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Predictive Comment Updating with Heuristics
and AST-Path-Based Neural Learning: A

Two-Phase Approach
Bo Lin, Shangwen Wang, Zhongxin Liu, Xin Xia, and Xiaoguang Mao

Abstract—Just-in-time comment update is a promising way to reduce the burden of developers during software maintenance and
evolution. Existing approaches can be divided into two categories: the heuristic-based approach and the deep-learning-based
approach. The heuristic-based approach is restricted to a specific type of comment updates (i.e., code-indicative updates), but
performs well on such type. The effectiveness of deep-learning-based approach is limited but it can handle diverse comment updates.
Considering the complementary advantages of existing approaches, an intuitive idea is to combine them for better performance. To
investigate this idea, we first conduct a pre-study experiment which shows that to construct an effective comment updater by combining
heuristic-based and deep-learning-based approaches, we need to tackle two main challenges: 1) the heuristic-based approach may
bring side effects to cases which cannot be updated by it; and 2) the current deep-learning-based approach is with limited
effectiveness. Then, we propose a novel two-phase approach named Toper to cope with these two challenges and effectively perform
comment updates. In the first phase, Toper integrates nine distinctive features identified through our large-scale empirical analysis into
a predictive model, which can predict whether the contents of the comment updates can be found in the corresponding code changes,
namely, the comment updates are code-indicative updates. If so, the updates are then generated by an off-the-shelf heuristic-based
approach; otherwise, Toper leverages a deep learning model, which we specially designed for non-code-indicative updates, to infer
the new comment based on the old comment and code change. Motivated by our manual observation on the limitation of existing
approaches on non-code-indicative updates, our deep learning model adopts the Abstract Syntax Tree path technique, which can
capture the program structure information for effectively embedding code changes. Our evaluation shows that our approach
outperforms the state-of-the-art by around 20% with respect to the number of correct comments it generates. Via in-depth analysis, we
illustrate the rationale of each design decision as well as point out potential directions.

Index Terms—Comment update, Deep learning, Code embedding.
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1 INTRODUCTION

The natural-language comment is crucial for understanding
the associated code [1], [2], [3], [4], [5], [6], [7]. Usually, the
comments record information, such as the intention of the
functionality as well as the implementation details, which
can facilitate the communication among developers [2], [8],
[9], [10], [11], [12], [13], [14]. Despite the significance of code
comments for program comprehension, the comments are
not always updated simultaneously with the accompanying
source code during software evolution [15], [16], [17], [18].
As revealed by existing studies, such inconsistencies can
lead to future project bugs [15] and thus hinder software
maintenance activities [19], [20], [21], [22], [23].

In order to alleviate the inconsistency problem, recent
studies have proposed diverse approaches to automatically
update comments according to code changes, i.e., just-
in-time (JIT) comment update [24], [25], [26]. Specifically,
existing approaches can be classified into two categories,
heuristic-based approaches and deep-learning-based approaches.

• Bo Lin, Shangwen Wang, and Xiaoguang Mao are with the National
University of Defense Technology, China. E-mails: linbo19@nudt.edu.cn,
wangshangwen13@nudt.edu.cn, and xgmao@nudt.edu.cn

• Zhongxin Liu is with Zhejiang University, China. E-mail:
liu zx@zju.edu.cn

• Xin Xia is with Huawei, China. E-mail: xin.xia@acm.org
• Shangwen Wang and Zhongxin Liu are the corresponding authors.

Heuristic-based approach (e.g., HebCup [24]) is simple and
effective. However, it can only work on comment updates
whose changed contents can be found from the correspond-
ing code changes (i.e., code-indicative updates [24]), and
can not handle non-code-indicative updates. Deep-learning-
based approaches (e.g., CUP [25]) are not restricted by
update types theoretically. However, they are currently less
effective than heuristic-based approaches on code-indicative
updates and with respect to the overall performance [24].
In addition, despite some insightful explorations that have
been performed towards this direction, the literature ap-
proaches are still far away from being applied in practice.

Considering that the advantages of heuristic-based ap-
proaches and deep-learning-based approaches seem to be
complementary, an exciting idea is that can we combine the
two categories of approaches to design better approaches
for JIT comment update? Based on this idea, we performed
a pre-study analysis by utilizing HebCup to update all the
cases first and then referring to CUP for cases that cannot
be handled by HebCup, but obtained unsatisfactory results.
This pipeline is just as effective as the existing HebCup.
Although it has not been investigated by prior works, we
consider it as the state-of-the-art in JIT comment update
because it combines the strengths of both the heuristic-based
approach and the learning-based approach. Through our in-
depth analysis, we identified two major limitations of this
pipeline: 1) the lack of a predictor that can decide whether
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a case should be fed to HebCup since non-code-indicative
updates may be mistakenly updated by HebCup, and 2)
the ineffectiveness of CUP on non-code-indicative updates
since it can only correctly update 1.7% of such cases. In this
paper, we propose Toper, a Two-phase cOmment uPdatER,
to cope with the limitations of the state-of-the-art and move
one step further towards this direction. Toper adopts a
two-phase workflow where it first predicts to which type
of update the target comment update instance belongs, and
then for different update types it utilizes different ways to
update the old comment. Considering the identified limi-
tations, the main technical challenges we face in this study
are ¬ how to accurately predict whether the content of the
comment update will appear in the code change and  how
to effectively infer the comment update whose contents do
not appear in the code change.

To address the first challenge, we performed an empiri-
cal analysis on 80,591 method-comment co-change samples,
aiming to find out discriminative features between code-
indicative and non-code-indicative updates with respect
to code changes. We analyzed the features of each code
change from three aspects, i.e., the complexity of the code
change, the extent to which the modified code occurs in
the old comment, and the context information of the code
change, respectively. Totally, we found nine features that can
effectively help us distinguish the two types of comment
updates. To address the second challenge, we also made an
in-depth manual analysis concerning the factors that affect
the performance of the current technique (i.e., CUP) on
6,234 non-code-indicative updates. We found that the most
significant one is that CUP often fails to predict the comment
contents that need to be updated. Our further observation
is that code changes that (1) happen under similar program
structural contexts and (2) cast the same operations (e.g.,
insertion, deletion, and replacement) on code tokens may
result in the updates of comment tokens within similar
natural language contexts. As the concrete example pre-
sented in Fig. 3, two instances with code changes in similar
program structural update the corresponding comment in
similar locations. Detailed illustration will be shown in
Section 4.2.2. Such phenomenons indicate that incorporating
the structure information of code change may help decide
which comment tokens should be updated. Considering
the state-of-the-art comment updater, CUP, ignores such
structure information, we are motivated to consider such
information when updating non-code-indicative ones.

Therefore, given an instance (a code change plus with
an original comment), Toper works as follows: First, it
constructs a classifier to predict if the instance is a code-
indicative update based on the aforementioned nine code
change features. If the classifier identifies the comment
update as code-indicative, Toper directly reuses HebCup
to update the comment, since HebCup effectively addresses
such situations. If not, we send the instance to our specially
designed deep learning model, which is expected to predict
the update results well. Our model, in general, follows the
encoder-decoder paradigm. Different from CUP, it involves
the structure information of the code change within the
encoder. Specifically, we utilize the paths that connect ad-
jacent Abstract Syntax Tree (AST) nodes to represent the
program structure information during encoding (such a

technique is known as the AST path [27], [28]). Furthermore,
we incorporate the code change operation on the leaf node
into each path to make the model be aware of how the
code is changed. After obtaining the whole bag of paths
for the changed method, an attention mechanism is used
to integrate the embeddings of all paths and represent the
code change. For the old comment, we still treat it as a token
sequence. After separately representing the code change and
the old comment as feature vectors, we concatenate the
two vectors and send the result to the decoder, where the
predicted new comment is generated.

We performed extensive experiments to demonstrate
the effectiveness of our proposed approach on the exist-
ing carefully curated dataset provided by Lin et al. [24],
which contains a total of 98,622 change instances of Javadoc
comments with its associated code. Our results show that
(1) compared with the state-of-the-art pipeline, heuristic-
based HebCup, and learning-based CUP approaches, our
Toper can generate about 20%, 20%, and 90% more correct
comments (i.e., those are identical to the developer-provided
ones) respectively on the whole test set; (2) our classifier
can generally work well, with both accuracy and F-score
exceeding 80%; (3) our AST-path-based comment updater
can generate three times as many correct comments as CUP
on the non-code-indicative updates; and (4) the two key
components of our approach (i.e., the classifier and the
AST-path-based updater) contribute together to the overall
effectiveness. Through further in-depth case studies, we
point out potential directions for future studies towards just-
in-time comment update.

To sum up, our study makes the following contributions:
• Our empirical study deepens the understanding towards

the difference of naturalness between code-indicative and
non-code-indicative updates. Based on our empirical find-
ings, we design a classifier that can determine whether an
instance is a code-indicative update based on nine code
change features.

• Our investigation exposes the limitation of current tech-
niques on updating non-code-indicative ones. Based on
that, we design an AST-path-based comment updater that
takes into consideration the program structure informa-
tion for updating non-code-indicative ones.

• Built on top of the proposed classifier and AST-path-
based updater, we implement a two-phase comment up-
dater, Toper, which adopts different strategies to deal
with code-indicative and non-code-indicative updates.
The Toper is open-source to facilitate future just-in-time
comment update studies at: https://github.com/Ringbo/
Toper.

• We perform extensive experiments to assess the perfor-
mance of Toper. Results reveal that Toper builds a more
advanced baseline for future studies and every design
decision makes sense.

2 BACKGROUND

This section presents the necessary background knowledge
about our study, including the definitions of different types
of comment updates, the AST related concepts, as well as
the advantages and disadvantages of existing just-in-time
comment update approaches.

https://github.com/Ringbo/Toper
https://github.com/Ringbo/Toper
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2.1 Definitions

2.1.1 Alignment

A critical step for code change and comment update analysis
is alignment, which can reflect how the code (or comment)
is modified [24], [25]. Given a code change instance where
the token sequence of the old code is s = t1, t2, . . . , tj , and
the token sequence of the new code is s′ = t′1, t

′
2, . . . , t

′
k

(i.e., the original lengths of the two sequences may not be
identical), the alignment result is represented as an edit
sequence (< t1, t

′
1, o1 >, . . . < tn, t

′
n, on >). ti is a token

in the old code, t′i is a token in the new code, and oi is
an operation converting ti to t′i which could be UPDATE,
DELETE, INSERT, or KEEP. If oi is INSERT (DELETE),
ti (t′i) will be the empty token φ. Note that the above
example is just a showcase. In practice, the alignment can
be applied (1) at token or sub-token level (i.e., in this study,
all tokens are split into sub-tokens based on the camel case
and underscore naming conventions and then transformed
into lowercase, following previous studies [27], [29]) and (2)
for code changes or comment updates.
Token replacement pair. From the alignment results, for the
triple < ti, t

′
i, oi >, if ti 6= t′i, then < ti, t

′
i > is called a token

replacement pair. For two token replacement pairs < ti, t
′
i >

and < tj , t
′
j >, if ti = tj and t′i = t′j , then these two pairs

are redundant.

2.1.2 Comment update classification
In our study, we categorize comment updates according
to whether their updated contents can be explicitly found
in the corresponding code change contents. Note that this
classification standard was initially proposed by Lin et al.
[24]. Here we give the formal definition as below. Given
a code change with its corresponding comment update,
suppose the aligned sub-token level edit sequence of the
code change is:

(<STcd1, ST
′cd1, Ocd1>, . . . , <STcdx, ST

′cdx, Ocdx>)

Similarly, the sub-token level edit sequence of the corre-
sponding comment update is:

(<STcm1,ST
′cm1,Ocm1>, . . . ,<STcmy, ST

′cmy, Ocmy>)

If for any element e (<STcme, ST
′cme, Ocme >)

in the second edit sequence whose Ocme ∈
{UPDATE,DELETE,INSERT}, there always exists an element
in the first sequence (< STcdl, ST

′cdl, Ocdl >) where
STcdl = STcme, ST ′cdl = ST ′cme, and Ocdl = Ocme,
then this instance is a code-indicative update. That is to
say, if all the updated contents of the comment can be
found from the corresponding code change, it is considered
as a code-indicative comment update. Otherwise, it is
a non-code-indicative update. Generally speaking, code-
indicative updates are about cases where renaming happens
in the source code and a mention of the renamed object
in the comment must be correspondingly updated with a
textually identical edit. This textually identical property makes
heuristic-based approach effective on such type of comment
updates, whose workflows will be detailed later.

A concrete example of code-indicative update is shown
in Fig. 1. In this example, the only element from the
aligned sub-token level edit sequence of the comment

change whose operation ∈ {UPDATE,DELETE,INSERT} is
< φ, update,INSERT > (note that in this study, tokens will
be split into sub-tokens and then transformed into lower-
case. Hence, the updated token updateVersion is split into
sub-tokens update and version). Also, there is an identical
element in the aligned sub-token level edit sequence of the
code change. Therefore, this example is a code-indicative
update since it satisfies the pre-defined rules.

2.1.3 AST related concepts
AST. The AST of a code snippet is defined as a tuple:
〈N,L, T, r,∆,Φ〉, where N is a set of non-leaf nodes, L is
a set of leaf nodes, and T is a set of code tokens for L.
r ∈ N represents the root node, ∆ and Φ denote two sets
of mapping functions. Specifically, δ ∈ ∆ : n → n′, n ∈
N,n′ ∈ (N ∪ L) is a function that maps a non-leaf node to
its children nodes. φ ∈ Φ : l → t, l ∈ L, t ∈ T maps a leaf
node to the corresponding code token.
AST path. An AST path is a path from the root node
r to a leaf node l, that is defined as a quadruple: p =
〈r, l,N ′,∆′〉, l ∈ L,N ′ ⊂ N,∆′ ⊂ ∆.
Operation Path. Generally, an operation path is an AST path
associated with code change operator that works on a leaf
node l [30], which is defined as a triple: op = 〈t, p, o〉, where
t is the code token of the leaf node l in the AST path p, and
o ∈ {DELETE,INSERT,KEEP,UPDATE} is an atomic code
change operator that works on the leaf node. Specially, if the
operation on a leaf node is UPDATE, the operation path will
be op = 〈told, p, tnew〉. We do not assign a change operator
for update since the embedded vectors of the new token and
the operator will be significantly different and thus it can
be inferred from the embedded results that it is an update.
Considering the code change example in Fig. 1, the AST
path of the red dotted line is p = 〈MethodDeclaration →
Block → ReturnStmt → FieldAccessExpr〉 while its
operation path is op = 〈version, p, updateV ersion〉.

2.2 Automated Comment Update

Researchers have formulated the task of automatically up-
dating an existing comment when the corresponding body
of code is modified. CUP [25] is such an approach that im-
plements a generic neural sequence-to-sequence (seq2seq)
model to learn comment update patterns. It represents the
code changes as an edit sequence and integrates a novel
co-attention mechanism that can effectively link and fuse
information in code changes and comments. The advantage
of CUP is that its application is not restricted by the type of
comment update (i.e., it can work for both code-indicative
and non-code-indicative updates), while the disadvantage
is that its overall effectiveness is comparatively low [24],
[25] (i.e., only capable for addressing 16% of the total cases).
Panthaplackel et al. [26] also utilized a sequence to represent
code change and train their model to generate a sequence of
edit actions to apply to the comment. Nevertheless, their ap-
proach was only evaluated on Javadoc comments beginning
with @return while in this study we use a dataset which
consists of different types of Javadoc comments. Unlike the
previous two approaches, HebCup [24] is based on a set
of specially-designed heuristics. Since it is a component of
our proposed approach, we briefly recall how it works here.
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Fig. 1: An instance of code-indicative update.

Given a code change, it first finds out code tokens that are
changed. It then uses an alignment technique to identify
the modified sub-token in each changed token. After that,
HebCup constructs token-level replacement pairs, which
enumerate all possible old tokens with their potential new
tokens. Finally, HebCup traverses tokens in the old com-
ment and any of them that matches the old tokens in the re-
placement pairs will be updated with the potential new tokens
in the replacement pairs. Therefore, the output of HebCup is
determined. The advantage of HebCup is that it works quite
effectively (i.e., outperforming CUP to a large extent [24]),
while the disadvantage is that its success requires a pre-
condition that the updated content of the comment can be
explicitly found in the code change (i.e., HebCup can only
generate correct comments for code-indicative updates). It
should be noted that HebCup will make changes to any old
comment once the comment contains tokens that appear in
the code changes. For any instance where there is no com-
mon token between the old comment and the code change,
HebCup outputs the old comment directly. That is to say,
HebCup will also produce a comment even if the instance
is not a code-indicative one. However, such comments are
not identical to the ground truth since the oracle comment
changes are not reflected by the code changes.

It should be noted that there are some other works
that hold the potential to deal with comment updates. For
instance, traditional code summarization techniques [31],
[32] could be applied to directly generate comments for
the updated code although doing so would ignore the code
change information, which is important for guiding com-
ment updates. DRONE [33], the detection and repair tool for
API documentation defects, may also be used to recommend
updates to specific types of old comments despite that its
generality to code comments remains unknown. To the best
of our knowledge, the three studies introduced in the last
paragraph are the only ones that explicitly tackle the JIT
comment update task so far. Therefore, we consider them as
our study subjects.

3 THE STATE-OF-THE-ART PIPELINE

Considering the complementary advantages of heuristic-
based (i.e., HebCup) and deep-learning-based (i.e., CUP)
comment updaters, an intuitive idea is that we can combine
two approaches to achieve better performance on JIT com-
ment update. A straightforward pipeline is to use HebCup
to generate updates first and refer to CUP for those that
cannot be resolved by HebCup. Concretely, if all the tokens
in the old comment do not appear in the code change,

TABLE 1: Performances of the state-of-the-art comment up-
dater.

Approach Accuracy
CUP 15.8%

HebCup 25.6%
HebCup + CUP 25.8%

HebCup will make no update and return the old comment,
and we consider such cases as unresolved by HebCup. This
pipeline can utilize both the effectiveness of HebCup on
dealing with code-indicative updates and the capacity of
CUP on performing non-code-indicative updates and hence
is considered as the state-of-the-art pipeline in this paper.
Note that we determine whether Hebcup has updated the
comment by judging the consistency of the input and output
comments.

In this section, we perform a pre-study experiment
by analyzing the effectiveness and the limitations of the
straightforward pipeline mentioned above to comprehen-
sively understand the state-of-the-art pipeline of JIT com-
ment update.

3.1 Effectiveness
To perform the pre-study experiment, we use the dataset
constructed by Liu et al. [25] and further distilled by Lin et
al. [24], which contains 80,591/8,827/9,204 comment update
instances for training/validation/test. Since the evaluation
results of CUP and HebCup on the test set have already
been provided by Lin et al. [24], we can directly compare
the effectiveness of the proposed pipeline with them.

We adopted the open-source implementations of CUP
and HebCup. CUP was trained and validated following
the original paper [25], and then tested on the test set. As
for comparison, HebCup does not need a training process
and can be directly applied. In this pre-study analysis,
we focused on the Accuracy metric, which assesses the
percentage of the test samples where the correct comments
(i.e., comments identical to those provided by developers)
can be generated. Results are shown in Table 1.

From the results, we note that the accuracy of the state-
of-the-art is only slightly higher than that of HebCup (25.8%
vs. 25.6%). This result indicates that simply combining
HebCup with CUP does not result in significant improve-
ments.

3.2 Limitation
To understand why the state-of-the-art does not outperform
the existing techniques significantly, we manually analyzed
all the 6,830 cases where correct comments are not generated
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TABLE 2: A non-code-indicative instance updated by HebCup.
Code Change:
public static ModuleIdentifier asModuleIdentifier(ModelNode value) {
− return optionalModuleIdentifier(value).Else(null);
+ return optionalModuleIdentifier(value.asString());
}

Old Comment: Returns the value of the node as a module identifier, or
nothing if the node is undefined.
New Comment: Returns the value of the node as a module identifier.
HebCup: Returns the value.asString of the node as a module identifier,
or nothing if the node is undefined.

by the pipeline. We mainly focused on two aspects during
the analysis: 1) if there is any case that can be correctly up-
dated by an individual approach but is incorrectly updated
by the pipeline; and 2) if there is a significant difference
between the effectiveness of the pipeline on code-indicative
and non-code-indicative updates respectively. Our analysis
shows that both the questions are confirmed, and through
in-depth analysis we summarized two key reasons for the
unsatisfactory performance of the state-of-the-art.

First, an instance that can be correctly updated by CUP
may be incorrectly updated by the pipeline, since HebCup
may mistakenly update non-code-indicative instances. Re-
call the workflow of HebCup we have introduced in Sec-
tion 2.2, HebCup will update tokens in the old comment
as long as they are identical to the tokens changed in
the code change. However, in non-code-indicative updates,
such matching relations may also exist but we do not need
to update the corresponding comment tokens. Under such
conditions, HebCup will perform incorrect modifications
and these instances will not be sent to CUP later, leading
to the generation of incorrect comment updates. Table 2
shows a case from the test set. In this non-code-indicative
instance, developers update a return statement by changing
value to value.asString() and remove the invocation
of Else(null). The deletion of Else(null) significantly
changes the semantic of this method. Therefore, developers
remove the description about this method invocation (e.g., ,
“or nothing if the node is undefined”) in the corresponding
comment. HebCup, on the contrary, constructs the token re-
placement pair value → value.asString after alignment.
It thus mistakenly updates the comment of this non-code-
indicative instance, as shown in the table. We also note that
this example can be correctly handled by CUP. Therefore,
this example shows that by simply using HebCup first
and CUP later, the straightforward pipeline may prevent
some instances being correctly updated by CUP. Totally, this
is the case that happens for 136 instances in the test set,
which is a non-negligible number considering that CUP can
only correctly update 1,456 instances. The root cause of this
limitation is that we do not know whether an instance is
a code-indicative or not without the ground truth. If there
is a perfect classifier which can provide such information,
this limitation can be easily mitigated. Therefore, our first
finding suggests that to effectively combine heuristic-based
and deep-learning-based approaches, we need to precisely
predict whether a comment update is a code-indicative one.

Second, the effectiveness of the pipeline on code-
indicative updates is significantly better than that on non-
code-indicative ones, since CUP is generally ineffective at
dealing with non-code-indicative updates, which has al-
ready been observed and analyzed by Lin et al. [24]. Results

TABLE 3: Features investigated in our empirical study.
Dim Feature Definition

Complexity

NMS Number of modified sub-tokens
NMT† Number of modified tokens
NML Number of modified lines
NMC Number of modified chunks

NNTRP Number of non-redundant token
replacement pairs

NNSRP Number of non-redundant sub-token
replacement pairs

Involvement
NTOD Number of tokens which occur in the old

comment but disappear after the code change

NSOD Number of sub-tokens which occur in the old
comment but disappear after the code change

Context
TS The type of the statement

where the changed token locates

TE The type of the expression
where the changed token locates

† NMT in this paper denotes Number of Modified Tokens. It has no
correlation with the abbreviation of neural machine translation.

reveal that the pipeline can only generate correct updates
for 94 out of the 6,234 non-code-indicative updates in the
test set with an accuracy of 1.7%. On the contrary, its
accuracy on code-indicative updates is 45.9% (1,362/2,970).
Therefore, our second finding suggests that to perform
the JIT comment update effectively, we need to improve
the effectiveness of the approaches on non-code-indicative
updates.

4 EMPIRICAL STUDY

Through our pre-study analysis, we identified the main
challenges that need to be addressed by an effective com-
ment updater are (1) accurately determining if a comment
update is a code-indicative one, and (2) effectively infer-
ring comment updates for non-code-indicative ones. In this
section, we provide the empirical evidence to support the
design strategy of our approach for addressing such chal-
lenges.

4.1 Discriminative Features Between Code-Indicative
and Non-Code-Indicative Updates

4.1.1 Studied features
In this part, we aim to investigate the question which code
change features can be utilized to distinguish code-indicative
and non-code-indicative updates. To achieve so, we analyzed
comment update instances to see if the two types of updates
tend to possess different values with respect to any feature
of the corresponding code change. We analyzed the features
of code change from three dimensions, which are code change
complexity indicating the complexity of the code change, code
change involvement indicating the extent to which the modi-
fied contents of the code change occur in the old comment,
and code change context indicating the program context of
the changed code. Table 3 summarizes the ten features that
we investigated. Please note that all the features in this
paper are quantitatively analyzed for the first time under
the comment update context.

The reasons we investigated complexity features of the
code change are (1) the previous study [24] has shown
that code-indicative updates are more prone to appear in
simple comment updates (e.g., the update whose changed
content is only related to one token) and (2) the complexity
of a comment update may be positively correlated with
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the complexity of the associating code change. Therefore,
simple code changes may tend to result in code-indicative
updates. The first four features measure how many sub-
tokens are changed (NMS), how many tokens are changed
(NMT), how many code lines are changed (NML), and how
many code chunks are changed (NMC), respectively. Note
that a changed code chunk is a sequence of code statements
that are continuously changed. These features measure the
code change complexity from different granularities and are
thus widely used in the previous studies [34], [35], [36],
[37], [38], [39], [40]. The fifth and sixth features focus on the
alignment results, measuring the number of non-redundant
token replacement pairs (NNTRP) and the number of non-
redundant sub-token replacement pairs (NNSRP), respec-
tively. The intuition behind it is that purely relying on
NMT and NMS may not reflect the code change complexity
comprehensively. For instance, if the token A is changed
into B 10 times in a code change, the NMT will be 10.
However, the code change is only related to the replacement
of one token. Under this situation, the NNTRP will only
be 1, therefore, reflecting the code change complexity from
another perspective.

Two features are designed for the code change involvement
dimension: number of tokens which occur in the old comment
but disappear after the code change (NTOD) and number of sub-
tokens which occur in the old comment but disappear after the code
change (NSOD). Here, we refer to disappeared as the token
(or sub-token) occurs in the old code but does not occur
in the new code (i.e., it can be both removed and replaced
during the code change). The intuition for investigating
these features is that if the disappeared token is within the old
comment, it is likely that the comment should be updated
based on the code change content of this token and the
probability increases when the number of this type of tokens
increases (the same for sub-token).

Regarding the code change context dimension, we investi-
gated two features for each changed code token, which are
the type of the statement (TS) where it locates (e.g., If state-
ment and Return statement) and the type of the expression
(TE) where it locates (e.g., Infix expression and Assignment).
Here, we refer to changed as updated, inserted, or deleted.
The intuition is that tokens under diverse program contexts
may contribute unequally to the program comment, in-
spired by previous works on program comprehension [29],
[41]. Therefore, we postulated that the comment is more
likely to be updated according to the modifications of code
tokens under specific program contexts.

4.1.2 Empirical analysis
Liu et al. [25] created a large-scale and open-sourced dataset
to evaluate the performance of CUP. Recently, Lin et al. [24]
removed the noisy data (i.e., instances where the comment
updates only optimize the language expression while the
semantics remain identical, such as typo fixings) in this
dataset. Therefore, we chose to reuse the cleaned dataset in
this study. Specifically, the cleaned dataset contains 80,591,
8,827, and 9,204 method-comment co-change samples for
training, validation, and test sets, respectively. In the fol-
lowing, we performed an empirical study on the training
set to confirm if our considered features can help distinguish
code-indicative and non-code-indicative updates. It should

Fig. 2: Value distributions of the eight features.

TABLE 4: P-values and Cliff’s delta for the eight features in
the complexity and involvement dimensions comparing code-
indicative and non-code-indicative updates on the training set.

Feature P-value Cliff’s delta
NMS < 0.001 -0.37 (Med)
NMT < 0.001 -0.03 (Negligible)
NML < 0.001 -0.07 (Negligible)
NMC < 0.001 -0.05 (Negligible)

NNTRP < 0.001 -0.08 (Negligible)
NNSRP < 0.001 -0.26 (Small)
NTOD < 0.001 0.45 (Med)
NSOD < 0.001 0.54 (Large)

be noted that the label of whether an instance is code-
indicative or not has been already provided by Lin et al.
[24].

Code change complexity & Code change involvement.
The distributions of the values of the eight features con-
cerning code change complexity and code change involvement
are illustrated in Fig. 7. From the results, the distributions
of values of all the features differ across different types
of updates. For instance, for the NMS, the median value
of non-code-indicative updates is 17, significantly higher
than that of code-indicative updates which is 6. For another
four features (i.e., NMT, NML, NMC, and NNTRP), while
the two types of updates possess identical median values,
the average values of non-code-indicative updates are still
higher than those of code-indicative ones to a non-negligible
extent (e.g., 1.86 vs. 1.65 with respect to NMC). As for the
two code change involvement features (i.e., NTOD and NSOD),
it is obvious that the average values of code-indicative
updates are higher than those of non-code-indicative ones.

For each feature, we further performed a one-sided
Mann-Whitney U-Test [42] to analyze the statistical signif-
icance of the difference between code-indicative and non-
code-indicative updates. We also computed Cliff’s delta [43],
a non-parametric effect size measure that can evaluate the
amount of difference between two variables. 1 Results are
shown in Table 4, Besides, the distribution differences are
all statistically significant (i.e., p-value < 0.001) for the
eight features, indicating that the features are generally
effective in differentiating code-indicative updates from
non-code-indicative ones. With respect to the Cliff’s delta,
four features have negligible effect sizes (i.e., NMT, NML,

1. Cliff defines a delta of less than 0.147, between 0.147 and 0.33,
between 0.33 and 0.474 and above 0.474 as negligible, small, medium,
large effect size, respectively.
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NMC, and NNTRP), one feature has a small effect size
(i.e., NNSRP), two features have medium effect sizes (i.e.,
NMS and NTOD), and one feature has large effect size (i.e.,
NSOD). Features with negligible effect sizes cannot be sim-
ply considered as worthless for determining code-indicative
updates. They may be weak indicators but combining these
features with features from other dimensions may improve
the performance of our classifier (as we will illustrate in
Section 6.4).

Code change context. We investigated whether the con-
texts under which the code changes tend to trigger code-
indicative updates are different from those contexts tending
to trigger non-code-indicative updates. Table 5 illustrates
the top-5 contexts where the code changes of code-indicative
and non-code-indicative updates happen and their corre-
sponding proportions. All expression and statement types
are parsed by the javalang package 2 and we use Method-
Declaration to denote the method signature. A full list of all
involved expression and statement types can be found at
the Eclipse official documentation. 3

Totally, we found 607,906 changed code tokens from all
the instances, where 129,258 and 478,648 come from code-
indicative and non-code-indicative updates, respectively.
Regarding the expression type, the distributions of contexts
of changed code tokens for code-indicative and non-code-
indicative updates tend to be similar. For instance, for both
update types, the majority occurs in the Name expression,
occupying around 85% of the total number. The proportion
differences of other expression types are also insignificant.
We also calculated the proportion of the tokens in the Name
expression to all the code tokens in the dataset, which
turned out to be around 80% (1,807,026/2,333,758). This
shows that the skewed data (i.e., 85%) does not necessarily
mean that code changes tend to appear in the Name expres-
sion.

When it comes to the statement type, the differences
between the two types of updates become apparent. For
example, 26.3% changed code tokens for code-indicative
updates occur in MethodDeclaration, while this proportion
for non-code-indicative updates is 12.4%. Such a result indi-
cates that if a token under the MethodDeclaration context
is changed, the comment update is more likely to be a code-
indicative one.

Correlations and importance of features. Following Fan
et al. ’s study [44], we investigate the possible associations
between features and apply feature selection, aiming to
remove correlated features that might lead to poor models
[45]. Note that we only investigate the eight features from
the code change complexity and involvement dimensions,
because the features in the code change context are the state-
ment and expression types rather than numerical features.
Step 1: Correlation Analysis. To reduce the bias of the
model and avoid the correlated features, we first utilize the
variable hierarchical cluster analysis to look for the corre-
lations among features, which is implemented as varclus
function in the R package Hmisc. The varclus constructs a
hierarchical overview of the features and groups the corre-
lated features into sub-hierarchies. Following the previous

2. https://github.com/c2nes/javalang
3. https://help.eclipse.org/latest/index.jsp

study [46], we consider the features are correlated if the
correlations of features in the sub-hierarchy are above 0.7.
The results show that none of the features are strongly
correlated. The most correlated features are NML and NMT
with a correlation of 0.64, which is still lower than 0.7.
Step 2: Redundancy Analysis. After checking the collinear-
ity among the features by correlation analysis, we then
apply redundancy analysis by the redun function in the
R package Hmisc to determine how well each feature can
be predicted from the remaining features. Through the
redundancy analysis, we find that none of the eight features
are redundant.
Step 3: Feature Importance. We investigate the contribution
of each feature group by performing an ablation study
where we removed features in one group at a time and
retrained our classifier based on the rest features and re-
assessed its effectiveness. Note that from the observation
of the previous steps, no features are strongly correlated or
redundant, so there is only one feature per group and we
remove one feature at a time. The result shows that the three
most important features ranked by the degradation of F1-
score are NSOD, NMS, and NNTRP. The detailed analyses
of each feature are in Section 6.4.
Recall that we totally investigated ten features for the
code change. Code-indicative and non-code-indicative updates
demonstrate distinctions on nearly all of them, except for the
expression type context.

4.2 Features that can be Leveraged to Infer Non-Code-
Indicative Updates

4.2.1 Weakness of current technique
In this part, we aim to investigate the question of how to infer
non-code-indicative updates better. To achieve this goal, we first
need to understand the weakness of the existing approach
on these updates. We thus analyzed the performance of CUP
on non-code-indicative updates within the aforementioned
test set. Such data is already provided by the previous
study [24]. Note that this investigation is made via man-
ually comparing the predicted comments from CUP and
the oracle comments. Two authors independently observed
the symptoms of CUP’s failures, and they then reached a
consensus about the representative cases via a discussion.
The workload of each participated author is 6,234 cases.

Through our manual analysis, we found the most sig-
nificant factor that limits the performance of CUP on the
non-code-indicative updates is that CUP tends to perform
updates at incorrect locations (i.e., updating tokens that do
not need to be updated). Specifically, among all the 6,234
non-code-indicative updates in the test set, there are a total
of 8,201 tokens that need to be updated according to the
oracle updates from developers. CUP only modifies 1,485 of
them while simultaneously updates 4,708 tokens that do not
need to be updated.

We observed that such inaccuracy of locating where to
perform the update leads to the ineffectiveness of CUP
on non-code-indicative updates. An example is given in
Table 6. The instance is a non-code-indicative update since
the updated token, milliseconds, does not appear in the
code. CUP does capture the semantic meaning of the

https://github.com/c2nes/javalang
https://help.eclipse.org/latest/index.jsp
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TABLE 5: The distributions of the contexts of code changes from code-indicative & non-code-indicative updates.
Code-Indicative Non-Code-Indicative

Type Quantity % Type Quantity %

Ex
pr

es
si

on

Name 111,071 85.93 Name 400,628 83.7
InfixExpression 5,829 4.51 InfixExpression 25,894 5.4
StringLiteral 5,402 4.18 StringLiteral 20,677 4.3
NumberLiteral 2,817 2.18 NumberLiteral 11,870 2.5
Assignment 1,951 1.51 Assignment 8,663 1.8
Others 2,188 1.69 Others 10,916 2.3
Total 129,258 100.0 Total 478,648 100.0

St
at

em
en

t

StatementExpression 38,245 29.6 StatementExpression 140,060 29.3
MethodDeclaration 33,978 26.3 LocalVariableDeclaration 117,076 24.5
LocalVariableDeclaration 22,765 17.6 MethodDeclaration 59,295 12.4
ReturnStatement 16,226 12.6 IfStatement 60,668 12.7
IfStatement 10,207 7.9 ReturnStatement 56,300 11.8
Others 7,837 6.1 Others 45,249 9.4
Total 129,258 100.0 Total 478,648 100.0

TABLE 6: An incorrect comment update from CUP.
Code Change:
− public static Instant getInstantMillisOffsetFromNow(long offsetIn-
Millis) {
+ public static Instant getInstantHoursOffsetFromNow(long offset-
InHours) {
− return Instant.now().plus(Duration.ofMillis());
+ return Instant.now().plus(Duration.ofHours());
}

Old Comment: Returns an java.time.Instant object that is offset by a
number of milliseconds from now.
New Comment: Returns an java.time.Instant object that is offset by a
number of hours from now.
CUP: Returns an java.time.Hours object that is offset by a number of
milliseconds from now.

code change since it tries to update the comment by in-
cluding the newly-added sub-token from the code change
(i.e., , Hours). Nonetheless, without realizing where to
perform the change, it updates a wrong comment token
(java.time.Instant→ java.time.Hours) and thus leads to this
failure. Such an example demonstrates that comparing with
generating the content that is used to update the comment,
predicting the location where to perform the update is a
more difficult problem for CUP. We, therefore, gain the
observation:

The current technique (i.e., CUP) is mainly challenged by
predicting the comment tokens that need to be changed for non-
code-indicative updates.

4.2.2 Our observation

From the above analysis, we further investigated whether
there is any feature that can help predict the comment tokens
to be updated. Fig. 3 presents two instances with similar
code changes and comment update locations. In Fig. 3a,
we demonstrate the code change, the comment update, and
the program structural context of the changed code, all of
which are from the aforementioned instance in Table 6.
In Fig. 3b, we give the identical information for another
instance from the training set. To illustrate the program
structure information, we adopt a widely-used concept, the
Abstract Syntax Tree (AST) path [27], [28], which has been
introduced in Section 2.1. In such a path, a code token is
connected with the root node by a number of its ancestor
nodes in the AST. For instance, in the red dotted path of

Fig. 3a, the node ReturnStmt is connected with the root node
MethodDeclaration through its parent node Block.

From this example, we gain the following observations.
First, the changed codes in these two examples are under a
similar program structural context: both are under a method
call expression within a return statement. Their AST paths
can also reflect this: as illustrated by the red dotted lines, all
the non-leaf nodes in the two paths are identical. Second,
the code change types (e.g., addition or deletion) of the two
instances are the same: both of them update one code token
to another. Third, the comment update locations of the two
instances are similar, both in a noun phrase after the prepo-
sition of. Therefore, it inspires us that the same operation on
code tokens under similar structural contexts may lead to similar
modification locations in the comments. Current techniques,
neither CUP nor the one proposed by Panthaplackel et al.
[26], take into consideration the structural context of code
change since they represent code change only by token
sequence. They thus miss the opportunity to predict where
to perform the comment update precisely. Motivated by
our observation, we propose to utilize AST path informa-
tion for code change representation. Thus, we can alleviate
this problem significantly, and also use pointer network to
implicitly decide the comment locations requiring update
(cf. Section 5.2.2). In our evaluation, by learning from the
training instances like the one shown in Fig. 3b, Toper
successfully captures the structural features of this code
change and correctly updates the comment of the instance
in Fig. 3a, while CUP fails to do so.

The structural context of the code change couple with the code
change type may help determine the location of the correspond-
ing comment update.

5 METHODOLOGY

In this section, we introduce our Toper in detail. The overall
framework of our two-phase approach is shown in Fig. 4.
1) Given a code change plus with the old comment of the

code, Toper first extracts several features of the code
change and then sends the features into a classifier which
will automatically predict whether the input is a code-
indicative update.
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(a) An instance from our test set. (b) An instance from our training set.

Fig. 3: Two instances with similar code changes and comment update locations.

Fig. 4: Overview of our approach.

2) If the input is identified as a code-indicative update,
Toper directly reuses HebCup for comment update.

3) Otherwise, Toper utilizes our newly proposed model,
which is specially designed for non-code-indicative up-
dates.

4) If HebCup cannot generate any update, we switch to the
newly proposed model to update the comment.

5.1 Key Component#1: Code-Indicative Update Classi-
fier
For the classifier, we use the first nine features in Table 3,
which have been identified as helpful in differentiating dif-
ferent types of updates in Section 4.1. Each of the first eight
features (i.e., NMS, NMT, NML, NMC, NNTRP, NNSRP,
NTOD, and NSOD, respectively) is represented as an inte-
ger. As for TS, in case multiple code tokens are involved in a
code change, we empirically decide to include the TS feature
for the first three changed tokens. We performed a pre-study
experiment to consider one, three, and five tokens separately
and trained/tested the classifier on the training/testing set
respectively. We found that three is the best choice. Our
statistics show that for comment updates in the training set,
the median value of changed tokens in the code change is 2
and only less than 40% of them change more than 3 tokens.
We thus consider taking 3 tokens into consideration can
capture enough context information. Also, such a number
can avoid that many dimensions in the feature vector are
related to this feature, under which condition the classifier
may be excessively affected by this single feature. If the
number of changed tokens is less than three, we pad the
corresponding dimensions with zero. Therefore, the last
three dimensions in the feature vector are used to denote
the code change context, leading to the whole feature vector
being 11-dimensional.

We experimented with four widely-used machine learn-
ing models: Decision Table [47], Naive Bayes [48], Logistic

TABLE 7: Evaluation of classification performance on four ML
classifiers.

Classifier Precision Recall Accuracy F-score AUC
RandomForest 94.7 78.7 82.3 86.0 91.8
DecisionTree 91.1 79.9 81.1 85.2 85.3

LogisticRegression 94.7 68.7 76.2 79.6 86.3
NaiveBayes 89.1 29.9 50.0 44.8 80.3

Regression [49], and Random Forest [50]. As shown in
Table 7, the optimal results were obtained with Random
Forest. Indeed, it has been shown to perform well in various
classification tasks in software engineering [51], [52], [53],
[54].

5.2 Key Component#2: Non-Code-Indicative Comment
Updater

Fig. 5 illustrates the overall framework of our updater,
which follows the encoder-decoder paradigm. In the encod-
ing step, given a code change with its old comment, we
separately embed the code change and the comment and
then concatenate these two vectors for the following step. In
the decoding step, we generate the sub-tokens of the new
comment one by one. Details of our updater are introduced
below.

5.2.1 Encoder
Code change embedding. The basic ideas for embedding
a code change are (1) the structure information should
be taken into consideration and (2) we not only need to
focus on the changed part but also need to include the
unchanged part since it provides context information that
can help understand which parts of the old comment should
be unchanged [25], [26]. In this study, we rely on the AST
path technique due to its convenience to combine code
change information (through the code change operators
assigned to each AST path) with program structure in-
formation (through the node sequence in each AST path).
Extracting AST paths only requires the code is syntactically
correct. In contrast, more advanced techniques that rely on
the dependency information in code [55] usually require
compilable code as input, are more heavyweight and costly,
and could be explored in future, as will be discussed later
in Section 7.2.

To extract the structure information, we first generate the
ASTs of the old (AO) and new methods (AN ) using a widely-
adopted tool, Gumtree [56]. We then calculate the token
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Fig. 5: The overall workflow of our AST-path-based comment updater.

level alignment result as (< t1, t
′
1, o1 >, . . . < tn, t

′
n, on >).

For each element in the sequence,

• if the operation (oi) is keep or delete, we extract the AST
path of ti from AO and assign the corresponding opera-
tion to construct the operation path;

• if the operation is insert, we extract the AST path from AN

for constructing the operation path;
• if the operation (oi) is update, we extract the AST path of ti

fromAO and then combine ti, the path, and t′i to construct
the operation path.

It should be noted here that some tokens in the align-
ment results cannot be matched to the leaf nodes in the AST.
For example, if a code change adds a conditional block, then
the added token if can only be matched to an interior node
IfStatement because there is no leaf node related to if. We
decide to ignore such nodes since their semantic meanings
can be reflected by the AST path. Considering the above-
mentioned example, the AST path of each added token in
the conditional block must contain the node IfStatement.
Therefore, we argue that focusing on the changes of leaf
nodes is reasonable.

The AST path extraction is based on an off-the-shelf
AST path collector [57] (i.e., PathMiner). Then, the op-
eration paths whose change operators are keep (OPct =
op1, . . . , opx) are served as context while the remain-
ing paths (OPcc = op′1, . . . , op

′
y) are used to repre-

sent the code change content. Consider Fig. 1 as an
example. In the code change, the token version is
changed to updateVersion, which results in an opera-
tion path op′1 = 〈version, p, updateV ersion〉 where p =
〈MethodDeclaration → Block → ReturnStmt →
FieldAccessExpr〉. Because version is the only modified
token in the code change, the change operators assigned to
other tokens in the method are all keep. Therefore, the OPcc

in this case contains only one operation path (i.e., the op′1).
We next introduce how to embed each operation path

and how to integrate them to represent the bag of paths.
Operation path embedding. Given a set of k operation paths
{op1,. . . ,opk}, the model learns a vector representation Vopi

for each path opi = 〈 ti, pi, oi 〉 where pi = {ni1, ni2,. . . ,nili}
is the corresponding AST path, ti is the code token and oi is
the change operator. To that end, we first leverage a matrix
to map each sub-token (after splitting ti) into vectors and
sum the sub-token vectors as the representation of the full
token:

Vti =
∑

stj∈Ti

Et(stj)

where Et(∗) is the learned embedding matrix, Ti is the
sub-token sequence of code token ti. The change operator
of each operation path is embedded with another learned
matrix (i.e., Eo(∗)):

Voi = Eo(oi)

The AST path of each operation path is composed of
several AST nodes. We also represent each node ni using
a learned embedding matrix Ep(∗) and encode the entire
sequence with the final state of the bi-directional LSTM
neural networks:

Vpi = LSTM(Ep(n1), Ep(n2), . . . , Ep(nl))

where Vpi represents the vector representation of an AST
path. LSTM denotes the bi-directional LSTM neural net-
works. At last, the concatenation of [Vti ;Vpi ;Voi ] is used to
represent this operation path (i.e., Vopi ).
Integration with attention network. In this step, given the
representations of a bag of operation paths, we pass them
through a fully-connected layer and an attention network
sequentially for generating the representation of the whole
bag of paths (namely VOPct

). The main job of the attention
mechanism is to compute a scalar weight for each path [28].

Formally, given the representations of operation paths in
a bag { Vop1 , Vop2 , . . . , Vopk

}, the process can be formulated
as:

zi = tanh(Wf × Vopi
)

ai =
exp(zTi · a)∑n
j=1 exp(z

T
j · a)

VOPct
=

k∑
i=1

ai · zi

where Wf is the weight matrix of the fully-connected layer,
a is the attention vector which is initialized randomly and
learned simultaneously with the network, ai is the attention
weight of zi, which is computed as the normalized inner
product between zi and the global attention vector a, and
VOPct

is a linear combination of vectors { z1, z2, . . . , zk }
factored by their attention weights to represent the whole
bag of paths. The attention here, which determines the
weights of different paths, can be generally considered as
a pooling method. It is widely-used in tree-based code
representation [27], [58].

Note that in the above content, we use the bag of
context operation paths as an example for the ease of our
presentation. The process for integrating the bag of code
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change operation paths is similar which results in VOPcc
.

We then concatenate VOPct
and VOPcc

as the embedding of
the code change VCC .
Old comment embedding. Given an old comment, we parse
it into a sequence of sub-tokens (st1, . . . , stx) and then
represent it as the output of a bi-directional GRU:

VCM = GRU(Ec(st1), Ec(st2), . . . , Ec(stx))

where Ec(∗) is another learned embedding matrix for sub-
tokens in comments. Here we use GRU instead of LSTM
because our experiments show that using GRU to model
old comments can achieve better performance.

5.2.2 Decoder
As for the decoder part, we use the same model as Liu et
al. [25], the pointer generator [59], which generates the sub-
tokens of the new comment sequentially. This neural net-
work is capable of alleviating the out-of-vocabulary (OOV)
problem by copying contents from the input sequence.
Another possible strategy to deal with the OOV problem
would be to use Byte Pair Encoding (BPE) [60]. This study
mainly focuses on helping the deep-learning-based and the
heuristic-based comment updaters complement each other,
so we chose to keep in line with the prior work [25], [26] and
used the pointer generator. Investigating the effectiveness of
BPE on JIT comment update is saved for future work.

We briefly introduce the pointer generator here and
readers can refer to [25], [59] for details.

Upon generating VCC and VCM , we concatenate them
and send the resulted vector to our decoder. For each
predicted sub-token, the decoder needs to decide if it is
generated from a fixed vocabulary or copied from the old
comment. Intuitively, if the former holds, it means one sub-
token from the old comment should be changed. Therefore,
the token to which this old sub-token belongs represents the
location result (cf. Section 4.2.1) of this instance. To achieve
its goal, the decoder first generates an j-dimensional vector
via the attention mechanism.

VDE = tanh(Wattn[VOPct
;VOPcc

;VCM ])

The VDE can be seen as what has been learned from the
code change and old comment. We utilize it to produce the
probability of generating a sub-token from the vocabulary.

Pgen = softmax(VDEWgen)

where Wgen denotes a learnable matrix of the decoder with
size j × Kvocab. j is the size of VDE , and Kvocab is the
vocabulary size. Pgen is the probability distribution over all
sub-tokens in the vocabulary.

Similarly, with the help of another matrix Wcopy , the
decoder calculates the probability distribution of copying
sub-tokens from the current old comment:

at = softmax(VDEWcopy)

where Wcopy is a learnable matrix with size j ×Kcm. Kcm,
the length of the old comment after padding, is empirically
set to 30. Our statistic result shows that around 98% of the
comments in the training set have less than 30 sub-tokens.
Therefore, the decoder can capture the vast majority of
semantic information of comments with Kcm as 30. Finally,

the probability of outputting the sub-token w is calculated
as:

P (w) = Pgen(w) +
∑

i:wi=w

ati

where the first part denotes the probability of generating w
from the fixed vocabulary, while the second part denotes the
probability of copying w from the old comment. Note that
if w does not appear in the old comment, then

∑
i:wi=w a

t
i

equals to zero.

5.2.3 Loss calculation
During training, the overall loss of the predicted comment
(comprised of a sub-token sequence) is calculated as the
average loss at each decoding step, which is the negative
log likelihood of the oracle sub-token wo

t of that step:

loss =
1

T

T∑
t=0

(−logP (wo
t ))

5.3 Rollback Strategy
Our classifier may make incorrect predictions, e.g., identify-
ing a non-code-indicative update as code-indicative. Under
such a situation, HebCup may find no matched token for
the update when traversing the tokens in the old comment
and thus cannot perform any update (cf. the workflow of
HebCup in Section 2.2). We use a rollback strategy to cope
with the inaccuracy of the classifier: if the above situation
happens, we send the instance to our non-code-indicative
comment updater to generate the new comment.

6 EVALUATION

In this section, we introduce the experiment designs and re-
sults. Specifically, we aim to address the following research
questions:
RQ1: How effective is Toper for JIT comment update?
RQ2: Can our classifier accurately determine if an instance
is a code-indicative update?
RQ3: What is the performance of our specially designed
model on non-code-indicative updates?
RQ4: To what extent do the two key components contribute
to the overall effectiveness of Toper?

6.1 Experiment Settings
RQ1. Originally, our dataset is split into training, validation,
and test sets. In this step, we adopted the Random Forest
implementation and the default hyper-parameters provided
by sklearn [61] to implement our classifier. Our classifier is
trained on all the instances from the training and validation
set, aiming to use more data for training.

We then trained and tuned our AST-path-based com-
ment updater on the non-code-indicative instances from
training and validation sets, respectively. For the encoder
in our AST-path-based updater, we tuned the hyper-
parameters with some widely-used values. Specifically, the
word embedding dimension (64, 128, 192, 256) and the
hidden size of GRU (128, 192, 256, 384) were tuned with
all possible combinations of the listed values on the valida-
tion set. Eventually,we adopted the 128-dimensional word
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embeddings for the code tokens, comment tokens, and AST
nodes, after the tuning process. The two GRUs in our model
are both with 256 dimensions and one layer only. For the
hyper-parameters related to the AST paths, we empirically
collect up to 200 paths for each method with no more than
nine non-leaf nodes in each path, following the previous
study [27]. Other hyper-parameters of our updater and the
hyper-parameters of CUP are reused from the previous
study [25]. The sizes of the vocabularies of code tokens and
comment tokens are 22,635 and 26,126, respectively. Note
that both vocabularies only keep the tokens appearing more
than once.

After preparing the two key components of Toper, we
evaluated the effectiveness of Toper on all the instances
from the test set. Beyond comparing with CUP and HebCup,
we also compared with the state-of-the-art comment update
pipeline introduced in Section 3 to demonstrate the perfor-
mance enhancement of Toper.
RQ2 & RQ3. These two RQs separately dissect the ef-
fectiveness of the key components of Toper. To answer
them, we directly reused the trained models we have in-
troduced above. Note that when answering RQ3, we also
retrained and evaluated CUP under the same settings (i.e.,
only considering non-code-indicative instances from our
dataset). Such a comparison can demonstrate the rationale
of including the structure contexts provided by AST paths.
RQ4. In this RQ, we investigate the impact of the two key
components in our approach, the classifier and the AST-
path-based comment updater, on the effectiveness of Toper.
To study the former, we designed such a pipeline where we
send all instances to HebCup and then use the AST-path-
based comment updater trained on non-code-indicative in-
stances to update those for which HebCup does not work.
To study the latter, we designed another pipeline where we
first predict comment update type for each instance with the
classifier and then use HebCup and CUP to deal with code-
indicative and non-code-indicative updates separately.

6.2 Metrics

Following previous studies [24], [25], our evaluations of
RQ1, RQ3, and RQ4 (those related to comment updater)
focus on the metrics listed below:

• Accuracy: the percentage of the test samples where correct
comments are generated at Top-1. Correct comments refer to
those that are identical to the ground-truth (i.e., written
by developers).

• AED: the average word-level Levenshtein distance re-
quired to change the predicted results from Toper into
the ground-truth. This value indicates the distance be-
tween the generated comments and the ground-truth
comments: the smaller, the better.

• RED: the average of the quotient of word-level Leven-
shtein distance required to change the predicted results
from Toper into the ground-truth and word-level Leven-
shtein distance required to change the original comment
into the ground-truth. This value indicates to what extent
an approach can release developers’ burden from manual
updates: the smaller, the better.

Formally, the word-level Levenshtein edit distance (de-
noted as e d), AED and RED are calculated as follows:

e d =



|a| if |b| = 0,

|b| if |a| = 0,

e d(tail(a), tail(b)) ifa[0] = b[0],

1 +min


e d(tail(a), b)

e d(a, tail(b))

e d(tail(a), tail(b))

otherwise

where |x| is the length of the list x, tail(x) refers to a sub-list
of x that removes the first element of x, and x[0] denotes the
first element of the list x.

AED =
1

N

N∑
n=1

e d(ŷ(n), y(n))

RED =
1

N

N∑
n=1

e d(ŷ(n), y(n))

e d(x(n), y(n))

where N is the number of instances in a test set, ŷ(n) refers
to the comment generated for the nth instance, y(n) refers
to the comment written by developers for the nth instance
(considered as the ground-truth), and x(n) refers to the
comment before update of the nth instance.

Note that when calculating the word-level Levenshtein
distance required to change the predicted results into the
ground-truth, previous studies [24], [25] take into consider-
ation the special token “<con>” used to connect subtokens
of compound words, which may bring bias to the final
results. In this work, we ignored this token when evaluating.
Therefore, the AED and RED values of HebCup and CUP
listed in this paper will be slightly different from their
previously reported ones.

To answer RQ2, we measured the precision, recall, accu-
racy, F-score, and AUC, which are widely used in assessing
predictive models [44], [51], [62], [63].

6.3 RQ1: Effectiveness of Toper

The effectiveness of Toper and the baseline approaches are
listed in Table 8. We note that our Toper not only out-
performs existing approaches (e.g., CUP and HebCup) but
also performs better than the state-of-the-art comment up-
date pipeline. Specifically, Toper achieves an accuracy that
exceeds 30%, outperforming the state-of-the-art pipeline
(25.8%) by around 20%. Such a value is also higher than
those of the two existing approaches (HebCup and CUP),
which are 25.6% and 15.8%, respectively. When it comes to
AED and RED, Toper nearly outperforms all approaches.
For instance, the RED value of Toper is 0.76 while those of
other approaches are all higher than 0.8. This value indicates
that when changing the original comment into the correct
updated comment, Toper can help developers modify a
quarter less comment tokens. The only exception happens
when comparing it with HebCup in terms of AED. This is
because HebCup does not perform any update when no
contents from the changed code and old comment can be
matched while updating this type of instance is still chal-
lenging for current techniques (we will discuss this point
in detail later in Section 7.2). Being that said, Toper’s RED
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TABLE 8: Performances of Toper and baselines on the test set.
Approach Accuracy AED RED

CUP 15.8% 3.02 0.94
HebCup 25.6% 2.53 0.84

HebCup + CUP 25.8% 2.76 0.88
Toper 30.1% 2.55 0.76

value (which can be regarded as a normalization of AED) is
still lower than that of HebCup (0.76 vs 0.84), demonstrat-
ing the effectiveness of our approach. We also conducted
Wilcoxon signed-rank tests [64] where we compared the
achieved AED and RED values of Toper on each individual
instance against those achieved by the baselines, and results
show that the improvements achieved by Toper are all
significant except for comparing against HebCup on AED.
Specifically, when comparing the AED values of Toper with
those of HebCup, the p-value is 0.03; while the p-values are
all less than 0.001 among other comparison results.

Our Toper improves the state-of-the-art by around 20% con-
cerning the number of generated correct comments. The RED
value of Toper is also systematically better than those of the
existing approaches.

6.4 RQ2: Performance of the Classifier
The performance of the classifier is presented in Table 9.
According to the correlation analysis and redundancy anal-
ysis presented in Section 4.1, there are no strong correlations
among the features. Thus, to dissect the contribution of
each included feature, we also performed an ablation study
where we removed one feature at a time and re-trained
our classifier based on the rest features and re-assessed
its effectiveness. Please note that in this RQ, our main
aim is to show that every feature utilized by our classifier
is reasonable and beneficial. Consequently, we dissect the
contribution from each individual feature although there
may have weak associations between features(as we have
analyzed in Section 4.1).

From the results, our classifier generally works well,
with an accuracy exceeding 80% and an F-score of 86%.
We also note that each included feature contributes to
the overall performance, more or less. The feature NSOD
contributes more significantly than others, without which
the accuracy will drop from 82.3% to 73.6% (a decrease of
10.6%), the F-score will drop from 86.0% to 78.1% (a decrease
of 9.2%), and the AUC will drop from 91.8% to 84% (a
decrease of 8.5%). This is consistent with our Cliff’s delta
result which shows that this feature has large effect size.
The most subtle contribution is from the statement type
context information, without which the accuracy, F-score,
and AUC of our classifier will only decline 0.7%, 0.8%, and
0.7%, respectively. Besides, we note that all the four features
(NMT, NML, NMC, and NNTPR) whose effect sizes are
identified as negligible through the Cliff’s delta results make
non-negligible contributions. For instance, without NNTPR,
the F-score of the classifier will drop from 86.0% to 84.2%,
a decrease of 1.8%. The experimental results indicate that
the features selected through our empirical analysis are all
reasonable. Furthermore, we performed another experiment
where the feature TE is involved. Specifically, we considered
the TE feature for the first three changed tokens (such a

TABLE 9: Performances of the variants of our classifier on
differentiating two types of updates (in %).

Features Precision Recall Accuracy F-score AUC
-NSOD 89.4 69.3 73.6 78.1 84.0
-NMS 93.7 76.3 80.5 84.1 89.9

-NNTPR 93.3 76.6 80.5 84.2 90.2
-NTOD 93.1 76.9 80.5 84.2 90.5
-NMT 92.5 77.5 80.5 84.4 90.3

-NNSPR 93.7 77.4 81.2 84.8 90.6
-NML 93.7 77.5 81.3 84.9 91.0
-NMC 93.8 77.6 81.4 85.0 91.1

-TS 93.6 78.1 81.6 85.2 91.2
+TE 94.3 76.2 80.8 84.3 90.9

Our classifier
(9 features) 94.7 78.7 82.3 86.0 91.8

number is chosen to keep in consistent with the feature TS)
which led to the feature vector being 14-dimensional. Note
that if the number of changed tokens is less than three, we
will pad it with the default expression type. We retrained the
Random Forest model and reevaluated it. Results are also
presented in Table 9, which show that the values of all the
metrics decrease slightly. For instance, the F-score decreases
from 86.0 to 84.3. Such results illustrate that excluding the
TE feature from our classifier, which is inspired by our
empirical study, is rational.

Our classifier can generally work well and each considered
feature contributes positively to its overall effectiveness with
NSOD being the most rewarding one.

6.5 RQ3: Performance of the AST-Path-Based Com-
ment Updater
From the evaluation results shown in Table 10, we note that
our AST-path-based comment updater significantly outper-
forms CUP on non-code-indicative updates. Specifically, the
accuracy of our approach is 7.40% while that of CUP is only
2.70%, meaning that the number of correct updates gener-
ated by our approach is nearly twice larger than that of CUP.
From the perspective of AED and RED, comments generated
by our updater are closer to the ground-truth with respect
to the word-level Levenshtein distance and thus save more
human efforts for the developers, compared against those
produced by CUP. For instance, to transform the prediction
results of CUP into the corresponding ground-truth, we
need to modify nearly four tokens on average, while the
number for our updater is less than 3.7. Also, our statistical
test results show that the p-values of our AST-path-based
updater compared with CUP in terms of the three metrics
are all less than 0.001.

Beyond whether the correct comments are generated, we
also investigated the performances of our updater and CUP
on locating the comment tokens that need to be updated.
Among the 8,201 tokens within the non-code-indicative up-
dates that are updated by developers, our comment updater
modifies 2,146 of them while CUP only modifies 813 of
them. Such a proportion is consistent with the accuracy
values of the two approaches. Thus, the possible reason that
our approach generates more correct comments than CUP
is that our approach successfully predicts more tokens that
should be updated. The results also show that compared
with considering the code as the token sequence, incorporat-
ing the structure information when embedding code change
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TABLE 10: Performances of our AST-path-based updater and
CUP on non-code-indicative updates.

Approach Accuracy AED RED
CUP 2.70% 3.99 1.16

AST-path-based updater 7.40% 3.68 0.99

TABLE 11: Performances of variants of Toper.
Approach Accuracy AED RED

HebCup + AST-path-based updater 28.5% 2.68 0.86
HebCup + CUP + Classifier 27.4% 2.77 0.85

HebCup + Original + Classifier 24.2% 2.70 0.76
Toper 30.1% 2.55 0.76

does help locate the tokens to be changed, which illustrates
the rationality of our motivation.

Our AST-path-based comment updater can generate nearly
3x as many correct updates as CUP on non-code-indicative
updates, which is probably because our approach can predict
the comment tokens to be updated more precisely.

6.6 RQ4: Ablation Study

Results shown in Table 11 reveal that both the classifier
and the AST-path-based comment updater are irreplaceable
component of our approach. Specifically, if we do not use the
classifier to predict instances fed to Hebcup, the accuracy
will drop from 30.1% to 28.5%, a decrease of 5.3%; if we
do not use the specially designed updater for non-code-
indicative ones but directly reuse CUP, the accuracy will
decline even more significantly, from 30.1% to 27.4% with
a decrease of 9.0%. Similarly, the AED and RED values
of the two variants are both higher than those of Toper
respectively, indicating that developers may save more time
on comment update based on the results from Toper.
Moreover, we conducted Wilcoxon signed-rank tests [64]
where we compared the achieved AED and RED values of
Toper on each individual instance against those achieved
by the two variants. Results reveal the p-values in terms
of the three metrics are all less than 0.001, which means
the performance improvements achieved by Toper over the
two variants are statistically significant.

From the results in Table 10, the RED value of our
AST-path-based updater is around 1, indicating that once
applied, developers may still need to modify the updated
comments substantially. Therefore, we also investigate the
effectiveness of another pipeline where we perform no
update for those predicted as non-code-indicative by our
classifier, to show the difference between using or not using
the AST-path-based updater. Results are also shown in Ta-
ble 11. We note that although the RED value of this pipeline
is similar to that of Toper (both of which are around 0.76),
its accuracy value is much lower (24.2 vs. 30.1%), which
means that excluding our AST-path-based updater will miss
the opportunity of generating a certain number of oracle
comments directly.

Both the classifier and the AST-path-based comment updater
contribute significantly to the performance of Toper, without
which the accuracy of our approach will decrease ≈ 5% and ≈
9% respectively.

7 DISCUSSION

7.1 Can the AST-Path-Based Comment Updater Play
Alone?
With the help of program structure information, our AST-
path-based comment updater significantly outperforms
CUP on non-code-indicative (cf. Table 10). A further ques-
tion deserves exploration is that how effective the AST-
path-based updater is on all the update instances (includ-
ing both code-indicative and non-code-indicative ones). To
investigate this, we retrained and evaluated our AST-path-
based comment updater on all the instances in our dataset.
We recall here that in the previous performed experiments,
this updater was trained merely on the non-code-indicative
updates.

Our experiment results show that the AST-path-based
updater achieves an accuracy value of 16.0%. This effective-
ness is similar to that of CUP which is 15.8%. Such results
indicate that our AST-path-based updater performs poorly
on code-indicative updates. This is reasonable considering
that our motivation for designing such an updater is only
gained through focusing on CUP’s weakness on non-code-
indicative updates. This, however, may shed light on fur-
ther exploration that combining the textual and structural
information of the code is a possible way. Overall, our
results show that it is hard currently to propose a single
approach that is effective for both code-indicative and non-
code-indicative updates. The rationale of our approach to
adopt different ways for different types of updates is thus
further demonstrated.

7.2 Future Directions for Comment Update
Despite that our Toper significantly improves the state-
of-the-art, we note that there is still a large space for
improvements. One aspect is how to deal with non-code-
indicative updates more effectively. Specifically, although
our AST-path-based updater outperforms the existing ap-
proach (i.e., CUP) a lot on this type of update, its RED value
is still around 1 (cf. Table 10). Generally speaking, the value
indicates that the average word-level Levenshtein distance
between the updated comment and the oracle new comment
is not significantly lower than that between the old comment
and the oracle new comment, suggesting that once being
applied, developers may not expect to spend less efforts
in updating the comments. We give a concrete example in
Table 12. In this case, developers add a parameter into a
method invocation. By investigating the called function, we
found that it usually parses an object. However, if the input
is set to -2, it will perform some special operations towards
the format of the object. Therefore, to illustrate the effect of
this parameter, developers change the verb in the comment
from “parse” to “format”. Toper, however, only captures
the added textural content -2 without understanding the
functionality of the called method. It thus generates a wrong
update as shown in the table. Under such a situation, the
word-level Levenshtein distance between the old and new
comments is one while that between the new and Toper
generated comments is 4, resulting in the RED value become
relatively high (i.e., 4). Therefore, it calls for more advanced
techniques to capture the intention of code changes and bet-
ter infer the non-code-indicative updates in future studies.
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TABLE 12: A non-code-indicative instance incorrectly updated
by Toper.

Code Change:
public DateTimeFormatterBuilder appendInstant() {
− appendInternal(new InstantPrinterParser());
+ appendInternal(new InstantPrinterParser(-2));

return this;
}

Old Comment: Parse the instant as a single epoch-seconds value.
New Comment: Format the instant as a single epoch-seconds value.
Toper: Parse the instant as a -2.

TABLE 13: A non-code-indicative instance misclassified by the
classifier.

Code Change:
− public ImmutableMap<PositionAttributeType<?>, Object> getAt-
tributes(){
+ public ImmutableMap¡AttributeType<?>, Object> getAttributes() {

return attributes;
}
Old Comment: Attributes provide the ability to associate arbitrary
information with a position in a key-value map.
New Comment: Attributes provide the ability to associate arbitrary
information with a position in a key-value map.
HebCup: Attributes provide the ability to associate arbitrary informa-
tion with a position in a key-value map.

For this example, incorporating the caller/callee informa-
tion may help boost the effectiveness. Beyond that, some
more advanced static-analysis-based code embedding ap-
proaches (e.g., using data-flows and control-flows) [55], [65]
would be beneficial to capture the code change semantics
and thus deserve exploration in future studies.

Another aspect that needs to be enhanced is the accuracy
of the classifier. Specifically, although the overall accuracy
of the classifier exceeds 80%, there still exists cases where
its inaccuracy may cause side effects. A concrete example
is shown in Table 13. According to the code change, the
type of the key in the returned map is changed from
PositionAttributeType to AttributeType, which means
the specific position information no longer exists in the
returned map. Therefore, developers removed “with a posi-
tion” in the old comment to reflect this semantic change. In
this code change, the disappeared sub-token (i.e., position)
exists in the old comment, making the value of the feature
NSOD be 1. From Fig. 7, when the value of this feature is
larger than 1, it is more likely that it is a code-indicative
update. Indeed, our classifier mistakenly identifies this case
as a code-indicative one and thus Toper uses HebCup to
generate the incorrect comment, in which only position
in the old comment is removed since it matches the code
change content. We have checked the results from RQ3 and
confirmed that our AST-path-based updater can generate
the correct new comment for this instance. This suggests
in the future by building a more accurate classifier, we
may further boost the overall performance of Toper. We
also assess the performance of another pipeline where we
assume the classifier can achieve the 100% precision in
differentiating the code-indicative and non-code-indicative
updates. Results show that such a pipeline can achieve an
accuracy of 34.5%, an AED of 2.52, and a RED of 0.747,
respectively, which indicates that, the enhancement of the
classifier’s accuracy could lead to the performance improve-
ment of Toper.

Although HebCup generally achieves promising per-
formance on code-indicative updates (it correctly updates

TABLE 14: A code-indicative instance updated incorrectly by
HebCup.

Code Change:
− public void deleteQuery(Query query) {
+ public void deleteEntry(PlaylistEntry entry) {
. . . }
Old Comment: Remove query at given position from current playlist.
New Comment: Remove entry at given position from current playlist.
HebCup: Remove PlaylistEntry at given position from current playlist.

Fig. 6: The performance of code-indicative updater for different
proportions of code-indicative instances from the training set.

2,355/2,970 of the code-indicative ones with the accuracy
being nearly 80%), the heuristic-based approach has its own
inherent limitation (i.e., the inaccuracy brought by the fixed
heuristic). One example is shown in Table 14 where the
comment token “query” is changed into “PlaylistEntry” but
should be “entry”. In this example, two replacement pairs
(i.e., “query”→ “entry” and “query”→ “PlaylistEntry”) are
established according to the code change. From the heuristic
of HebCup, if one token has multiple candidate tokens for
replacement, the one with the largest number of sub-tokens
will be prioritized. Therefore, “PlaylistEntry” is selected for
update under this situation, resulting in the incorrect up-
date. To overcome this limitation, one direction in the future
would be training better deep learning models with more
code-indicative data. Such learning-based models would be
more flexible than heuristics, and thus hold the potential to
boost the effectiveness of comment update. Although exist-
ing learning-based approaches have the limitations [24], i.e.,
(1) they frequently ignore some code change information
and (2) they are often misled by noisy information in the
complicated code change, to explore the feasibility of this
future direction, we performed another experiment where
we trained an AST-path-based code-indicative updater with
different percentages of code-indicative updates from the
training set (10% to 100% with an interval of 10%) and then
evaluated it on the code-indicative updates from the test set.
Results shown in Fig. 6 reveal that the effectiveness of such
an updater consistently increases with more training data,
illustrating that enlarging the training data can improve the
performance of deep learning-based models on the code-
indicative updates.

Another potential way to improve the effectiveness of
the heuristic-based approach is to summarize and apply
more heuristics. For example, from the instance shown in
Fig. 3a, we foresee a way to facilitate the comment update,
which is expanding the abbreviations in the code [66],
[67]. In this example, the token millis in the code is an
abbreviation of the token milliseconds in the comment.
Therefore, if we can map these two tokens, this instance can
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Fig. 7: The distribution of the Levenshtein distance required
to change each incorrect update into its corresponding ground-
truth.

be considered as a code-indicative one, which is easier to
update.

Accordingly, the main root causes for incorrect updates
are (1) the ineffectiveness of current models in capturing
the semantic information of complicated code changes, (2)
the ineffectiveness of current approaches in building code-
comment traceability, and (3) the update type misclassifi-
cation caused by the classifier. To conclude, our analysis
reveals four potential ways to improve comment update
effectiveness, which are (1) a better model to capture code
change semantics, (2) a better classifier to predict if an
instance is code-indicative or not, (3) more effective model
with more training data, and (4) more heuristics to establish
the semantic interaction between the code and comment,
hold the potential to obtain a higher accuracy of comment
update. It is quite hard to say which improvement way
would be more effective than others so that all of them
could be explored in the future. However, comprehensively
investigating which improvement is more effective than
others is non-trivial hard and out of this work’s scope. So
we leave this for future work.

7.3 The Characteristics of the Updated Comments

To provide more insights for future studies, we analyze the
updated comments from another two perspectives in this
section. First, we investigate the word-level Levenshtein dis-
tance required to change each incorrect update into its cor-
responding ground-truth. As shown in Fig. 7, the medium
value is 3 and the upper quarter is 5. Such results indicate
that for most conditions, changing the updates generated by
Toper into the ground-truth ones requires the modification
of no more than 5 tokens. This suggests the opportunity of
generating more correct updates for future studies.

Second, we aim to investigate if the number of updated
comment tokens that do not appear in the code change will
affect the effectiveness of our AST-path-based updater. To
this end, we design a finer-grained categorization of non-
code-indicative updates based on the number of comment
tokens that cannot be borrowed from the code change
directly (NUMcbb). The effectiveness of AST-path-based up-
dater on each type is shown in Table 15. Results reveal that
with the increase of NUMcbb, the performance of our up-
dater will generally drop down (i.e., the accuracy decreases
and the AED increases). Recall that the accuracy value of
HebCup on code-indicative updates reaches around 80%
(mentioned in the last section), such results call for improve-
ments to capture the semantics of the comment updates that
are implicitly reflected by the code changes, especially for
those updates that involve multiple tokens which cannot be
reused from the code changes.

TABLE 15: The performance of the AST-path-based updater on
each finer-grained type of non-code-indicative updates.

Category Proportion Accuracy AED RED
1 42.1% 13.1% 3.09 1.01
2 17.0% 3.1% 3.29 1.00
3 12.3% 3.8% 3.62 0.99
4 9.7% 3.1% 4.02 0.99
≥ 5 18.9% 3.5% 5.20 0.97
All 100% 7.4% 3.68 0.99

“Category” denotes the number of updated com-
ment tokens that cannot be borrowed directly from
code changes.

7.4 The Replication Study of Another Existing Deep
Learning based Approach
We note that Panthaplackel et al. also proposed a learn-
ing based updater [26]. However, this approach was only
evaluated on comments starting with @return. To assess its
generalizability to other comments, we re-trained and re-
evaluated it on the dataset in this study based on the open-
sourced replication package provided by the authors. Table
16 shows the evaluation results. This approach achieved
similar performances with those of CUP on all the instances
in the test set. Specifically, its accuracy value is identical to
that of CUP (i.e., 15.8%), and its AED value is very similar to
that of CUP (3.01 vs. 3.02). When it comes to the non-code-
indicative updates in the test set, we also observe the same
phenomenon. Indeed, the working mechanisms of these two
approaches is nearly identical: both approaches utilize the
textual information from the code and comment, and train
learning-based models to generate the updated comments.
Therefore, in this study, we use CUP as a representative tool
of the existing deep-learning-based techniques. We design
our approach based on our investigation towards the weak-
ness of CUP and the results show that our approach can
outperform the existing approaches significantly on both
non-code-indicative updates and all the instances in the test
set, as shown in Table 16.

7.5 The Generalization of Our Approach
In this study, we dissect the weaknesses of current ap-
proaches based on their results on the test set, after which
we design our own approach that can outperform them on
this set. There is thus a concern that to what extent can our
approach generalize to instances that are not involved in the
test set. Following the previous study [24], we performed
another experiment to address this concern, where we re-
trained CUP and our AST-path-based updater by keeping
the training set unchanged, using the test set for validation
and testing the models on the validation set. The classifier
was accordingly trained on all the instances from the train-
ing and the test sets. Results are shown in Table 17. We note
that (1) Toper achieves very similar performance compared
with that listed in Table 8; and (2) Toper outperforms all the
baseline approaches on all the metrics. Specifically, Toper
still generates the oracle updates for around 30% instances
in the validation set, and its AED score (2.50) is even lower
than that of HebCup (2.54). Such results indicate that our
approach can generalize well to new cases excluded from
the test set where we discover the weaknesses of the existing
approaches and design the strategy of our own approach.
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TABLE 16: Performances of Toper and two existing deep
learning based approach on the test set.

Update type Approach Accuracy AED RED

Non-code-indicative
CUP 2.7% 3.99 1.16

Panthaplackel et al. 3.1% 3.83 1.16
AST-path-based updater 7.4% 3.68 0.99

All instances
CUP 15.8% 3.02 0.94

Panthaplackel et al. 15.8% 3.01 1.01
Toper 30.1% 2.55 0.76

TABLE 17: Performances of Toper and baselines on the vali-
dation set.

Approach Accuracy AED RED
CUP 19.3% 2.99 0.93

HebCup 25.5% 2.54 0.84
HebCup + CUP 25.6% 2.71 0.89

Toper 29.7% 2.50 0.78

7.6 Threats to Validity

External validity. One threat to external validity is that
we only target Java projects and Javadoc comments in
this study. Therefore, the effectiveness of our approach on
projects of other programming languages and other types
of comments (e.g., inline comments) remains unknown.
This threat is mitigated considering that (1) Java is one of
the most popular programming languages and (2) Javadoc
comment is a type of critical information for developers to
comprehend the code [68]. Moreover, our Toper is inde-
pendent of programming languages and comment types. It
can be adopted to other languages where the AST can be
generated (e.g., C#) as well as to other types of comments
once being reasonably trained.

Another threat is from the representativeness of our
dataset. All our empirical findings that support the design of
Toper and our evaluations are solely based on this dataset.
However, our dataset contains method-comment co-change
instances from up to 1,500 popular GitHub repositories.
It is also carefully curated by existing studies [24], [25].
Therefore, we believe the threat is limited.

Internal validity. To perform the various comparison
experiments in this study, we need to re-run the existing
approaches (i.e., CUP and HebCup) for many times (e.g.,
to answer RQ3, we re-run CUP on non-code-indicative up-
dates). Any different minor setting in this process may lead
to major differences [69]. To mitigate this, we directly reuse
the replication packages provided by the existing studies
[24], [25] and keep the values of all the parameters the same
as the original studies.

8 RELATED WORK

This work targets the JIT comment update task. Literature
approaches that are tightly related to our study have been
detailed in Section 2.2. In this section, we revisit works in the
literature that are related to code comment, deep learning
for program comprehension, and AST path technique.

8.1 Automated Comment Generation

One way to help developers reduce the burden of program
comprehension is to generate the comment for a piece
of code automatically. Such a topic has been studied for
more than one decade in the research community. Similar
to comment update techniques, the literature approaches

for comment generation can also be mainly split into two
categories: heuristic based and deep learning based. Srid-
hara et al. [70] proposed to generate natural language sum-
marization for methods via manually defined templates.
ColCom [71] generates a comment for a code snippet by
reusing comments of open source code snippets that are
similar to the studied one. Panichella et al. [72] generated the
summarization of test cases by first obtaining the coverage
information and then exploiting Java naming conventions
to construct readable natural language sentences. Hu et al.
[73] and LeClair et al. [32] designed deep learning mod-
els to generate comments by integrating source code with
structure information. It should be noted that the comment
generation task is orthogonal to the aim of this paper since
we aim to update comments that are already available with
code changes. In contrast, comment generation focuses on
generating comments from scratch.

8.2 Inconsistent Comment Detection
Given that the inconsistency between the code and its
associating comment may prevent developers from clearly
understanding the program, it is of great importance to
detect this kind of inconsistency. Tan et al. [68] tried to infer
program properties from the Javadoc comments and then
randomly generated tests to check the inferred properties.
Ratol and Robillard [16] proposed to detect comments that
become inconsistent during identifier renaming via a set of
human-written rules. Zhou et al. [74] focused on defects
of Application Programming Interface (API) documentation
and detected such issues based on the analysis results from
a constraint solver. Liu et al. [75] identified the outdated
comments via a machine learning classifier trained by min-
ing the historical data of software repositories. Wen et
al. [17] performed a large-scale investigation towards the
introduction/fixing of code-comment inconsistencies where
the empirical results can better guide the design of novel
approaches towards the detection of inconsistent comments.
However, even if the inconsistency is detected, developers
still need to manually update the comments, which is rather
time-consuming. Our approach, which aims at timely up-
dating the corresponding comment given the code change,
can help developers further alleviate the inconsistency be-
tween the code and the comment.

8.3 Deep Learning in Program Comprehension
Deep learning techniques have also been widely adopted in
a number of program comprehension tasks beyond com-
ment update. Nguyen et al. [76] and Wang et al. [29]
suggested high-quality names for methods following a
seq2seq paradigm, while Alon et al. [27], [28] finished the
same task by exploiting the code structure information.
He et al. [77] used a dual-channel Convolutional Neural
Networks (CNN) model to represent a bug report pair
that can effectively detect duplicate bug reports. Liu et al.
[78] captured both the structure information and long-term
dependency relations of an input program through a self-
attentional neural architecture for code completion task. To
automatically generate pull request descriptions, Liu et al.
[79] designed a novel seq2seq model where the pointer
generator and reinforcement learning are integrated. Our
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study differs from the abovementioned ones with respect to
two perspectives. First, our task (i.e., JIT comment update) is
different from the mentioned studies since the inputs of our
approach are the code change plus with the old comment,
and the output is the updated comment, while none of the
works mentioned above model code changes and comments
at the same time. So they can not be used to tackle our task.
Second, our approach combines deep learning techniques
with heuristics through a predictive model while the listed
studies rely merely on deep learning models.

8.4 AST Path Technique
Alon et al. [80] first pointed out that using paths in the
program’s AST significantly lowers the learning effort (com-
pared to learning over program text) and is still scalable
and general. This approach can capture both program syn-
tactic (via the connection relation between two adjacent
AST nodes) and semantic (via tokens of the leaf nodes)
information well. After that, this code representation tech-
nique has been applied to a number of software engineering
tasks including method name recommendation [28], code
summarization [27], and code completion [58]. In our study,
we choose to utilize this code representation technique after
identifying that the structural context of the code change
may boost the update of non-code-indicative instances.

9 CONCLUSION

We introduce Toper in this study, a two-phase approach
for automated comment update. The core idea is to ef-
fectively combine different ways to deal with comment
updates whose contents can or cannot be reflected by the
corresponding code changes (i.e., code-indicative and non-
code-indicative comment updates), respectively. Through
our pre-study experiments, we identified two main chal-
lenges for such a pipeline: 1) how to precisely predict
the types of the comment updates; and 2) how to ef-
fectively update non-code-indicative ones. To tackle such
challenges, we performed empirical studies through which
we identified nine discriminative features between code-
indicative and non-code-indicative updates and found that
program structure information can help deal with non-code-
indicative updates. Therefore, Toper first utilizes a classifier
which takes the nine identified features into consideration
to predict the types of the comment updates. If it is a
code-indicative one, the off-the-shelf approach HebCup is
adopted for generating the new comment; otherwise, the
AST-path-based comment updater is trained and used with
the structure information of code change considered. Our
extensive experiments show that Toper significantly out-
performs the state-of-the-art and all our design decisions
make sense.
Artefacts: All data in this study are publicly available at:

https://github.com/Ringbo/Toper.
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