1 Patch Benchmark. In this study, we focus on the patches
generated for a widely used benchmark by existing APR techniques
which is Defects4j [28]. Specifically, we select all the patches
prepared by a recent large-scale study [45] where 16 APR systems
are evaluated under the same configuration. To better explore the
overfitting problem, we also include 269 patches collected by Ye
et al. [88] that were not included in [45], including the ones of
JAID [9], SketchFix [25], CapGen [77], SOFix [46], and SequenceR
[10]. The following two steps are performed based on the selected
patches. First, we removed those patches generated for Mockito,
as similarly adopted by [81], since some of our studied subject (e.g.,
Randoop) cannot generate any valid test for this project. Second, we
performed a plausibility check to see whether the selected patches
are indeed plausible (i.e., can be compiled and pass all the original
test suite). To achieve so, we ran each patch on the original test
suites again. In total, we discarded 8 patches after the two steps,
2 generated for Mockito and 6 failed in the plausibility check (we
have confirmed this with the authors of [45]). Our patch benchmark
is: (1) large-scale: this benchmark contains in total 902 patches for
correctness assessment, and such a number is around 30% more
than the recording number (i.e., [87] contains 713 examined patches
for correctness) in the literature. (2) of high coverage w.r.t APR tools:
this benchmark contains the patches generated by 21 distinct APR
tools which can be mainly divided into four categories, namely,
heuristic-based, constraint-based, template-based, and learning-based,
as summarized by a recent study [45]. Table 3 shows the detailed
information of these APR tools. (3) of high coverage w.r.t distinct bugs:
this benchmark contains the patches generated for 202 different
bugs in Defects4j, accounting for over half of the bugs in the dataset
(202/395). Such a high coverage provides great patch diversity for
evaluation. Although the learning-based category contains only
SequenceR, it contains 73 patches in total, which is almost the
largest number for a single APR tool.

3.2.2 Patch Sanity Check. The precise oracle information of the
selected patches (i.e., whether a patch is overfitting or correct) is
critical in fairly comparing the effectiveness of APCA techniques.
The label information of the aforementioned collected patches is
annotated by the associated researchers manually. However, as

Table 3: Covered APR Tools in Our Benchmark.
Category APR Tools for Java Programs

Heuristic-based
jGenProg [54], jKali [54], jMutRepair [54], SimFix [27], ARJA [90],

GenProg-A [90], Kali-A [90], RSRepair-A [90], CapGen [77].

Constraint-based
DynaMoth [16], Nopol [83], ACS [82],

Cardumen [55], JAID [9], SketchFix [25].
Template-based kPAR [41], FixMiner [32], AVATAR [42], TBar [43], SOFix [46].
Learning-based SequenceR [10].

previous studies have pointed out [33, 88], author annotation may
produce wrong labels due to subjectivity (i.e., assessing an over-
fitting patch as a correct one). To reduce such bias in our study,
we further performed a sanity check to examine the correctness
of the collected patches. To achieve such a goal, we followed the
strategies adopted by a recent study [88]. Specifically, we adopted
Randoop and Evosuite to generate extra test cases automatically
based on the oracle program of the bug (the program after applying
the developer-provided patch), and then executed such extra tests
against the patched version collected in our dataset that are marked
as correct by the authors.We then examined if there were any gener-
ated test that passed on the oracle program but failed on the patched
version. Such cases indicated that the patch annotated as correct
by the authors might be actually overfitting. Therefore, we further
manually checked each of them, to see whether they are overfitting
via understanding the programs. Three authors were involved and
the process ended when they reached consensus. A patch is still
considered as correct if three authors admit it is correct. Otherwise,
we send the patch with the generated tests to the original authors
to see if they agree with our judgement. We deem a correct patch
in our dataset is actually overfitting if the original authors also
confirm with our judgment. In total, our sanity check identified 12
patches that are mistakenly labeled as correct. Due to page limit,
we do not analyze the 12 cases in this paper. Details can be found
in our project page at http://doi.org/10.5281/zenodo.3730599.

After the process of the sanity check, the patches can be precisely
classified to correct patches, which are denoted as 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 , and
overfitting patches, which are denoted as 𝑃𝑜𝑣𝑒𝑟 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 . In total, there
are 654 𝑃𝑜𝑣𝑒𝑟 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 patches and 248 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 ones.

3.3 Research Questions
Based on the selected APCA techniques and the precisely labeled
patches (i.e., 𝑃𝑜𝑣𝑒𝑟 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 and 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡), we seek to answer the fol-
lowing research questions (RQs) with the aim to investigate and
enhance the effectiveness of existing assessment techniques:
(1) RQ1: How effective are existing static code features in

prioritizing correct patches? We first systematically inves-
tigate the effectiveness of each individual static code feature
as summarized in Table 2 in prioritizing correct patches over
overfitting ones. To answer this question, we compute the val-
ues with respect to each of them for all the patches, and then

http://doi.org/10.5281/zenodo.3730599

ASE ’20, September 21–25, 2020, Virtual Event, Australia Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin

compare whether the values obtained over the correct patches
are significant different from those obtained over the overfitting
ones. If significance observed, the designed feature is promising
in differentiating correct patches from overfitting ones. Besides,
we also investigate whether the effectiveness of existing fea-
tures are affected by different projects or different types of APR
tools. Answering such a question can guide us better apply ex-
isting techniques to different domains, and understand towards
which direction should existing techniques be improved.

(2) RQ2: How effective are existing techniques in identify-
ing overfitting patches? We systematically investigate the
performance of the state-of-the-art APCA techniques on detect-
ing overfitting patches, and whether they are complementary to
each other. This question is rather essential to provide valuable
guidance for the design of future methods. Specifically, we mea-
sure the precision and recall to answer this question, which are
defined by the following metrics: True Positive (TP): An over-
fitting patch in 𝑃𝑜𝑣𝑒𝑟 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔 is identified as overfitting. False
Positive (FP):A correct patch in 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is identified as overfit-
ting. False Negative (FN): An overfitting patch in 𝑃𝑜𝑣𝑒𝑟 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔
is identified as correct. True Negative (TN): A correct patch
in 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is identified as correct.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (1)
𝑅𝑒𝑐𝑎𝑙𝑙 =𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (2)

It has been emphasized by recent studies [81, 87, 89] that APCA
techniques need to avoid dismissing correct patches. Therefore,
we conjecture an APCA technique effective if it can generate
few false positives while preserve a high recall. As mentioned
in Section 3.1, existing APCA techniques can be characterized
in different aspects, such as dynamic or static, with oracle or
without oracle. In this RQ, we will also investigate the effects of
such design spaces on the effectiveness of existing techniques.

(3) RQ3. Can we enhance the effectiveness of existing tech-
niques via integrating static features and dynamic tech-
niques together? Based on the experimental outputs obtained
from the previous RQs, we further seek to investigate whether
combining static and dynamic techniques can achieve better
performance in identifying overfitting patches.

3.4 Experiment Settings
All the experiments were performed on the same configured servers
with Ubuntu 18.04 x64OS and 16GBmemory. The following presents
the experimental details for each research question.

3.4.1 RQ1 & RQ2. Static Techniques: The four static tools are
described in Section 3.1.1. Specifically, to apply Anti-patterns on
Java, we follow the heuristic adopted by a recent study [81] that
is to manually check whether the patches generated by existing
APR tools fall into these patterns. If a generated patch breaks any
predefined anti-pattern rule, it is considered as overfitting. For the
other three approaches, we calculate the value of each individual
feature as described in Table 2. Then, for ssFix and S3, the sum of
the features is used as the final result while the multiplication is
used for CapGen, as adopted by the original paper [34, 77, 79].

Evosuite & Randoop:We run these tools on the oracle program
to generate tests with 30 different seeds with a time limit of 300

seconds by following previous studies [33, 88]. After collecting
those test cases, we run them over the oracle program to eliminate
the impact of flaky tests [50]. Any test that fails on the oracle
programwill be removed from our test suite. Following the previous
studies [66, 89], we stop this process if all the oracle patches pass
the whole test suite for five times consecutively (note that the sanity
check introduced in Section 3.2.2 also went through such a check).
After this process, we obtain a test suite with most flaky tests being
removed and then execute the automated generated patches against
it. A patch is considered as overfitting if it fails any of the test case.
Note that for 125 bugs in our study, we directly reuse the Evosuite
tests generated by Ye et al. [88] since they have already generated
tests for the 125 bugs and removed the flaky tests. Details of these
bugs can be found in our replication package.

R-Opad & E-Opad: The experimental setting of these two tools
is similar to that of Randoop and Evosuite. The difference is that the
test cases are generated based on the buggy programs since Opad
does not require the oracle information. Instead, when executing
the generated tests on the patched programs, a patch is considered
as overfitting if it introduces any runtime exception.

DiffTGen: DiffTGen leverages Evosuite to generate test cases.
In our experiment, we execute Evosuite for 30 times and the search-
ing time is set to 60 seconds for each round. We use such settings
since it is reported that such a combination is the optimum [80].

PATCH-SIM & E-PATCH-SIM: We note that the performance
of our server is lower than that used in the original study. We thus
follow the instruction in the project page of [81] that is to increase
the timeout limit (3 minutes in original study) to 5 minutes. Both
PATCH-SIM and E-PATCH-SIM require two thresholds to classify the
generated tests into passing or failing tests (K𝑡) and the generated
patches into correct or overfitting ones (K𝑝). We adopt the prede-
fined default values as used in [81]. In this study, we do not explore
the setting of different thresholds since it has been illustrated in
[81] that the impact from different thresholds is limited.

Daikon: Running Daikon is extremely time-consuming [85]. To
speed up the process and reduce unnecessary computation, in our
experiment, we only infer invariants by executing test classes that
contain the failing test cases, as adopted by the previous study [14].
3.4.2 RQ3. To answer RQ3, we first integrate the eight static fea-
tures as displayed in Table 2 using learning-to-rank strategies. Learn-
ing to rank techniques train a machine learning model for a ranking
task [40], which has beenwidely used in Information Retrieval tasks.
We then integrate the learned model with dynamic techniques via
the majority voting strategy [61]. To integrate static features, we
select six widely-used classification models in our study, including
Random Forest [6], Decision Table [93], J48 [60], Naive Bayes [60],
Logistic Regression [30], and SMO [62]. These are popular classifi-
cation models that are wildly used by existing studies [3, 24, 91, 92].

We randomly separate the patch benchmark into 10 folds with
identical number of correct and overfitting patches in each fold. We
then use 10-fold cross validation [31] to evaluate the performance
of each model. The final performance of each model is summed
up over the 10 rounds of each training and testing process. Note
that our patch benchmark is imbalanced (the number of overfitting
patches is around three times as much as that of correct ones), we
thus adopt the strategy of cost-sensitive learning [17] to increase the
loss of generating an FP to 3 times of that of generating an FN. Since

Automated Patch Correctness Assessment: How Far are We? ASE ’20, September 21–25, 2020, Virtual Event, Australia

(a) TokenStrct (b) TokenConpt (c) ASTDist

(d) ASTCosDist (e) VariableDist (f) VariableSimi

(g) SyntaxSimi (h) SemanticSimi

Figure 1: Measurements on Overfitting Patches and Correct Patches
for Different Static Code Features Cross Different Projects
The bar denotes the correct patches while the white bar denotes the
overfitting patches. C+T: Chart + Time; CL: Closure; L: Lang; M:Math;

the 10-fold cross validation involves randomness, we repeated this
process for 20 times and results suggest that the impact caused by
the randomness is limited. For instance, the median of TP generated
by Random Forest is 580 with a standard deviation of 5.05 while
the median of FP is 90.5 with a standard deviation of 3.17. We thus
report the result of the first experiment, in this paper.

To combine with dynamic techniques, we select the model with
the optimum performance, and integrate it with dynamic ones us-
ing the strategy of majority voting. As classified in Table 1, there
are two types of dynamic techniques, the one with the oracle in-
formation and the other without. However, static code features
are designed without the information of oracle. To integrate with
those techniques require the oracle information, we also conduct
another experiment to leverage the oracle information for static
features. Specifically, we re-compute all the feature values based
on the generated patch and the oracle patch (in the original experi-
ment, the feature values are computed based on the buggy program
and the generated patch), and then adopt the same methodology as
described above to integrate all the static code features. Finally, the
model learned with the oracle information is combined with the
dynamic techniques that require the oracle information.

4 STUDY RESULTS
We now provide the experimental data as well as the key insights
distilled from our research questions.

4.1 RQ1: Effectiveness of Static Code Features
Figure 1 shows the measurements over overfitting patches and
correct patches with respect to each individual code feature aggre-
gated by different projects. Since the number of patches collected
for project Time is not sufficient for statistical difference testing (i.e.,
only six patches in total), we combined the patches in project Time
and Chart, and denoted them as "C+T" in the figures. We can see
that for features TokenStrct, TokenConpt, VariableSimi, SyntaxSimi
and SemanticSimi, the values obtained over correct patches are
generally higher than those observed over overfitting ones. Such

(a) TokenStrct (b) TokenConpt (c) ASTDist

(d) ASTCosDist (e) VariableDist (f) VariableSimi

(g) SyntaxSimi (h) SemanticSimi

Figure 2: Measurements on Overfitting Patches and Correct Patches
for Different Static Code Features Cross Different APR Techniques
The bar denotes the correct patches while the white bar denotes the
overfitting patches. C: Constraint-based APR; H: Heuristic-based APR; LE:

Learning-based APR; T: Template-based APR;

results indicate that correct patches are more likely to preserve high
similarities with respect to their syntax and semantics compared
with the buggy program. For features ASTDist, ASTCosDist and
VariableDist, the values obtained over correct patches are generally
lower than those observed over overfitting ones. Such results reveal
that correct patches often make a small number of modifications
(i.e., as measured by ASTDist), and do not often change the loca-
tions of variables/constants (i.e., as measured by VariableDist), as
compared to overfitting patches.

To investigate whether such differences observed between cor-
rect and overfitting patches are significant, we further performed a
one-sided Mann-Whitney U-Test [51] on the results collected from
each project, and Table 4 displays the p-values. As we can see from
the table, for most of the cases, the differences are significant (i.e.,
p-value ≤ 0.05), which indicates that existing static code features
are effective in differentiating overfitting patches from correct ones.
However, the measurements over the Lang projects with respect to
six out of the eight features are insignificant. Such a result indicates
that existing features are less effective to prioritize patches gener-
ated for project Lang.We further investigated the behind reason and
found that the buggy locations of this project are mostly concerned
with condition expressions, and the overfitting patches are often
generated via modifying operators in such expressions. Listing 1
shows some examples of such overfitting patches. Unfortunately,
existing code features are unable to capture the characteristics of
such differences embedded in operators. As a result, the differences
measured over the overfitting patches and those over the correct
patches are insignificant.
1 // An overfitting patch generated for Lang 22 by jMutRepair

2 - if (Math.abs(u) <= 1 || Math.abs(v) <= 1) {

3 + if (Math.abs(u) <= 1 && Math.abs(v) <= 1) {

4
5 // An overfitting patch generated for Lang 51 by TBar

6 - if (ch == 'y') {

7 + if (ch <= 'y') {

Listing 1: Overfitting Patches Generated for the Lang Project

ASE ’20, September 21–25, 2020, Virtual Event, Australia Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin

Table 4: P-values over All the Static Code Features

Feature Name Projects Types of APR Technique
C+T CL L M C H LE T

TokenStrct 0.0002 0.0165 0.0000 0.0000 0.0000 0.0011 0.0335 0.0000
TokenConpt 0.0000 0.2003 0.0001 0.0000 0.0006 0.0004 0.0645 0.0000

ASTDist 0.0000 0.0013 0.5245 0.0001 0.0116 0.0000 0.0213 0.0570
ASTCosDist 0.0000 0.0001 0.4123 0.0005 0.0600 0.0000 0.0032 0.0049
VariableDist 0.0045 0.0016 0.9493 0.0000 0.2830 0.0001 0.0001 0.0330
VariableSimi 0.0000 0.0001 0.4194 0.0011 0.6681 0.0000 0.0067 0.0011
SyntaxSimi 0.0000 0.0098 0.7648 0.0000 0.0703 0.0000 0.0007 0.0066

SemanticSimi 0.0000 0.0039 0.3331 0.0002 0.0675 0.0000 0.0045 0.0043
0.0000 denotes the p-value is less than 0.00005

Table 5: Effectiveness of each APCA Technique.
APCA TP FP TN FN Precison Recall
Evosuite 350 3 245 304 99.15% 53.52%
Randoop 221 6 242 433 97.36% 33.79%
DiffTGen† 184 5 232 417 97.35% 30.62%
Daikon† 337 38 166 120 89.87% 73.74%
R-Opad 67 0 248 587 100.00% 10.24%
E-Opad 92 0 248 562 100.00% 14.07%
PATCH-SIM† 249 51 186 392 83.00% 38.85%
E-PATCH-SIM† 166 36 202 477 82.18% 25.82%
Anti-patterns 219 37 211 435 85.55% 33.49%
S3 516 135 113 138 79.26% 78.90%
ssFix 515 138 110 139 78.87% 78.75%
CapGen 506 140 108 148 78.33% 77.37%
The green cell denotes the technique requires the oracle information. The bold name
means the technique is dynamic. †For these tools, results might not be generated for certain
patches. The reasons for non-result generation are explained in detail in this Section.

We performed similar analysis with respect to different types
of APR techniques. Figure 2 shows the results and Table 4 shows
the corresponding p-values. As we can see from the figures, similar
results can be observed compared with those obtained with respect
to different projects. Specifically, existing static code features are
generally effective in prioritizing overfitting patches over correct
ones with respect to different types of APR techniques, and the
differences are mostly significant as shown in Table 4. However,
insignificance is frequently observed for those patches generated by
constraint-based APR techniques.We investigated the behind reason
and found that patches in this type often extend the condition of
an if statement with rare new variables involved as shown in the
example displayed in Listing 2. Note that the token list in this patch
changes significantly compared with that of the buggy program.
Therefore, token-based features are more effective for this type of
patches, as shown in Table 4, compared with other features that
encode variables or the related semantics.
1 // An overfitting patch generated for Math 28 by ACS

2 - } else if(minRatioPositions.size() > 1) {

3 + } else if(minRatioPositions.size() > 1 && !(minRatioPositions.size() > 0))

Listing 2: An Overfitting Patch Generated by ACS

The systematic study on static code features reveals that:

(1) existing static code features are generally effective in differenti-
ating overfitting patches over correct ones; (2) these features are less
effective towards project Lang and constraint-based APR techniques
while more effective with respect to other types of patches.

4.2 RQ2: Effectiveness of APCA Techniques
4.2.1 Evaluation Results. Table 5 shows the detection results of
each APCA technique on our patch benchmark. As indicated by
the results, among all the 654 overfitting patches, existing dynamic

APCA techniques can identify a diverse number of them, ranging
from 67 to 350 for different techniques. For instance, Evosuite
identified 350 overfitting patches (53.52% of the 𝑃𝑜𝑣𝑒𝑟 𝑓 𝑖𝑡𝑡𝑖𝑛𝑔) while
it also labeled 3 correct patches as overfitting; Daikon identified 337
overfitting patches while it produced 38 false positives. Besides, our
two implementations of Opad (i.e., R-Opad and E-Opad) generated
no false positives but they detected the least number of overfitting
patches. Other dynamic techniques that do not require the oracle
information (e.g., E-PATCH-SIM and PATCH-SIM), generated more
number of false positives. The behind reasons of such false positives
for each technique will be discussed in detail subsequently.

Figure 3: Overfitting Patches Dist.

We also investigated the dis-
tributions of the overfitting
patches identified by different
APCA techniques, and the re-
sults are shown in Figure 3.
Due to the space limit of the
Venn figure, we do not in-
clude R-Opad and E-Opad in
this comparison since they de-
tect the least number of over-
fitting patches. Actually, these
two tools can only uniquely de-
tect 9 and 0 overfitting patches, respectively. As we can see from
this figure, only 11 overfitting patches were detected by all the
displayed techniques while substantial overfitting patches were
detected exclusively by specific techniques. For instance, 48 overfit-
ting patches can be detected by Evosuite or Randoop that cannot
be detected by other techniques. In total, by combining all the dy-
namic APCA techniques plus Anti-patterns, we can detect 610
unique overfitting patches, accounting for 93.3% of the overfitting
patches in our benchmark. Such results indicate that considering
multiple factors when designing APCA techniques can achieve
better performance.

Heuristics based on static code features are not designed as a stan-
dalone technique to identify overfitting patches directly. However,
we also list the results in Table 5 to compare with other techniques.
Specifically, we calculated the value for each patch, generated by
ssFix, CapGen, and S3 respectively, as introduced in Section 3.1.1
and then prioritized all the patches based on the obtained values
and their ranking strategies. The top 248 patches are classified as
correct patches and the remaining ones are regarded as overfitting
ones (The number of 248 is selected since our prepared patch bench-
mark is unbalanced which only contains 248 correct patches). As
observed in Table 5, heuristics based on static code features identi-
fied more number of overfitting patches in general compared with
dynamic ones. However, they are less precise as well since they
generated more number of false positives. For instance, although
CapGen classified 506 patches as overfitting correctly, it also labeled
140 correct patches as overfitting ones. Applying such techniques
will cause significant destructive effects (i.e., dismissing a number of
correct patches), in which case the effectiveness of APR techniques
will be significantly under-estimated.

4.2.2 Analysis of the Results. We further performed a deeper anal-
ysis for the above results, and the following presents our findings.

Automated Patch Correctness Assessment: How Far are We? ASE ’20, September 21–25, 2020, Virtual Event, Australia

• [False positives cases] We carefully analyzed the false posi-
tives generated by APCA techniques and identified the following
reasons. For Evosuite, it produced 3 false positives (i.e., the patches
for Lang-7 generated by ACS, kPAR, and TBar) which are caused by
the fact that the generated tests have broken the target program’s
preconditions. The oracle patch for Lang-7 adds a conditional state-
ment to deal with unexpected input in function createBigDecimal().
These three patches performed the correct modification as the ora-
cle patch but in a different location (in the function createNumber()).
There exists a precondition of this program that createBigDecimal()
will only be called by createNumber() and that is why these patches
are correct. Evosuite generated tests that violate this precondition
by calling the function createBigDecimal() directly. Consequently,
the tests failed on the patched program and these patches are con-
sidered as overfitting. For Randoop, it generated tests that check
the version for bug Closure-115 as shown in Listing 3. These tests
only pass on the oracle program and thus, six generated correct
patches failed on them.
1 // A test case generated by Randoop

2 String str0 = Compiler.getReleaseVersion();

3 assertTrue("'" + str0 + "' != '" + "D4J_Closure_115_FIXED_VERSION" + "'",

str0.equals("D4J_Closure_115_FIXED_VERSION"));

Listing 3: A Test Case Generated by Randoop

For DiffTGen, besides generating the same three false positives
as Evosuite, it also misclassified another two correct patches. An
example is shown in Listing 4. ACS generated a patch which is
semantic equivalent to the oracle patch by throwing the same ex-
ception. However, it did not synthesis the thrown message (i.e.,
“Object must implement Comparable”). DiffTGen generated a
test that checks whether the thrown messages of these two pro-
grams are identical. As a result, this correct patch is mislabeled.

For Daikon, it in total generated 38 false positives since the rules
adopted by Daikon to affirm identical invariant is extremely strict.
Note that Daikon infers invariant at every entry and exit points of
the functions, and if any differences is observed, Daikon will label
it as an overfitting patch. Specifically, among the 38 false positive
cases, 30 of them concern different exit points of functions and 7
of them use different program elements to finish the same target.
Note that if a function have multiple exit points, Daikon will print
the line number of each exit point in its output. Considering the
example in Listing 4, line 6 and line 12 are the exit points of the
oracle and patched programs. Their line numbers with respect to
the whole program are different (the former is 113 while the latter
is 111). This leads to the differences between the outputs of Daikon,
and thus this correct patch is mislabeled as overfitting. Another un-
common case is patch for Lang-55 generated by Jaid. The program
calls System.currentTimeMillis() during execution which generates
different timestamps, thus causing different invariants. Such results
indicate that future work leveraging invariants to identify overfit-
ting patches can consider to weaken the rules to compare identical
invariants, and also consider the characteristics of the inferred
invariants and treat them differently when classifying patches.
1 // Oracle patch for Math 89

2 public void addValue(Object v) {

3 + if (v instanceof Comparable<?>){

4 addValue((Comparable<?>) v);

5 + } else {

6 + throw new IllegalArgumentException("Object must implement Comparable");

7 + }

8
9 // A correct patch for Math 89 by ACS

10 public void addValue(Object v) {

11 + if (!(v instanceof Comparable<?>)){

12 + throw new IllegalArgumentException();}

13 addValue((Comparable<?>) v);

14 // Test case generated by DiffTGen

15 assertEquals(

16 "(E)0,(C)org.apache.commons.math.stat.Frequency,addValue(Object)0,(I)0",

17 "java.lang.IllegalArgumentException: Object must implement Comparable",

18 ((Throwable) target_obj_7au3e).toString());

Listing 4: An Example of False Positive of DiffTGen and Daikon

For PATCH-SIM and E-PATCH-SIM, they generated 87 false posi-
tives in total. We observed that these cases are majorly caused by
the misclassification of the generated tests due to the complexity
of the original developer-provided test suite. Listing 5 shows a con-
crete example. The correct patch adds a conditional statement to
deal with the unexpected input null. However, the original failing
test is complex, which feeds the function getRangeAxisIndex with
diverse inputs that cover both normal and unexpected inputs. Such
a complex test leads to a complex path spectrum of getRangeAx-
isIndex during execution. PATCH-SIM generated a test case which
calls this function only with the input null, leading to an extremely
limited path spectrum on this method. As a result, this generated
test is misclassified as a passing test since the execution trace is
divergent to that of the original failing test. When determining the
correctness of this correct patch, the execution trace of this test
on the buggy program in this function is lines 6, 7, and a return
statement, completely different from that of the patched program
which is lines 3 and 4. Consequently, this test leads to an extremely
high value of A𝑝 (the distance of a passing test) which is 0.53, thus
misclassifying the patch as overfitting (cf. Section 4.4.2 in [81]). Sim-
ilar patterns have been observed for most of the other FP cases, that
is the distance between the path spectrum obtained via executing a
passing test against a correct patch and that obtained against the
buggy program is significant different. The behind reason is that
the logic of the developer-provided test suite is complex. Therefore,
utilizing test case purification technique [27, 84] (i.e., separating
those normal inputs from abnormal ones in the example) is promis-
ing to enhance the accuracy to classify the generated tests, thus to
enhance the effectiveness of PATCH-SIM.
1 // A correct patch for Chart 19 by AVATAR

2 public int getRangeAxisIndex(ValueAxis axis) {

3 + if (axis == null) {

4 + throw new IllegalArgumentException();

5 + }

6 int result = this.rangeAxes.indexOf(axis);

7 if (result < 0) {

8 // A test case classified as passing test

9 int int18 = categoryPlot7.getRangeAxisIndex(null);

10 assertTrue(int18 == 0);

Listing 5: An Example of False Positive of PATCH-SIM

For Anti-patterns, we further dissected the effectiveness of
each rule adopted by it, including the detected number of overfitting
patches and the number of false positive cases. We find that only
five rules are effective in detecting existing overfitting patches in
the Java language and all these five rules also produce false positive
cases, which proves that applying these patterns will inevitably
cause certain destructive effects (i.e., dismissing a number of correct
patches) as revealed by another study [22].

ASE ’20, September 21–25, 2020, Virtual Event, Australia Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin

Table 6: Performances of Existing APCA Techniques with Respect to Different Projects and Different APR Techniques

APCA Technique
Precision Recall

C+T CL L M H T C LE C+T CL L M H T C LE
Evosuite 100.00% 100.00% 95.71% 100.00% 100.00% 97.73% 98.75% 100.00% 86.79% 20.51% 63.81% 60.89% 51.55% 53.75% 68.10% 33.93%
Randoop 100.00% 91.04% 100.00% 100.00% 96.06% 98.18% 100.00% 100.00% 38.68% 31.28% 41.90% 30.24% 37.89% 33.75% 37.07% 3.57%
DiffTGen 97.83% 100.00% 91.67% 99.04% 98.89% 96.08% 94.29% 100.00% 43.69% 1.79% 35.87% 43.28% 30.58% 34.27% 28.70% 25.00%
Daikon 92.93% NA 82.29% 92.22% 95.03% 93.52% 78.10% 100.00% 86.79% NA 75.24% 67.48% 79.69% 76.52% 75.23% 4.17%
R-Opad 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 18.87% 9.23% 11.43% 6.85% 9.32% 8.75% 8.62% 23.21%
E-Opad 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 13.21% 5.13% 12.38% 22.18% 13.98% 16.88% 10.34% 14.29%

Anti-patterns 95.45% 89.32% 63.64% 84.21% 93.98% 69.57% 68.25% 100.00% 39.62% 47.18% 20.00% 25.81% 48.45% 10.00% 37.07% 7.14%
PATCH-SIM 72.92% 75.00% 80.00% 86.17% 87.86% 73.40% 69.84% 68.42% 66.04% 22.22% 54.90% 33.20% 39.05% 44.23% 38.26% 23.64%

E-PATCH-SIM 80.00% 71.93% 62.96% 80.00% 83.00% 68.25% 73.68% 66.67% 52.83% 21.47% 16.83% 21.22% 26.27% 27.39% 24.35% 21.82%

The darker blue of the cell, the higher value; The darker orange of the cell, the lower value; We did not compare with static code features since they have been studied in RQ1.
Different Project: C+T: Chart + Time; CL: Closure; L: Lang; M:Math. Different Techniques: C: Constraint-based APR; H: Heuristic-based APR; LE: Learning-based APR; T: Template-based APR;

• [Results in contradict with previous studies] We note that
our experiment reports much more false positives of PATCH-SIM
than the original study [81]. We carefully checked our results and
confirmed that for the set of 24 correct patches that are selected in
both the two studies, only the classification result of one patch is
different. Considering the randomization of Randoop, we conjecture
it is reasonable. Therefore, our study exposes the threats to external
validity of the previous study [81] using a large-scale benchmark,
as mentioned in [22]. We also note that our experiment reports
much more true positives of two implementations of Opad (67 and
92, respectively) than the number reported in [81]. The reason is
that the test suite used in our experiment contains hundreds of
tests for a patch rather than at most 50 as adopted in [81].

• [Reasons for non-result generation] Certain dynamic APCA
tools did not generate results for certain patches: for Daikon, it
cannot generate invariants for Closure programs (also reported in
[85], 241 cases in total); for PATCH-SIM and E-PATCH-SIM, they run
out of heap space when a large amount of tests cover the patched
method (also reported in [22], 24 cases for PATCH-SIM and 21 cases
for E-PATCH-SIM); for DiffTGen, it does not work if the oracle
patch deletes a method (since it needs an oracle method to check
the correctness of the patch) or if the types and values of the inputs
and outputs of the patched method cannot be obtained (since it
needs these information to perform the check, cf. Section 3.3.1
in [79]). There are 64 cases in total and we have confirmed these
limitations with the authors of DiffTGen.

• [Performance on different APR types & Defects4j projects]
Table 6 shows the results of existing APCA techniques in terms

of precision and recall, in particular, separated by different types of
APR techniques and different projects. In terms of precision, exist-
ing APCA techniques are generally achieving high performances
cross different projects and APR tools. Specifically, Anti-patterns,
PATCH-SIM and E-PATCH-SIM achieve relatively lower precision val-
ues, which mostly vary from 60% to 90%. Other techniques achieve
better performances, which are mostly greater than 90%, and for
60.4% of the cases, the precision achieved is 100.0%.

In terms of recall, the performance of existing APCA techniques
diverges a lot cross different projects and APR techniques. Specif-
ically, the recalls achieved over projects Chart and Time are gen-
erally higher than that over the other projects while the recall of
project Closure is the lowest. It is caused by the fact that the test
suites on Closure often achieve low coverage [66] while dynamic
techniques rely heavily on the quality of the generated tests. The

recalls achieved over the learning-based APR technique (i.e., Se-
quenceR) are generally lower than that over the other types of APR
techniques. Especially, we found three APCA techniques achieved
rather low recalls on this type of patches (i.e., Randoop, Daikon, and
Anti-patterns). We observed the following reasons: for Randoop,
the test suite generated for the bugs of this type of patches gen-
erally achieve low coverage; for Anti-patterns, learning-based
APR seldom generate patches via code transformation that can be
captured by the patterns; for Daikon, the variables modified by the
patches are generally not the return values, in which case their
changes are rarely captured by the inferred invariants. Such results
indicates that existing techniques are comparatively less effective
in identifying overfitting patches towards learning-based APR tech-
niques. Overall our systematic study of the effectiveness of existing
APCA techniques reveals that:

(1) most of the dynamic APCA techniques will label correct patches
as overfitting while those with the oracle information are generating
a fewer number of false positives (i.e., fewer than 10.0%); (2) existing
APCA techniques are highly complementary to each other since a
single technique can only detect at most 53.5% overfitting patches
while 93.3% of the overfitting ones can be detected by at least one
technique with the oracle; (3) heuristics based on static code features
can achieve higher recalls but are less precise by generating more
number of false positives; (4) existing APCA techniques are less
effective towards project Closure and learning-based APR techniques
while more effective with respect to other types of patches.

4.3 RQ3: Learning & Integration
Previous findings reveal that static features can achieve high recall
while dynamic techniques are more effective towards precision and
existing techniques are highly complementary to each other. There-
fore, it motivates us to integrate existing techniques together to
take the advantage of each side’s merits.

4.3.1 Integrating Static Code Features. Table 7 shows the results of
our method to integrate all the static features via learning through
six machine learning models. From the results, Random Forest is the
most effective model since it achieves the highest recall while still
maintaining a relatively high precision for the two experimental
settings. In particular, for the setting without the oracle information,
it achieves a high recall of 89.14% while preserving a high precision
of 87.01%. We find that our model achieves better performance
than a single tool (e.g., Random Forest generates more TP with

Automated Patch Correctness Assessment: How Far are We? ASE ’20, September 21–25, 2020, Virtual Event, Australia

Table 7: Effectiveness of Each Training Model based on the Eight Static Features with and without the Oracle Information
Decision Table J48 Logistic Regression NaiveBayes Random Forest SMO

without with without with without with without with without with without with
TP 496 588 506 584 354 501 130 318 583 623 447 599
FP 85 84 84 57 88 64 31 46 87 64 85 71

Precision 85.37% 87.50% 85.76% 91.11% 80.09% 88.67% 80.75% 87.36% 87.01% 90.68% 84.02% 89.40%
Recall 75.84% 89.91% 77.37% 89.30% 54.13% 76.61% 19.88% 48.62% 89.14% 95.26% 68.35% 91.59%

The optimum performance is displayed in bold. “without” means the oracle patch is not available. “with” means the oracle is available. The same as Table 8.

Table 8: Integration Results with and without the Oracle
Strategy TP FP Precision Recall

w
ith

ou
t PATCH-SIM 249 51 83.00% 38.85%

Anti-patterns 219 37 85.55% 33.49%
Integration with the Learned Model 343 30 91.96% 52.45%

PATCH-SIM + E-PATCH-SIM + Anti-patterns 182 38 82.73% 27.83%

w
ith

Evosuite 350 3 99.15% 53.52%
Randoop 221 6 97.36% 33.79%

Integration with the Learned Model 435 4 99.10% 66.51%
Evosuite + Randoop + Daikon 295 3 98.99% 45.11%

fewer FP than ssFix, CapGen, and S3 as shown in Table 5). For
instance, compared with S3, the most effective one among the three,
the precision and recall have been improved by 9.78% and 13.0%
respectively. This suggests that integrating diverse static features
via learning to identify overfitting patches is a promising future
direction. We also find that the oracle information can boost the
effectiveness of all the models via achieving both a higher precision
and recall. For instance, for the model of Random Forest, the number
of TP has been increased by 40 while the number of FP has been
reduced by 23. Such a result indicates using such models to facilitate
the evaluation of APR techniques is promising.

4.3.2 Integrating with Existing Techniques. We choose the most ef-
fective model (Random Forest) to integrate with dynamic techniques
and Anti-patterns. Our intuition is that they can guarantee the
precision while the trained model can help enhance the recall. As is
well known, dynamic methods can be extremely time-consuming
[88], and thus we only consider the top two most effective tech-
niques among dynamic ones and Anti-patterns for integration
currently. Specifically, for the scenario with the oracle informa-
tion, we integrate our trained model (with the oracle information)
with Evosuite and Randoop. For the scenario without the oracle
information, we integrate our trained model (without the oracle
information) with PATCH-SIM and Anti-patterns. We adopt the
majority voting strategy that is a patch is considered as overfitting
if it has been labeled as overfitting by at least two out of our con-
sidered techniques. Table 8 shows the results, which indicates that
the effectiveness of existing APCA techniques can be significantly
enhanced via integration. Specifically, for the scenario without the
oracle information, while preserving a low FP of 30, the TP can be
improved from 249 to 343, thus achieving a higher recall (52.45%
vs. 38.85%). For the scenario with the oracle information, while
preserving a high precision of 99.10%, the recall can be improved
from 53.52% to 66.51%. To show the contributions of the learned
model in the integration strategy, we also compared with the results
obtained by integrating the three most effective existing techniques
via the majority voting. The results are shown in the last row of
each experimental setting which indicate that without the learning
model based on static code features, the effectiveness of identifying
overfitting patches is greatly compromised. For instance, if we inte-
grate Evosuite, Randoop, and Daikon, we can only achieve a recall

of 45.11%, even lower than a single method like Evosuite. Such
results reflect the usefulness of static code features. Our integration
strategy reveals that:

(1) combining static features via learning significantly outperforms
existing heuristics based on static code features and thus is a promis-
ing direction for both patch generation and patch evaluation; (2)
integrating static features with existing techniques can take the ad-
vantage of each side, thus achieving a higher recall while preserving
a high precision. Therefore, it is a future direction worth exploring.

5 THREATS TO VALIDITY
External validity. Our study only considers the patches generated
by Java APCA techniques on the Defects4J benchmark. Thus, all
findings might be only valid for this configuration. Nevertheless,
this threat is mitigated by the fact that we use a wide range of
state-of-the-art APCA techniques and a most comprehensive patch
benchmark so far.

Internal validity. It is error-prone to perform such a large scale
study and some of our findings may face the threats from the way
we performed the experiments. We mitigate this by re-checking the
process of our experiment for many times and identifying the be-
hind explanation for each result. Besides, we have reported some of
our results to authors of [45, 79, 82] and obtained positive feedback.

Construct validity. The parameters involved in this study may
cast effects for the results. We mitigate this by strictly following the
previous studies. For instance, we run simple test case generation
tools for 30 seeds by following [88, 89] and adopt the default values
of K𝑡 and K𝑝 from [81] for PATCH-SIM and E-PATCH-SIM.

6 CONCLUSION
This paper performed a large-scale study on the effectiveness of
9 state-of-the-art APCA techniques and 3 heuristics based on 8
static code features, based on the largest patch benchmark so far.
Effectiveness is evaluated and compared with respect to precision
and recall. Our study dissects the pros and cons of existing ap-
proaches as well as points out a potential direction by integrating
static features with existing methods.
Artefacts: All data in this study are publicly available at:

http://doi.org/10.5281/zenodo.3730599.

ACKNOWLEDGMENTS
The authors thank He Ye from KTH Royal Institution and Qi Xin
from Georgia Institute of Technology for their great help in the
experiment. This work is supported by the National Natural Science
Foundation of China No.61672529 as well as the Fundamental Re-
search Funds for the Central Universities (HUST) No.2020kfyXJJS076.

http://doi.org/10.5281/zenodo.3730599

ASE ’20, September 21–25, 2020, Virtual Event, Australia Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou, Xiaoguang Mao, and Hai Jin

REFERENCES
[1] 2020. AgitarOne Homepage. http://www.agitar.com/index.html.
[2] Moumita Asad, Kishan Kumar Ganguly, and Kazi Sakib. 2019. Impact Analysis

of Syntactic and Semantic Similarities on Patch Prioritization in Automated
Program Repair. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 328–332.

[3] Lingfeng Bao, Xin Xia, David Lo, and Gail C Murphy. 2019. A large scale study
of long-time contributor prediction for GitHub projects. IEEE Transactions on
Software Engineering (2019).

[4] Luciano Baresi, Pier Luca Lanzi, and Matteo Miraz. 2010. TestFul: an Evolutionary
Test Approach for Java. In 3rd International Conference on Software Testing. IEEE.

[5] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effective-
ness of Unified Debugging: An Extensive Study on 16 Program Repair Systems. In
the 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2020).

[6] Lionel Briand. 2011. A practical guide for using statistical tests to assess random-
ized algorithms in software engineering. In International Conference on Software
Engineering.

[7] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008, December 8-10, 2008, San Diego, California, USA, Proceedings. 209–224.

[8] Padraic Cashin, Carianne Martinez, Westley Weimer, and Stephanie Forrest. 2019.
Understanding Automatically-Generated Patches Through Symbolic Invariant
Differences. In 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 411–414.

[9] Liushan Chen, Yu Pei, and Carlo A Furia. 2017. Contract-based program re-
pair without the contracts. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE, 637–647.

[10] Zimin Chen, Steve James Kommrusch, Michele Tufano, Louis-Noel Pouchet,
Denys Poshyvanyk, and Martin Monperrus. 2019. SEQUENCER: Sequence-to-
Sequence Learning for End-to-End Program Repair. IEEE Transactions on Software
Engineering (2019). https://doi.org/10.1109/tse.2019.2940179

[11] Hangyuan Cheng, Ping Ma, Jingxuan Zhang, and Jifeng Xuan. 2020. Can This
Fault Be Detected by Automated Test Generation: A Preliminary Study. In 2020
IEEE 2nd International Workshop on Intelligent Bug Fixing (IBF). 9–17.

[12] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic ro-
bustness tester for Java. Software Prac. Experience 34, 11 (2004), 1025–1050.

[13] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László Vidács. 2020. Uti-
lizing Source Code Embeddings to Identify Correct Patches. In 2020 IEEE 2nd
International Workshop on Intelligent Bug Fixing (IBF). 18–25.

[14] Zhen Yu Ding, Yiwei Lyu, Christopher Timperley, and Claire Le Goues. 2019.
Leveraging program invariants to promote population diversity in search-based
automatic program repair. In 2019 IEEE/ACM International Workshop on Genetic
Improvement (GI). IEEE, 2–9.

[15] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, 302–313. https://doi.org/10.1145/
3338906.3338911

[16] Thomas Durieux and Martin Monperrus. 2016. Dynamoth: dynamic code synthe-
sis for automatic program repair. In Proceedings of the 11th IEEE/ACM International
Workshop in Automation of Software Test. IEEE, 85–91.

[17] Charles Elkan. 2001. The foundations of cost-sensitive learning. In International
joint conference on artificial intelligence. 973–978.

[18] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering 27, 2 (Feb. 2001), 99–123.

[19] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic test suite generation
for object-oriented software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13rd European
Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011.

[20] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (2013), 276–291.

[21] Gordon Fraser, Andrea Arcuri, and Phil McMinn. 2015. A memetic algorithm for
whole test suite generation. Journal of Systems and Software 103 (2015), 311–327.

[22] Ali Ghanbari. 2019. Validation of Automatically Generated Patches: An Appetizer.
arXiv:1912.00117

[23] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical program re-
pair via bytecode mutation. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 19–30.

[24] Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. 2015. Revisiting the
impact of classification techniques on the performance of defect prediction mod-
els. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 789–800.

[25] Jinru Hua, Mengshi Zhang, Kaiyuan Wang, and Sarfraz Khurshid. 2018. Towards
practical program repair with on-demand candidate generation. In Proceedings of

the 40th International Conference on Software Engineering. ACM, 12–23.
[26] Jiajun Jiang, Yingfei Xiong, and Xin Xia. 2019. A manual inspection of Defects4J

bugs and its implications for automatic program repair. Science China Information
Sciences 62, 10 (2019), 200102.

[27] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, 298–309.

[28] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 23rd International Symposium on Software Testing and Analysis. ACM,
437–440.

[29] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In Proceedings of the 35th
International Conference on Software Engineering. IEEE, 802–811.

[30] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. 2002.
Logistic regression. Springer.

[31] Ron Kohavi. 1995. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In Fourteenth International Joint Conference on Artificial
Intelligence. Montreal, Canada, 1137–1145.

[32] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2018. Fixminer: Mining relevant fix
patterns for automated program repair. arXiv preprint arXiv:1810.01791 (2018).

[33] Xuan-Bach D. Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina
Pasareanu. 2019. On reliability of patch correctness assessment. In Proceedings of
the 41st International Conference on Software Engineering. IEEE, 524–535.

[34] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: syntax-and semantic-guided repair synthesis via programming by
examples. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering. ACM, 593–604.

[35] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2017. Empirical Study on
Synthesis Engines for Semantics-Based Program Repair. In Proceedings of the
33th IEEE International Conference on Software Maintenance. IEEE.

[36] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History driven program re-
pair. In Proceedings of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 213–224.

[37] Xuan Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting
in semantics-based automated program repair. Empirical Software Engineering
23, 5 (2018), 3007–3033.

[38] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A generic method for automatic software repair. IEEE Transactions on
Software Engineering 38, 1 (2012), 54–72.

[39] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM 62, 12 (2019), 56–65. https://doi.org/10.1145/
3318162

[40] Hang Li. 2011. A short introduction to learning to rank. IEICE TRANSACTIONS
on Information and Systems 94, 10 (2011), 1854–1862.

[41] Kui Liu, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques. Klein,
and Yves Le Traon. 2019. You Cannot FixWhat You Cannot Find! An Investigation
of Fault Localization Bias in Benchmarking Automated Program Repair Systems.
In Proceedings of the 12th IEEE Conference on Software Testing, Validation and
Verification. 102–113. https://doi.org/10.1109/ICST.2019.00020

[42] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar:
Fixing semantic bugs with fix patterns of static analysis violations. In Proceedings
of the 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering. IEEE, 456–467.

[43] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
31–42.

[44] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé.
2018. LSRepair: Live Search of Fix Ingredients for Automated Program Repair.
In Proceedings of the 25th Asia-Pacific Software Engineering Conference. 658–662.
https://doi.org/10.1109/APSEC.2018.00085

[45] Kui Liu, Shangwen Wang, Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun
Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020. On
the Efficiency of Test Suite based Program Repair: A Systematic Assessment
of 16 Automated Repair Systems for Java Programs. In Proceedings of the 42nd
International Conference on Software Engineering. ACM.

[46] Xuliang Liu and Hao Zhong. 2018. Mining stackoverflow for program repair.
In Proceedings of the 25th IEEE International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 118–129.

[47] Fan Long and Martin Rinard. 2015. Staged program repair with condition synthe-
sis. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering.
ACM, 166–178.

[48] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate
and Validate Patch Generation Systems. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 702–713. https://doi.org/10.1145/

http://www.agitar.com/index.html
https://doi.org/10.1109/tse.2019.2940179
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
http://arxiv.org/abs/1912.00117
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1109/ICST.2019.00020
https://doi.org/10.1109/APSEC.2018.00085
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872

Automated Patch Correctness Assessment: How Far are We? ASE ’20, September 21–25, 2020, Virtual Event, Australia

2884781.2884872
[49] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,

and Lu Zhang. 2020. Can Automated Program Repair Refine Fault Localization?
A Unified Debugging Approach. In Proceedings of the 29th ACM International
Symposium on Software Testing and Analysis (ISSTA 2020).

[50] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and DarkoMarinov. 2014. An empir-
ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). 643–653.

[51] Henry B Mann and Donald R. Whitney. 1947. On a Test of Whether One of
Two Random Variables Is Stochastically Larger than the Other. The Annals
of Mathematical Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/
1177730491

[52] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sapfix: Automated end-to-
end repair at scale. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 269–278.

[53] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: high-coverage testing
of software patches. In Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2013.

[54] Matias Martinez and Martin Monperrus. 2016. Astor: A program repair library
for java. In Proceedings of the 25th International Symposium on Software Testing
and Analysis. ACM, 441–444.

[55] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space
with Automatically Mined Templates: the Cardumen Mode of Astor. In Proceed-
ings of the 10th International Symposium on Search Based Software Engineering.
Springer, 65–86.

[56] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 691–701. https://doi.org/10.1145/
2884781.2884807

[57] Martin Monperrus. 2018. The Living Review on Automated Program Repair.
Technical Report. Technical Report hal-01956501. HAL/archives-ouvertes. fr,
HAL/archives.

[58] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In Proceedings of the
35th International Conference on Software Engineering. IEEE, 772–781.

[59] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random
testing for Java. In In OOPSLA ’07 Companion. ACM, 815–816.

[60] Tina R. Patil and Swati Sunil Sherekar. 2013. Performance analysis of Naive Bayes
and J48 classification algorithm for data classification. International journal of
computer science and applications 6, 2 (2013), 256–261.

[61] Lionel S Penrose. 1946. The elementary statistics of majority voting. Journal of
the Royal Statistical Society 109, 1 (1946), 53–57.

[62] John Platt. 1998. Sequential minimal optimization: A fast algorithm
for training support vector machines. MSR-TR-98-14 (1998), 21.
https://www.microsoft.com/en-us/research/publication/sequential-minimal-
optimization-a-fast-algorithm-for-training-support-vector-machines/

[63] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the
36th International Conference on Software Engineering. ACM, 254–265.

[64] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 24th International Symposium on Software Testing
and Analysis. ACM, 24–36.

[65] Andrew Scott, Johannes Bader, and Satish Chandra. 2019. Getafix: Learning to
fix bugs automatically. arXiv preprint arXiv:1902.06111 (2019).

[66] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, and Andrea Arcuri.
2015. Do Automatically Generated Unit Tests Find Real Faults? An Empirical
Study of Effectiveness and Challenges. In International Conference on Automated
Software Engineering (ASE).

[67] Inderjeet Singh. 2012. A mapping study of automation support tools for unit
testing. In School of Innovation Design and Engineering.

[68] Edward K Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 10th Joint Meeting on Foundations of Software Engineering. ACM, 532–543.

[69] Mauricio Soto and Claire Le Goues. 2018. Using a probabilistic model to predict
bug fixes. In Proceedings of the 25th International Conference on Software Analysis,
Evolution and Reengineering. IEEE, 221–231.

[70] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
727–738.

[71] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein,
and Tegawendé F. Bissyandé. 2020. Evaluating Representation Learning of Code

Changes for Predicting Patch Correctness in Program Repair. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering.
ACM.

[72] ShangwenWang, MingWen, Liqian Chen, Xin Yi, and XiaoguangMao. 2019. How
Different Is It Between Machine-Generated and Developer-Provided Patches?:
An Empirical Study on the Correct Patches Generated by Automated Program
Repair Techniques. In Proceedings of the 13rd ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. IEEE, 1–12.

[73] Shangwen Wang, Ming Wen, Xiaoguang Mao, and Deheng Yang. 2019. Attention
please: Consider Mockito when evaluating newly proposed automated program
repair techniques. In Proceedings of the 23rd Evaluation and Assessment on Software
Engineering. ACM, 260–266.

[74] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 356–366.

[75] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering. IEEE, 364–374.

[76] Ming Wen, Junjie Chen, Yongqiang Tian, Rongxin Wu, Dan Hao, Shi Han, and
Shing-Chi Cheung. 2020. Historical Spectrum based Fault Localization. IEEE
Transactions on Software Engineering (TSE) (2020).

[77] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Proceed-
ings of the 40th International Conference on Software Engineering. ACM, 1–11.

[78] MingWen, RongxinWu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from
software changes. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 262–273.

[79] Qi Xin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches through
test case generation. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis. ACM, 226–236.

[80] Qi Xin and Steven P. Reiss. 2017. Leveraging syntax-related code for automated
program repair. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 660–670.

[81] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering. ACM, 789–799.

[82] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings
of the 39th IEEE/ACM International Conference on Software Engineering. IEEE,
416–426.

[83] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lame-
las Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017.
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2017), 34–55.

[84] Jifeng Xuan and Martin Monperrus. 2014. Test case purification for improv-
ing fault localization. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE). ACM, 52–63. http:
//doi.acm.org/10.1145/2635868.2635906

[85] Bo Yang and Jinqiu Yang. 2020. Exploring the Differences between Plausible and
Correct Patches at Fine-Grained Level. In 2020 IEEE 2nd International Workshop
on Intelligent Bug Fixing (IBF). IEEE, 1–8.

[86] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases
for better automated program repair. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering. ACM, 831–841.

[87] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019.
Automated Classification of Overfitting Patches with Statically Extracted Code
Features. arXiv:1910.12057

[88] He Ye, Matias Martinez, and Martin Monperrus. 2019. Automated Patch Assess-
ment for Program Repair at Scale. arXiv:1909.13694

[89] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2019. Alleviating patch overfitting with automatic test generation:
a study of feasibility and effectiveness for the Nopol repair system. Empirical
Software Engineering 24, 1 (2019), 33–67.

[90] Yuan Yuan and Wolfgang Banzhaf. 2018. ARJA: Automated Repair of Java Pro-
grams via Multi-Objective Genetic Programming. IEEE Transactions on Software
Engineering (2018).

[91] Jie Zhang, Lingming Zhang, Mark Harman, Dan Hao, Yue Jia, and Lu Zhang.
2018. Predictive mutation testing. IEEE Transactions on Software Engineering 45,
9 (2018), 898–918.

[92] Tianchi Zhou, Xiaobing Sun, Xin Xia, Bin Li, and Xiang Chen. 2019. Improving
defect prediction with deep forest. Information and Software Technology 114
(2019), 204–216.

[93] Wojciech Ziarko and Shan Ning. 1997. Machine Learning Through Data Classifi-
cation and Reduction. Fundamenta Informaticae 30, 3 (1997), 373–382.

https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
http://doi.acm.org/10.1145/2635868.2635906
http://doi.acm.org/10.1145/2635868.2635906
http://arxiv.org/abs/1910.12057
http://arxiv.org/abs/1909.13694

