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Neural networks are important computational models used in the domains of artificial intelligence and software

engineering. Parameters of a neural network are obtained via training it against a specific dataset with a

standard process, which guarantees each sample within that set is mapped to the correct class. In general,

for a trained neural network, there is no warranty of high-level properties, such as fairness, robustness, etc.

In this case, one need to tune the parameters in an alternative manner, and it is called repairing. In this

paper, we present AutoRIC (Automated Repair wI th Constraints), an analytical-approach-based white-box

repairing framework against general properties that could be quantitatively measured. Our approach is

mainly based on constrained optimization, namely, we treat the properties of neural network as the optimized

objective described by a quadratic formula about the faulty parameters. To ensure the classification accuracy

of the repaired neural network, we impose linear inequality constraints to the inputs that obtain incorrect

outputs from the neural network. In general, this may generate a huge amount of constraints, resulting in the

prohibitively high cost in the problem solving, or evenmaking the problem unable to be solved by the constraint

solver. To circumvent this, we present a selection strategy to diminish the restrictions, i.e., we always select the

most ‘strict’ ones into the constraint set each time. Experimental results show that repairing with constraints

performs efficiently and effectively. AutoRIC tends to achieve a satisfactory repairing result whereas brings in

a negligible accuracy drop. AutoRIC enjoys a notable time advantage and this advantage becomes increasingly

evident as the network complexity rises. Moreover, experiment results also demonstrate that repairing based

on unconstrained optimizations are not stable, which embodies the necessity of constraints.
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1 INTRODUCTION
Neural networks have found success in various domains such as image recognition [23], natural

language processing [20], medical diagnosis [21], aircraft collision avoidance [19], and autonomous

driving [6]. Despite their achievements, neural networks are not flaw-free. Instances of errors in

neural networks have, in some cases, resulted in serious consequences, including loss of life [16]

and wrongful arrests [17, 18]. Hence, much like the process of debugging in traditional software

programs [3], there is a critical need to devise automated methods for rectifying these defects in

neural networks and ensuring that they adhere to desired standards.

Efforts to rectify unexpected behaviors in neural networks typically lean towards retraining

with supplementary data [28, 29]. While retraining is a natural and often effective approach, it can

face challenges in real-world applications due to its potential difficulty and cost [15]. For example,

training a convolutional image recognition neural network has been reported to take days or even

weeks [39]. Moreover, the original training dataset may not be accessible for retraining, as it could

involve private medical information, sensitive intellectual property, or even be lost. Additionally,

retraining has the potential to introduce arbitrary changes to the neural networks, possibly leading

to the emergence of new bugs in its behavior.

To tackle these issues, researchers have recently put forward a number of approaches which

aim at adjusting the parameters of an existing neural network. This allows for the elimination of

unexpected behaviors, the preservation of other functionalities, all while bypassing the need for

retraining. Specifically, CARE [41] first utilizes causality analysis to locate the parameters whose

values need to be modified and then searches for suitable parameter values using a Particle Swarm

Optimisation (PSO) algorithm. Such a search-based process is treated as a “black-box”. Another

area of research emphasizes the concept of white-box repair, which reformulate the problem with

standard mathematical models, such as linear programming or constraint solving [39, 42], namely

the whole repairing process are explicitly formulated in mathematical manner. Notably, these work

typically focus on some specific properties of the neural network. For instance, both PRDNN [39]

and APRNN [42] are specialized for the qualitative properties such as safety, while other critical

quantitative properties such as the fairness are understudied. Fairness is a desirable property in

neural networks used for applications with societal significance. For example, Google’s photo tagger

produced offensive labels, classifying black people into“gorillas” [44]. FAD [1], Ethical Adversaries

[9] and FairNeuron [13] that try to provide such functionality. Based on the observation that

optimizing for accuracy and fairness can be conflicting goals during training, these frameworks

introduce an adversary to monitor and enhance the fairness of the training process.

In this paper, we present an analytical-approach-based white-box neural network repair frame-

work that against general properties. Compared to heuristic algorithms, the optimization objectives

and the relationships with parameters in AutoRIC are presented in the form of expressions. The

core part of this approach is also to convert the neural network repair task into a constrained

optimization problem, yet it can deal with any properties that could be quantitatively measured.

To ensure the accuracy of the repaired network, we also impose linear constraints which describe

the classification specifications of the original network to the optimization. However, this would

generate a huge amount of constraints in general, and that would severely hinder the scalability of

the repairing — or even worse, sometimes we could not get a solution from the solver. To circumvent

this, our approach incorporates a constraint-selection module aimed at reducing the total number

of constraints. To this end, we select those pose the greatest difficulty in terms of correction, and

use them as the primary focus for constraint solving. The underlying intuition is that by addressing

these strong constraints, other inputs that are comparatively easier to correct could also achieve

accurate results through the process of constraint solving. Henceforth, we successfully model the
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repair problem with a quadratic programming problem (the subsequent experiments reveal that

with the same fairness increase, quadratic programming has indeed less accuracy decrease than

linear programming, ), and to the best of our knowledge we design different ways for addressing

both convex and non-convex objects, and thus can obtain a repaired network.

The proposed approach has been experimentally evaluated via conducting a series of experiments.

For fairness tasks, AutoRIC has an average 63.79% and 2.89% fairness improvement and accuracy

decrease. It is worth mentioning that our approach can decrease the fairness of Bank to 0 with only

1% accuracy drop. For robustness tasks, AutoRIC improves the robustness radius of 2-Conv and

3-Linear neural network from 0.126 to 0.140, with 15.87% improvement and only 1.01% accuracy

decrease. Further, results show that AutoRIC is between 2 and 7 times more efficient than CARE

and PVNN in fairness tasks.

Main contributions of this paper can be summarized as follows:

• First of all, to the best of our knowledge, AutoRIC is the first white-box repair method based

on an analytical approach. Based on the sampling-fitting process, as well as the classification

constraint extracting, we provide a uniform way that can convert the repair task (such as

fairness, robustness) into a quadratic programming problem, provided that the goal of repair

can be quantitatively measured.

• Second, since the (linear) constraints of that quadratic programming are generated from data

classifications, they usually constitute a huge set. We in this paper reveal a general principle

of constraint-selection, which may significantly reduce the amount of linear constraints.

• Based on the proposed approach, we have implemented a prototype, called AutoRIC. Extensive

experiments have demonstrated the superior effectiveness and efficiency of the approach.

By prioritizing network repair, AutoRIC enjoys a notable time advantage. This advantage

becomes increasingly evident as the network complexity rises.

The reminder of this paper is organized as follows: In Sect. 2, necessary notions and notations

are introduced. In Sect. 3, we elaborate how the repairing problem is formulated by a (constrained)

quadratic programming, and describe how it is solved. Sect. 5 provides the experimental results of

our repair approach. We list some related work in Sect. 7, and we conclude this paper with Sect. 9.

2 BACKGROUND
2.1 Kullback-Leibler divergence
Kullback-Leibler divergence ( KL divergence for short )[24], also known as relative entropy, is a

measure of the difference between two probability distributions 𝑷 and 𝑸 . It is a non-symmetric

measure and is defined as follows:

For discrete probability distributions

𝐷𝐾𝐿 (𝑷 ∥ 𝑸) =
∑︁
𝑖

𝑷 (𝑖) log 𝑷 (𝑖)
𝑸 (𝑖) ,

and for continuous probability distributions

𝐷𝐾𝐿 (𝑷 ∥ 𝑸) =
∫ ∞

−∞
𝑝 (𝑥) log 𝑝 (𝑥)

𝑞(𝑥) d𝑥 .

Here, 𝑷 represents the true distribution, and 𝑸 represents the theoretical or approximate distri-

bution. The KL divergence from 𝑸 to 𝑷 is always non-negative and is zero if and only if 𝑷 and 𝑸
are identical. It quantifies the amount of “information lost” when one uses the distribution 𝑸 to

approximate the distribution 𝑷 . The KL divergence, in this context, can be thought of as a measure

of the difference in disorder between two systems, with 𝑷 and 𝑸 representing different states of a

system.
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2.2 Optimizations
A set 𝐶 ⊆ R𝑛 is convex if

𝒙 ∈ 𝐶 ∧𝒚 ∈ 𝐶 ∧ 0 ≤ \ ≤ 1 =⇒ \𝒙 + (1 − \ )𝒚 ∈ 𝐶

holds. A function 𝑓 : R𝑛 → R is said to be convex, if dom 𝑓 is a convex set and

𝑓 (\𝒙 + (1 − \ )𝒚) ≤ \ 𝑓 (𝒙) + (1 − \ ) 𝑓 (𝒚), 0 ≤ \ ≤ 1

for each 𝒙,𝒚 ∈ dom 𝑓 .

If 𝑓 is first-order differentiable, we let ∇𝑓 (𝒙) =
(
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, . . . ,

𝜕𝑓

𝜕𝑥𝑛

)
T

, call it the gradient of 𝑓 at 𝒙 ,

where 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)T ∈ R𝑛 . If 𝑓 is further second-order derivable, then we denote the matrix(
𝜕2 𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗

)
𝑛×𝑛

by ∇2 𝑓 (𝒙), and call it the Hessian matrix of 𝑓 at 𝒙 .

Theorem 1. Suppose that 𝑓 is second order derivable, then the followings are pairwise equivalent:

(1) 𝑓 is convex;
(2) 𝑓 (𝒚) ≥ 𝑓 (𝒙) + (𝒚 − 𝒙)T∇𝑓 (𝒙) for every 𝒙,𝒚 ∈ dom 𝑓 ;
(3) ∇2 𝑓 (𝒙) is semi-positive definite (SPD) for every 𝒙 ∈ dom 𝑓 .

We say that a matrix 𝑨 ∈ R𝑛×𝑛 is semi-positive definite (SPD, for short) only if 𝒙T𝑨𝒙 ≥ 0 for

every 𝒙 ∈ R𝑛 .
An optimization problem (a.k.a., programming) P can be written in the canonical form

min 𝑓 (𝒙) s.t. 𝒈(𝒙) ≤ 0

where 𝒙 ∈ R𝑛 and 𝒈 : R𝑛 → R𝑚 , they are called the goal and the constraints of the optimization

problem, respectively. Let us denote dom 𝑓 ∩dom𝒈 by domP in what follows. For some 𝒙0 ∈ domP,
if

𝑓 (𝒙0) ≤ 𝑓 (𝒙), ∀𝒙 ∈ domP
holds, then we say that 𝒙0 is the (globally) optimal value of P. Otherwise, if there exists some

Euclidean ball 𝐵𝑁 (𝒙0, 𝑟 ) ⊆ domP making

𝑓 (𝒙0) ≤ 𝑓 (𝒙), ∀𝒙 ∈ 𝐵𝑁 (𝒙0, 𝑟 )

then we say that 𝒙0 are a locally optimal value of P — recall that

𝐵𝑁 (𝒙0, 𝑟 ) =


{(𝑥1, 𝑥2, . . . , 𝑥𝑛)T |

∑
𝑖 abs(𝑥𝑖 − 𝑥0,𝑖 ) ≤ 𝑟 }, 𝑁 = 1

{𝒙 |
√︁
(𝒙 − 𝒙0)T (𝒙 − 𝒙0) ≤ 𝑟 }, 𝑁 = 2

{(𝑥1, 𝑥2, . . . , 𝑥𝑛)T | max{abs(𝑥𝑖 − 𝑥0,𝑖 )}𝑖 ≤ 𝑟 }, 𝑁 = ∞
,

where 𝒙0 = (𝑥0,1, 𝑥0,2, . . . , 𝑥0,𝑛)T.

Convex Optimization Problems. For an optimization problem P with convex domain domP, goal
𝑓 and constraints 𝒈, if 𝑓 is convex and in addition 𝒈 is also convex, namely

𝒈(\𝒙 + (1 − \ )𝒚) ≤ \𝒈(𝒙) + (1 − \ )𝒈(𝒚), 0 ≤ \ ≤ 1

holds for every 𝒙,𝒚 ∈ domP, then P is said to be convex.

Theorem 2. If 𝒙0 is a locally optimal value of the convex optimization problem P, then it must be
the globally optimal value of P.
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Quadratic Optimization Problems. The convex optimization problem is called a quadratic pro-
gramming (QP for short) if the objective function is (convex) quadratic, and the constraint functions

are affine. Below is an example of this problem.

Example 1. Let 𝑓 (𝒙) be the quadratic polynomial 1

2
𝒙T𝑸𝒙 +𝒑T𝒙 +𝑐 where 𝑸 ∈ R𝑛×𝑛 is a symmetric

matrix, 𝒑 ∈ R𝑛 and 𝑐 ∈ R. Then 𝑓 is convex if and only if 𝑸 is SPD, because ∇2 𝑓 (𝒙) = 𝑸 .

It is well known that LP problem belongs to the P class and can be solved in polynomial time.

However, for the QP problem, when the coefficient matrix 𝑸 is positive definite, the QP problem

belongs to the P class and can be solved in polynomial time. When 𝑸 is not positive definite, the

QP problem is NP-Hard.

Numerous mature approaches have been developed for both convex and non-convex optimiza-

tions. Below lists some typical examples.

• In the case that the goal is a convex quadratic formula and all constraints are linear, the

problem is called to be semi-definite programming (SPD for short). One can use the active set
method [4], Lagrangian Dual Method[34], or use the interior point approach [10] to obtain the

optimum.

• Particularly, when that quadratic formula becomes a linear one (i.e., the second-order coeffi-

cient matrix is 0), it is called linear programming (LP for short). Besides the aforementioned

methods, one can also use the simplex method [8], which is considered to be more practical.

• Whenever the coefficient matrix (i.o.w., the Hessian matrix) is not SPD in the quadratic

programming, one can perform the so-called sequential convex approximation approach to

accomplish the optimization. Alternatively, one can also use the approximate manner to deal

with it: i.e., let 𝑸 be the corresponding matrix, then one just need to replace it with a SPD

matrix 𝑸 + _𝑰 for some _ > 0.

In this paper, we are particularly concerned about quadratic programming, since it can describe

the goal more accurately in comparison to LP, and as a result, our optimization problem can also

be solved effectively with many powerful optimization techniques. The experiments indicate that

completing the same repairing tasks, QP exhibits less accuracy decrease than LP.

2.3 Neural Networks and Repairing
Neural Networks. Classification neural network can be viewed as a mapping from the feature

space to a finite set of classes (a. k. a., classification space). Typically, a classification neural network

can be decomposed into several layers, and each layer corresponds to a composition of an affine

mapping and an activation function (which is in general non-affine). Hence, an (𝑛+1)-layer neural

network N can be uniquely determined via a series of parameters

(𝑴1, 𝒃1), (𝑴2, 𝒃2), . . . , (𝑴𝑛, 𝒃𝑛)

where 𝑴𝑖 is the weight matrix between the 𝑖-th and the 𝑖 + 1-th layer, and 𝒃𝑖 is the 𝑖-th layer’s bias
vector. Then, for an input vector 𝒔, we may obtain a series of vectors 𝒔1, 𝒔2, . . . , 𝒔𝑛+1 where 𝒔1 = 𝒔
and 𝒔𝑖+1 = 𝜎𝑖 (𝑴𝑖𝒔𝑖 + 𝒃𝑖 ). In the above, 𝜎𝑖 is the activation function if 𝑖 < 𝑛, and 𝜎𝑛 is the softmax

mapping. Suppose that 𝒔𝑛+1 = (𝑤1, . . . ,𝑤𝑚)T, we let

N(𝒔) = argmax

𝑖

𝑤𝑖

as the output. Typically, an activation function might be

- the sigmoid function, defined as sigmoid(𝑥) = 1

1 + e−𝑥 ;
- the relu function, defined as relu(𝑥) = max{𝑥, 0};
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Fig. 1. The workflows of AutoRIC

- the tanh function, defined as tanh(𝑥) = e
𝑥 − e−𝑥
e
𝑥 + e−𝑥

and so on. For the activation function 𝜎 , we let 𝜎 (𝒄) = (𝜎 (𝑐1), . . . , 𝜎 (𝑐𝑛))T if 𝒄 = (𝑐1, 𝑐2, . . . , 𝑐𝑛)T.

In addition, we let softmax(𝒄) =
(

e
𝑐1∑𝑛

𝑖=1 e
𝑐𝑖
,

e
𝑐2∑𝑛

𝑖=1 e
𝑐𝑖
, . . . ,

e
𝑐𝑛∑𝑛

𝑖=1 e
𝑐𝑖

)
T

, which normalizes a vector to

a discrete distribution.

Neural Network Repairing. Given a neural network N , together with a series of designated

parameters 𝒚 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} of N (namely, each 𝑦𝑖 can be some weight with some bias), and a

set of labeled (a.k.a., classified) samples {(𝒔𝑖 , 𝑐𝑖 )} havingN(𝒔𝑖 ) = 𝑐𝑖 , the goal of repair is to optimize

some properties 𝜑 related to N by tuning the parameters without changing the label of each of

samples (or, for a relaxed-version, make the change as small as possible).

In general, a network corresponds to a non-linear mapping from the input space to the collection

of (discrete) classes. As a result, the constraints that maintain each N(𝒔𝑖 ) unchanged is in general

non-linear, or even non-convex. Retraining alters the parameters globally and is typically used

to improve the accuracy of a model, rather than enhancing specific properties of the model. The

properties and accuracy of a model are usually orthogonal to each other. Repairing involves making

local adjustments to the parameters, while ensuring that the model’s accuracy does not decrease

significantly under the condition of repairing the properties.

3 AUTORIC: A FITTING-BASED REPAIR FRAMEWORK
We now consider the problem of neural network repairing with accuracy constraints, namely,

to enhance some (quantized) properties without changing the classification on the given dataset.

The overall workflow are demonstrated in Figure 1. First, we introduce the preparatory work

before repairing networks. On the one hand, beginning with the fault localization of trained neural

networks, we choose the faulty parameters 𝒚. Following it, we prepare to calculate the concerned

properties of neural networks with 𝑓 (𝒚) , e.g. robustness and fairness. Then, we sample the input

data and calculate corresponding properties for certain trained network. Meanwhile, we record the

value of the faulty parameters. The value of faulty parameters and the quantification of property

can combine as a sampled point. Subsequently, we employ these points to do quadratic fitting to

establish the goal to be optimized. On the other hand, to guarantee the classification accuracy,

we extract linear constraints from trained neural networks. Then, we may regard the repairing

problem as an optimization problem.
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First of all, given a neural network N and a specification 𝜑 , we may take one of the following

fault localization approaches to determine the decision variables 𝒚.

• The causality-analysis based approach, presented in [41], which may effectively locate buggy

parameters with a designated scale.

• DeepFault [11] — the first deep neural network white-box testing method based on fault

localization.

• A more fine-gained approach which locates the faulty weights of neurons presented in [47].

Since we compare our work mainly with CARE, we pay more attention to the first approach.

Basically, such analysis aims at finding the parameters affecting the property most significantly,

and it uses the structural causal models (SCMs) to perform such detection. One can consider this

part as a black-box, and we mainly address how to describe the optimization problem and how to

solve it.

3.1 Establish the Goal of Optimization
Once the buggy parameters are selected, we can explicitly partition the parameters into the variables

and constants, and respectively encode these two sets with the vectors 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑛)T and

𝒄 = (𝑐1, 𝑐2, . . . , 𝑐𝑚)T where the amount of variables is 𝑛 and the amount of constants is𝑚. Now

we intend to formulate the goal that needs to be repaired in terms of 𝒚, namely, we need to find

an analytical expression 𝑓 (𝒚) to describe the goal. Let 𝒚 (0) = (𝑦 (0)
1

, 𝑦
(0)
2

, . . . , 𝑦
(0)
𝑛 )T be the original

value of 𝒚 before repairing, using Taylor’s formula, within a small neighborhood, we have

𝑓 (𝒚) = 𝑐0 + 𝒑T

0
(𝒚 −𝒚0) +

1

2

(𝒚 −𝒚0)T𝑸0 (𝒚 −𝒚0) + 𝑜 (∥𝒚 −𝒚 (0) ∥)

where 𝑐0 = 𝑓 (𝒚 (0) ), 𝒑0 = ∇𝑓 (𝒚 (0) ) and 𝑸0 = ∇2 𝑓 (𝒚 (0) ) — this enlightens us that 𝑓 can be

approximately represented via some quadratic polynomial.

To determine the coefficients like 𝑐 , 𝒑 and 𝑸 , we need sample a set of points

𝑃 =

{(
𝒚 (𝑖 ) , 𝑧 (𝑖 ) = 𝑓 (𝒚 (𝑖 ) )

)}𝑚
𝑖=0
⊆ R𝑛+1

with some proper amount𝑚. Let

𝑓 (𝒚) ≈ ˆ𝑓 (𝒚) = 1

2

(𝒚 −𝒚0)T𝑸0 (𝒚 −𝒚0) + 𝒑T

0
(𝒚 −𝒚0) + 𝑐0 =

1

2

𝒚T𝑸𝒚 + 𝒑T𝒚 + 𝑐

be the approximation of 𝑓 (𝒚), then the coefficients 𝑸 , 𝒑 and 𝑐 should minimize the error

𝑑 =

𝑚∑︁
𝑖=1

 ˆ𝑓 (𝒚 (𝑖 ) ) − 𝑧 (𝑖 )2
2

.

It is worth noting that when the quadratic matrix 𝑸 is indefinite, we consider the quadratic matrix

_𝑰 + 𝑸 to approximate 𝑸 . By appropriately choosing the value _, we can make it positive definite.

To minimize the correction bias, we set

_ = min(spec(𝑸)) .

That is, the minimum eigenvalue of 𝑸 .

Suppose that 𝒚 (𝑖 ) = (𝑦 (𝑖 )
1
, 𝑦
(𝑖 )
2
, . . . , 𝑦

(𝑖 )
𝑛 ) for each 𝑖 , and let 𝑸 =

(
𝑞 𝑗,𝑘

)
𝑛×𝑛 ∈ R𝑛×𝑛 with 𝑞 𝑗,𝑘 = 𝑞𝑘,𝑗 ,

𝒑 = (𝑝1, 𝑝2, . . . , 𝑝𝑛)T ∈ R𝑛 and 𝑐 ∈ R be the decision variables. Then, from the standard theory of
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optimization, let

𝜕𝑑

𝜕𝑞 𝑗,𝑘
= 0,

𝜕𝑑

𝜕𝑝 𝑗
= 0 and

𝜕𝑑

𝜕𝑐
= 0, we have

∑𝑚
𝑖=1 Δ

(𝑖 ) · 𝑦 (𝑖 )
𝑗
𝑦
(𝑖 )
𝑘

= 0∑𝑚
𝑖=1 Δ

(𝑖 ) · 𝑦 (𝑖 )
𝑗

= 0∑𝑚
𝑖=1 Δ

(𝑖 ) = 0

(1)

for each 0 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗, 𝑘 ≤ 𝑛, where Δ(𝑖 ) = (𝒚 (𝑖 ) )T𝑸𝒚 (𝑖 ) + 2𝒑T𝒚 (𝑖 ) + 2𝑐 − 2𝑧 (𝑖 ) .
Let

𝒒 = (𝑞1,1, . . . , 𝑞1,𝑛, 𝑞2,1, . . . , 𝑞2,𝑛, . . . , 𝑞𝑛,1, . . . , 𝑞𝑛,𝑛)T,

and let 𝒗 = (𝒒T
...𝒑T

... 𝑐)T be the juxtaposition of all variables, by taking the fact that Δ(𝑖 ) is essentially∑︁
1≤ 𝑗,𝑘≤𝑛

𝑦
(𝑖 )
𝑗
𝑦
(𝑖 )
𝑘
𝑞 𝑗,𝑘 + 2

𝑛∑︁
𝑗=1

𝑦
(𝑖 )
𝑗
𝑝 𝑗 + 2𝑐 − 2𝑧 (𝑖 ) ,

thus (1) is a linear system w.r.t. 𝒗. From which, we may obtain the optimal fitting of 𝑸 , 𝒑 and 𝑐 ,

respectively.

From the above, we can see that
ˆ𝑓 relies on the sampling set 𝑃 . Further, this set is strongly related

to the property to be repaired. Below provides some examples.

Example 2. Suppose, we are going to repair the group fairness [41] of some input feature — w.l.o.g.,
just assume it corresponds to the first input 𝑥1, and for simplicity, we further assume that 𝑥1 ∈ {0, 1},
and let the classification space Y = {1, 2, . . . , 𝑘}. Let 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)T range over the input space
X, and let

X𝑡 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ X | 𝑥1 = 𝑡}
for 𝑡 = 0, 1, then choose some proper number 𝑚, the sampling set 𝑃 = {(𝒚 (𝑖 ) , 𝑧 (𝑖 ) ) | 𝑖 ≤ 𝑚} is
constructed in the following process for each 𝑖 ≤ 𝑚:
(1) If 𝑖 ≠ 0, we make a random perturbation of 𝒚 (0) , and let it be 𝒚 (𝑖 ) .
(2) Then, uniformly sample two sets 𝑆 (𝑖 )

0
and 𝑆 (𝑖 )

1
within X0 and X1, respectively.

(3) Let N𝒚 (𝑖 ) be the network via changing 𝒚
(0) to 𝒚 (𝑖 ) , and then we obtain two categorical distribu-

tions \ (𝑖 )
0

and \ (𝑖 )
1

, defined as

\
(𝑖 )
𝑗
(ℓ) =

#{𝒙 ∈ 𝑆 (𝑖 )
𝑗
| N𝒚 (𝑖 ) (𝒙) = ℓ}

#𝑆
(𝑖 )
𝑗

where ℓ ∈ {1, 2, . . . , 𝑘} and 𝑗 = 0, 1.
(4) Finally, let 𝑧 (𝑖 ) be the Kullback-Leibler divergence of \ (𝑖 )

0
and \ (𝑖 )

1
, namely

𝑧 (𝑖 ) = KL(\ (𝑖 )
0
∥\ (𝑖 )

1
) =

𝑘∑︁
ℓ=1

\
(𝑖 )
0
(ℓ) ln

(
\
(𝑖 )
0
(ℓ)

\
(𝑖 )
1
(ℓ)

)
,

and thus a tuple (𝒚 (𝑖 ) , 𝑧 (𝑖 ) ) within 𝑃 is obtained.
Indeed, it can be extended to the general case that the range of 𝑥1 is much larger, see Sect. 5 for a more
illustrative example.
We use 𝑧 (𝑖 ) to quantify the fairness of the trained model with respect to a specific feature. On the

one hand, a smaller 𝑧 (𝑖 ) indicates a smaller discrepancy between the two distributions, signifying
greater fairness of the model. When 𝑧 (𝑖 ) = 0, the distributions are identical, implying that the model is
absolutely fair with respect to that feature. On the other hand, the typical form of a convex optimization
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problem is to minimize a convex function subject to a set of convex constraints. Therefore, the smaller
the value representing fairness, the higher the fairness of the network.

Example 3. We now consider a special use of repair for improving the robustness at some specific
input 𝒙0 ∈ X. Then, let𝑚 be the number of samples, the set 𝑃 is constituted with the points (𝒚 (𝑖 ) , 𝑧 (𝑖 ) ),
and each point is obtained via the following process:
(1) 𝒚 (𝑖 ) is also generated from 𝒚 (0) by imposing some random perturbation.
(2) Let 𝑟 (𝑖 ) be the robustness radius w.r.t. N𝒚 (𝑖 ) , which could be detected in the bisectional manner.
(3) Finally, let 𝑧 (𝑖 ) = 1

𝑟 (𝑖 )
. Here we use the reciprocal of 𝑟 (𝑖 ) to be 𝑧 (𝑖 ) , because we intend to minimize

the goal when performing optimization.

Note that for the above two examples, we actually have an implicit constraint, namely,
ˆ𝑓 (𝒚) > 0,

yet it is not in general linear. We will show how to express it in terms of linear expressions in the

next subsection.

3.2 Generate Linear Constraints
Suppose that the network N is constituted by the parameters {(𝑴𝑖 , 𝒃𝑖 )}𝑛𝑖=0 and these parameters

(weights in the matrices and biases in the vectors) are re-partitioned into two sets:

• One set consists of the parameters that do not need to be repaired, call such parameters

constants.
• The other set contains parameters that actually required to be repaired, and each of such

parameter is called a variable.
So simplify notation, in this section, we use two vectors 𝒄 and 𝒚 to represent these two sets,

respectively. Namely, we will arrange in order among these parameters.

Since 𝒚 is viewed as a vector of variables, it may be assigned to concrete values. Then, we use

N𝒃 to denote the network modified from N via assigning 𝒚 to 𝒃 for each 𝒃 ∈ R𝑛 . Meanwhile,

we interchangeably write N as N𝒚 sometimes to address the variables — just beware that N is a

mapping depending on 𝒚.
Let S be the (finite) set of labeled samples, and 𝒃0 be the initial value of𝒚, then ideally we require

that N(𝒙) = N𝒃0 (𝒙) for every 𝒙 ∈ S when doing such repair. Practically, it just need to guarantee

#{𝒙 ∈ S | N (𝑥) ≠ N𝒃0 (𝒙)} < 𝐶 (2)

for some specified tolerant number 𝐶 . The value of 𝐶 depends on the particular dataset and the

corresponding network. Now, we need to express this in terms of linear constraints about 𝒚.

Let N̂ be mapping which is almost identical to N but without applying softmax and/or argmax

to the last step. In addition, for each 𝑖 ≤ 𝑘 , let N (𝑖 ) be the mapping defined as

N (𝑖 ) (𝒙) = 𝒆T𝑖 N̂ (𝒙)
where 𝑘 is the cardinal of the classification space, and 𝒆𝑖 is the one-hot vector only its 𝑖-th element

is 1. Definitely, for each 𝒙 ∈ X, we have
N(𝒙) = 𝑖 iff N (𝑖 ) (𝒙) ≥ N ( 𝑗 ) (𝒙) for each 𝑗 ≠ 𝑖 .

Thus, we convert N with a series of continuous (even, differentiable) functions. With Taylor’s

expansion, we have

N (𝑖 ) (𝒙) ≈ N (𝑖 )
𝒃0
(𝒙) + (𝒚 − 𝒃0)T

(
∇𝒚N (𝑖 ) (𝒙)

) ��
𝒚=𝒃0

(3)

when viewing 𝒚 as variables (3) is really a linear expression about 𝒚, because
(
∇𝒚N (𝑖 ) (𝒙)

) ��
𝒚=𝒃0

is

actually a constant vector when 𝒙 and 𝒃0 are given.
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Let us define D (𝑖, 𝑗 )𝒙 (𝒚) as
N (𝑖 ) (𝒙) − N ( 𝑗 ) (𝒙),

expand into

N (𝑖 )
𝒃0
(𝒙) + (𝒚 − 𝒃0)T

(
∇𝒚N (𝑖 ) (𝒙)

) ��
𝒚=𝒃0
− N ( 𝑗 )

𝒃0
(𝒙) − (𝒚 − 𝒃0)T

(
∇𝒚N ( 𝑗 ) (𝒙)

) ��
𝒚=𝒃0

,

if N(𝒙) = 𝑖 then D (𝑖, 𝑗 )𝒙 (𝒚) is expected to be non-negative for every 𝑗 ≠ 𝑖 , and this is a linear

constraint about 𝒚. We in what follows call linear constraints being of the form D (𝑖, 𝑗 )𝒙 (𝒚) ≥ 0

classification constraints.
In some special cases, we might have an implicit constraint like

ˆ𝑓 (𝒚) > 0 (cf. Example 2 and 3).

Remember that such a function is fitted from a set 𝑃 = {(𝒚 (𝑖 ) , 𝑧 (𝑖 ) )}𝑚𝑖=0, we have 𝑧 (𝑖 ) > 0 for each 𝑖

—particularly, we have 𝒚 (0) = 𝒃0.
Under these conditions, we may safely assume that

ˆ𝑓 (𝒃0) > 0. Due to the continuity property,

there exists a neighborhood 𝐵∞ (𝒃0, 𝑅) such that
ˆ𝑓 (𝒚) > 0 provided that 𝒚 ∈ 𝐵∞ (𝒃0, 𝑅). Then, using

bisectional detection, we may find a vector 𝝐 = (𝜖1, . . . , 𝜖𝑛)T and it guarantees
ˆ𝑓 (𝒚) > 0 if

−𝜖𝑖 ≤ 𝒆T𝑖 (𝒚 − 𝒃0) ≤ 𝜖𝑖 (4)

holds for each 1 ≤ 𝑖 ≤ 𝑛. We thus have 2𝑛 additional constraints in this case, we in what follows

call them feasibility constraints.

3.3 Constraints Selection and Solving
There are two major approaches to dealing with this issue. The first is called incremental constraint
solving under the condition that we can extract constraints from the trained model, and the second

is called bisectional detection without constraints. The first algorithm is revealed in 1 , 2, 3 and 4.

The second algorithm is revealed in 5.

Incremental Constraint Solving. To enhance clarity, we will explain this method in reverse order.

With some fixed number 𝑁 , starting from 𝒚 = 𝒃0, we may perform the optimization (w.r.t. fairness,

robustness, etc) with not more than 𝑁 constraints — each constraint may be either classification or

feasibility, and suppose that we get an optimal value at 𝒚 = 𝒃 .
Then, for each 𝒙 ∈ S withN(𝒙) = 𝑖 , we get 𝑘 − 1 linear constraints for classification. As a result,

we will in total have 𝑂 (#S × 𝑘) classification constraints —remember that 𝑘 is the number of all

possible classes. This is in general not feasible for #S is usually a large dataset, therefore, we have

to reduce the amount of constraints.

Then, we need to examine if (2) holds, and let 𝒃1 = 𝒃 in this situation. Otherwise, let

(𝑖, 𝑗, �̃�) = argmin

(𝑖, 𝑗,𝒙 )
{D𝑖, 𝑗

𝒙 (𝒃) | 𝑖, 𝑗 < 𝑘, 𝒙 ∈ S,N𝒃0 (𝒙) = 𝑖,D𝑖, 𝑗
𝒙 (𝒃) < 0}

and we add D𝑖, 𝑗

�̃� (𝒃) ≥ 0 into the constraint set then do the optimization again. Intuitively, for a

sample 𝒙 with N𝒃0 (𝒙) = 𝑖 , the condition D𝑖, 𝑗
𝒙 (𝒃) < 0 for some 𝑗 indicates a mis-classification of 𝒙

with 𝒚 = 𝒃 . In this case, we call abs(D𝑖, 𝑗
𝒙 (𝒃)) the mis-classification degree of 𝒙 w.r.t. 𝒃 . Similarly, we

need also to guarantee that (4) holds for every 𝑖 ≤ 𝑛. If it is not the case, let

𝑖 = argmax

𝑖

(
{𝒆T𝑖 (𝒃 − 𝒃0) − 𝜖𝑖 | 𝒆T𝑖 (𝒃 − 𝒃0) > 0} ∪ {𝒆T𝑖 (𝒃 − 𝒃0) + 𝜖𝑖 | 𝒆T𝑖 (𝒃 − 𝒃0) < 0}

)
and we pick 𝒆T

𝑖
(𝒃 − 𝒃0) < 𝜖𝑖 (resp. −𝜖𝑖 < 𝒆T

𝑖
(𝒃 − 𝒃0)) into the constraint set if 𝒆T

𝑖
(𝒃 − 𝒃0) > 0 (resp.

𝒆T
𝑖
(𝒃 − 𝒃0) < 0).
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Algorithm 1 Incremental Constraint Solving(N , 𝒚, 𝜑)

Input:
N : A neural network N to be repaired.

𝒚: A collection of parameters to be repaired, which contains the position information of the

parameters to be repaired.

𝜑 : The high-level property to be repaired.

Output:
N ′: A repaired neural network, whose parameter values have been optimized.

/* Get a quadratic form
1

2
𝒚T𝑸𝒚 + 𝒑T𝒚 + 𝑐 , where 𝒚 represents the value of the parameter to be

repaired. */

1: (𝑸,𝒑, 𝑐) = QuadraticFitting(N , 𝒚, 𝜑)
/* Establish the constraints 𝑨𝒚 ≤ 𝒅 subject to the optimization. */

2: (𝑨, 𝒅) = ExtractConstraints(N , 𝒚)

3: Calculate D (𝑖, 𝑗 )𝑥 (𝒚)
/* Select the strongest constraints based on D (𝑖, 𝑗 )𝑥 (𝒚). */

4: (𝑨−, 𝒅−) = SelectConstraints(𝑨, 𝒅)
/* The optimal solution 𝒑 is obtained by quadratic optimization, where 𝒃 represents the value

of the repaired parameter. */

5: 𝒃 = Optimize(𝑸 , 𝒑, 𝑐 , 𝑨−
, 𝒅−

)

/* Modify the value of the parameter in N to get N ′.*/
6: N ′ = Repair(N , 𝒚, 𝒃)
7: return N ′

Bisectional Detection. Starting from𝒚 = 𝒃0, suppose that the goal of optimization is tominimize 𝑓N
and we obtain the optimal point𝒚 = 𝒃 without any constraint. Since it may violate the classification

and/or feasibility constraints, we intend to find some feasible point within the segment between 𝒃0
and 𝒃 . Nevertheless, this approach can be applied only when the following conditions are stated:

(1) The goal 𝑓N is convex, i.o.w., 𝑓N = 1

2
𝒚T𝑸𝒚 + 𝒑T𝒚 + 𝑐 for some 𝑸 ⪰ 0.

(2) N is locally robust at 𝒃0 w.r.t. S, namely, there is some 𝑟 > 0 such that N𝒃0 (𝒙) = N𝒃′ (𝒙)
holds for every 𝒙 ∈ S provided that 𝒃′ ∈ B(𝒃0, 𝑟 ).

Similarly, when 𝑸 is indefinite, we adopt the same method described above to make the goal 𝑓N
convex.

Therefore, one may perform a bisectional detection to find some 𝒃1 = 𝒃0+_(𝒃−𝒃0) with _ ∈ (0, 1],
such that 𝒃1 is feasible, and in addition we have 𝑓N

��
𝒚=𝒃1
≤ 𝑓N

��
𝒚=𝒃0

since 𝑓N is convex.

Compositional Use. Similarly, starting from 𝒃1, we may alternatively use the above two approaches

to obtain a set of new parameters 𝒃2 —of course, when bisectional detection is applied, two

prerequisites should be fulfilled. Remind that we need recompute the goal to be optimized, the

constraints with 𝒃1 in place of 𝒃0. Thus, a sequence of parameters {𝒃𝑖 }𝑖 is obtained, and we can

stop the process with the criterion ∥𝒃𝑡 − 𝒃𝑡+1∥ < 𝜖 for some 𝑡 .

4 IMPLEMENTATION
Faulty Localization. In our approach, we leverage a state-of-the-art (SOTA) causality-based

fault localization technique, as introduced in the work [41], to identify the neurons within a

neural network that are primarily responsible for undesired behaviors. CARE is predicated on the

Structural Causal Models (SCMs) framework, which provides a systematic way to represent the

causal relationships between the components of a neural network.
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Algorithm 2 QuadraticFitting(N , 𝒚, 𝜑)

Input:
N : A neural network N to be repaired.

𝒚: A collection of parameters to be repaired, which contains the position information of the

parameters to be repaired.

𝜑 : The high-level property to be repaired.

Output:
(𝑸,𝒑, 𝑐): Parameters of quadratic forms.

/* 𝒚0 is the initial value of the parameter to be repaired in N . */

/* Δ contains several perturbations imposed on the parameters. */

1: initialize Δ, 𝒚0
2: fitdata = Φ
3: Φ0 = ∅
4: for 𝛿𝑖 in Δ do :

/* When the value of the parameter to be repaired is 𝒚0 + 𝛿 , the compute function returns the

score 𝑧 of the neural network N on the verification property 𝜑 . */

5: 𝑧𝑖 = verify(N , 𝒚, 𝒚0 + 𝛿𝑖 , 𝜑)
/* Put the data needed for fitting into the list. */

6: Φ𝑖 ←(𝒚0 + 𝛿𝑖 , 𝑧𝑖 )
7: Φ = Φ ∪ Φ𝑖
8: end for

/* Call the fitting function to get the parameters of the quadratic form. */

9: (𝑸,𝒑, 𝑐) = fitting(Φ)
10: return (𝑸,𝒑, 𝑐)

Algorithm 3 ExtractConstraints(N , 𝒙 , 𝒚)

Input:
N : A neural network N to be repaired.

𝒙 : The input of neural network N .

𝒚: A collection of parameters to be repaired, which contains the position information of the

parameters to be repaired.

Output:
(𝑨, 𝒅): Classification constraints.

1: Starting with the input 𝒙 , the desirable classification of N(𝒙) is 𝒊
2: for every label 𝒋 ≠ 𝒊 do:

/* The condition D𝑖, 𝑗
𝒙 (𝒚) < 0 for some 𝑗 indicates a mis-classification of 𝒙 . */

3: Calculate D (𝑖, 𝑗 )𝑥 (𝒚)
4: Get positive classification constraints 𝑨𝒑𝒚 ≤ 𝒅𝒑 from D (𝑖, 𝑗 )𝑥 (𝒚) ≥ 0

5: Get negative classification constraints 𝑨𝒏𝒚 ≤ 𝒅𝒏 from D (𝑖, 𝑗 )𝑥 (𝒚) < 0

6: end for
7: (𝑨, 𝒅) = (𝑨𝒑 ∪𝑨𝒏, 𝒅𝒑 ∪ 𝒅𝒏)
8: return (𝑨, 𝒅)
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Algorithm 4 SelectConstraints(𝑨, 𝒅)

Input:
𝒙 : The input of neural network N .

𝒚: A collection of parameters to be repaired, which contains the position information of the

parameters to be repaired.

D (𝑖, 𝑗 )𝑥 (𝒚): Mis-classification degree.

(𝑨, 𝒅): Classification constraints.

Output:
(𝑨−, 𝒅−): Selected classification constraints.

/* Select negative constraints with higher mis-classification degree. */

1: (𝑖, 𝑗, �̃�) = argmin(𝑖, 𝑗,𝒙 ) {D
𝑖, 𝑗
𝒙 (𝒚) | 𝑖, 𝑗 < 𝑘, 𝒙 ∈ S,N𝒃0 (𝒙) = 𝑖,D𝑖, 𝑗

𝒙 (𝒚) < 0}
2: Get negative classification constraints 𝑨𝒏

−𝒚 ≤ 𝒅𝒏
−
from D (𝑖, 𝑗 )𝑥 (𝒚) < 0

/* Select positive constraints with lower D (𝑖, 𝑗 )𝑥 (𝒚). */
3: (𝑖, 𝑗, �̃�) = argmin(𝑖, 𝑗,𝒙 ) {D

𝑖, 𝑗
𝒙 (𝒚) | 𝑖, 𝑗 < 𝑘, 𝒙 ∈ S,N𝒃0 (𝒙) = 𝑖,D𝑖, 𝑗

𝒙 (𝒚) ≥ 0}
4: Get positive classification constraints 𝑨𝒑

−𝒚 ≤ 𝒅𝒑
−
from D (𝑖, 𝑗 )𝑥 (𝒚) ≥ 0

/* Merge classification constraints. */

5: (𝑨−, 𝒅−) = (𝑨𝒑
− ∪𝑨𝒏

−, 𝒅𝒑
− ∪ 𝒅𝒏−)

/* Add feasibility constraints. */

6: if not −𝜖𝑖 ≤ 𝒆T𝑖 (𝒚 − 𝒃0) ≤ 𝜖𝑖 then
7: 𝑖 = argmax𝑖

(
{𝒆T𝑖 (𝒚 − 𝒃0) − 𝜖𝑖 | 𝒆T𝑖 (𝒚 − 𝒃0) > 0} ∪ {𝒆T𝑖 (𝒚 − 𝒃0) + 𝜖𝑖 | 𝒆T𝑖 (𝒚 − 𝒃0) < 0}

)
8: pick 𝒆T

𝑖
(𝒚 − 𝒃0) < 𝜖𝑖 (resp. −𝜖𝑖 < 𝒆T

𝑖
(𝒚 − 𝒃0)) into the constraint set (𝑨−, 𝒅−)

9: end if
10: return (𝑨−, 𝒅−)

Our application of CARE begins with modeling the neural network as an SCM, where each

neuron is considered an endogenous variable influenced by both exogenous variables and other

neurons within the network. By doing so, we can quantify the causal effect of each neuron on the

output, which is critical for identifying the sources of defects. The causal attribution of a neuron

is calculated by intervening on its value and observing the change in the network’s undesirable

behavior, measured as the deviation from the desired property. This interventional expectation is

computed by sampling inputs from their distribution while repairing the neuron’s value, and then

averaging the model’s behavior over these samples.

In our work, we apply this fault localization method to pinpoint the neurons that contribute

significantly to the violation of specific properties, such as fairness or robustness. Once these

neurons are identified, we select the parameters corresponding to these neurons as variables, while

fixing the parameters corresponding to the other neurons.

Properties Calculation. AutoRIC primarily addresses quantifiable properties such as fairness and

robustness. The current implementation of AutoRIC framework is limited to measuring these two

properties. Future work aims to extend the framework to include additional properties and develop

a universal specification language to characterize network properties. However, designing certain

specification presents significant challenges at this stage.

First of all, we need to make some neccessary preparations before calculating fairness. We first

classify the datasets to different groups based on the value of protected features. Then we calculate

the specific values using the difference of distribution of the favorable label to measure fairness.
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Algorithm 5 Bisectional Detection(N , 𝒚, 𝜑)

Input:
N : A neural network N to be repaired.

𝒚: A collection of parameters to be repaired, which contains the position information of the

parameters to be repaired.

𝜑 : The high-level property to be repaired.

hasConstraint: A boolean variable indicating whether constraints can be extracted from the

network.

Output:
N ′: A repaired neural network, whose parameter values have been optimized.

1: Assumptions:
2: The goal of optimization is to minimize 𝑓N .
3: The goal 𝑓N is convex.

4: N is locally robust at 𝒃0.
5: if hasConstraint then:

/* Call another algorithm. */

6: Incremental Constraint Solving(N , 𝒚, 𝜑)
7: else
8: Starting from 𝒚 = 𝒃0, suppose that we obtain the optimal point 𝒚 = 𝒃1 without any

constraint.

9: while optimal point 𝒃 violate the classification and/or feasibility constraints do:
10: 𝒃𝒊 = 𝒃𝒊−1 + _(𝒃𝒊−2 − 𝒃𝒊−1) with _ ∈ (0, 1], 𝑖 = 2, 3, ...

11: end while
12: end if
13: N ′ = Repair(N , 𝒚, 𝒃𝒊)
14: return N ′

However, the proportion of the favorable prediction is not equal to the distribution of the favorable

prediction considering that the dataset cannot fully reflect the real-world. To tackle this issue, we

perform a uniform-sampling just on protected (independent) features, and then we obtain the

distribution of other features. Finally, we combine such two types of features and the corresponding

sampling labels. With 10000 repetitions of sampling, we obtain data with the same amount, and we

regard them as the input of trained neural networks to calculate the difference of proportion of

specific protected feature. i.e. we gain the fairness of specific protected feature. It is worth noting

that CARE and the other state-of-the-art approaches repair fairness based on original datasets.

Meanwhile, we use robustness radius to measure robustness. Since the typical form of a convex

optimization problem is to minimize a convex function subject to a set of convex constraints. We

regard the the reciprocal of the robustness radius as the optimization objective. Then we employ

state-of-the-art tools for verifying the robustness of neural networks to calculate robustness radius.

In AutoRIC, we integrate DeepZ to calculate robustness radius. DeepZ [35] is a robust neural

network verification tool based on Zonotope-based abstraction. It leverages abstract interpretation

techniques to efficiently handle input uncertainties and provide formal proofs of a network’s

robustness. DeepZ is particularly suitable for various neural network architectures, including deep

neural networks and convolutional neural networks. By using Zonotope-based abstraction, DeepZ

can perform robustness verification with lower computational costs, making it a powerful tool for

ensuring the reliability of neural network models under specific input perturbations.
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Sampling and Fitting. In the following, we introduce concrete sampling procedures to mapping

the faulty parameters and properties. Given a trained network and faulty parameters, we randomly

sample new parameters within the range of parameter values. Then we gain a set of sampled

parameter values, which are used to modify the network accordingly. We calculate certain property

values for these modified networks based on the aforementioned computational method. Meanwhile,

we record the mapping relationship between the sampled parameter values and the corresponding

property values.

After determining the coefficients such as 𝑐 , 𝒑 and 𝑸 through fitting, we identify the neurons

with significant contributions in the hidden layers. For each neuron, given the corresponding

parameters, the dimensionality of 𝑸 is determined by the number of parameters. Based on the

fitting results, we approximate the function 𝑓 (𝒚) as follows:

𝑓 (𝒚) ≈ ˆ𝑓 (𝒚) = 1

2

𝒚T𝑸𝒚 + 𝒑T𝒚 + 𝑐

Optimization with Constraints. Applying the localization method of CARE, we localize the initial

faulty parameters, and then select parameters from a single layer near to the output. We categorize

the input data into two classes, one with accurate prediction and one with erroneous prediction.

For the network whose activation function is differentiable (or, piece-wise differentiable), the

behavior within each linear region of the network is linear and can be approximated. Based on the

linearization technique of PRDNN, we linearize the certain single layer of network by calculating

the Jacobian at specific points, i.e. faulty neurons. This linear approximation is precise because

these functions are differentiable almost everywhere within their domain. Computing the Jacobian

matrix at a specific point involves calculating the derivative of the network’s output with respect

to the inputs (or weight vector) at that particular layer and input point. For certain faulty neuron,

we can obtain the linear relationship between its output and its input. This is also the reason why

incremental constraint solving only supports differentiable networks.

For the inputs which are classified correctly, we linearize the faulty neurons and gain linear

relationships between output and input of neurons, which are extracted as positive constraints.

Conversely, for misclassified inputs, we extract negative constraints. On the one hand, quantities of

constraints may all result in no solution. Therefore, we select top percentage positive constraints

sorted in descending order and negative constraints sorted in ascending order. The specific percent-

age needs to be determined based on the dataset and the trained network, and this will be elaborated

on in the experimental evaluation section. Subsequently, feasibility constraints are incorporated as

necessary based on the specific context. Ultimately, we solve the quadratic programming problem

to gain the optimal of faulty parameters.

Optimization without Constraints. For networks that are non-differentiable, we currently cannot

extract constraints. Therefore, we attempted to optimize the parameters to be repaired using the

bisection detection method. Starting from 𝒚 = 𝒃0, we randomly determine the value 𝒚 = 𝒃 of faulty

parameters within range at first. Since it may violate the classification and/or feasibility constraints,

we intend to find some feasible point within the segment between the 𝒃0 and 𝒃 . Then we perform

bisection detection method to repair the faulty neurons. The details is shown in section 3.

5 EXPERIMENTAL EVALUATION
We have implemented the approach based on PyTorch and Scikit-learn. The source code and

benchmark are available at https://github.com/Anonymous89000/AutoRIC. All experiments are

conducted on a machine with Intel Core i7 3.0GHz CPU, 32GB system memory and 1 NVIDIA GTX

1660Ti GPU.
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Table 1. Benchmark datasets for fairness repair

Name P.Feature #Features Favorable label Size

Census gender, age, race 14 1(income>50K) 32, 561

Bank age 17 1(good credit) 45,211

Jigsaw race \ 0(toxic) 313,000

5.1 Experimental Setup
We apply AutoRIC to two repair tasks: 1) fairness repairing tasks and 2) robustness repairing tasks.

We adopt retraining, CARE [41] and other related work as baselines for comparison.

Fairness repairing tasks. In the following experiments, we focus on group fairness. Group fairness

examines whether subpopulations with different sensitive attributes are treated with equity by the

learned model [13]. The task aims to improve the fairness of the training model by making minor

modifications to the parameters, while ensuring minimal decrease on the model’s accuracy.

We compare AutoRICwith state-of-the-art (SOTA)method CARE and PVNN on fairness repairing

tasks. CARE is a systematic approach to repair properties such as fairness and safety, and performs

sufficient experiments on kinds of datasets. The experimental design is comprehensive and the

effects are pronounced. PVNN is an approach to formally verify neural networks against fairness.

CARE and PVNN are all implemented on the SOCRATES [33] platform, a unified platform for

neural network analysis.

For fairness repair, we adopt three open-source datasets to be our experiment subjects, which

have been used in previous work[40] on fairness testing. The three datasets that are commonly

used in machine learning model fairness testing. The details of the datasets are depicted as Table 1.

In that table, the column P.Feature lists protected features of that dataset, where trained neural

networks should function fairly on different input data with different value of the protected feature.

Intuitively, fairness issues arise when a model makes different decisions for instances that differ

only by sensitive attributes, such as age, race, or gender.

• Census income [22] consists of 32, 561 instances with 14 features, among which gender, age

and race are protected features. The dataset is used to predict whether an adult’s income

exceeds $50K per year.

• Bank Marketing [31] consists of 45, 211 instances with 17 features, among which age is the

protected feature. The dataset is used to predict if the client will subscribe a term deposit.

• Jigsaw [7] consists of 313, 000 text comments, among which race is the protected feature. The

dataset is aimed to classify whether the text comments are toxic or non-toxic.

Following the existing work [2, 14, 39, 41, 45, 51], we train three 6-layer feed-forward neural

networks (FFNNs) on the first two datasets. Then we calculate fairness of the corresponding feed-

forward networks based on specific protected features. Then we repair unfair networks for each

protected feature. The details of models are depicted in Table 2. It shows the architecture, the

amount of parameters and initial accuracy of each model. For Jigsaw, we train classifier using 3

long short term memory (LSTM) layers and 1 dense layers. Following previous work, we use the

state-of-the-art embedding tool Glove [32] and adopt 50-dimension word vectors to encode text

comments. The accuracy of the classifier is 0.93.

Robustness repairing tasks. Robustness repair tasks involve identifying and correcting vulnerabil-

ities in a neural network to ensure consistent and reliable performance under various conditions.

These tasks include fault localization, followed by the application of techniques to improve the
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Table 2. Experimental Models

Model Dataset P.Feature Architecture #Parameters Accuracy

M1 Census gender, age, race 6-layer FFNN 3,750 0.84

M2 Bank age 6-layer FFNN 3,878 0.892

M3 Jigsaw race 3-layer LSTM + 1-layer Linear 4,162 0.93

M4 MNIST \ 2-layer Conv + 3-layer Linear 358,186 0.99

network’s resistance to adversarial attacks and perturbations. By refining the network parameters

and enhancing its robustness, we aim to maintain the network’s accuracy and stability, even in the

presence of unexpected inputs or challenging environments. The robustness radius is an important

metric for assessing the robustness of a neural network; the larger the robustness radius, the

stronger the network’s robustness.

For robustness repair, we adopt MNIST [25] as experimental dataset, which is a classic dataset

for verifying the robustness of neural networks. In detail, MNIST consists of 70, 000 handwritten

digits as images, among which 60, 000 images are used for training and 10, 000 images are used for

testing. The images are gray-scale and centered, with 28 × 28 pixels. MNIST need to be classified

into one of 10 digits.

Based on PyTorch, we train classifier on MNIST using 2 convolutional layers and 3 dense

layers with 0.99 accuracy. This convolutional neural network has significant effects on classifying

MNIST. Notably, even with noise, the classification accuracy of trained MNIST model may decrease

significantly. To illustrate, as is shown in Figure 2(a) and 2(b), after adding effective perturbations

such as random rotation, resize, affine transformations and sharpness adjustments, the classification

accuracy decrease from 100% to 50%.

(a) Prediction of MNIST without perturbation. (b) Prediction of MNIST with perturbation.

Fig. 2. Prediction diagram of MNIST

5.2 ResearchQuestions
We report experimental results to answer the following research questions, demonstrating Au-

toRIC’s effectiveness and efficiency. We aim to answer the following four research questions:

• RQ1: Is AutoRIC successful in neural network repairing?
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• RQ2: Are the constraints necessary?
• RQ3: How about the effectiveness and efficiency of AutoRIC?

• RQ4: Why choose Quadratic Programming?

RQ1: Is AutoRIC successful in neural network repairing?
We aim to construct a universal repair approach, which can repair various kinds of properties of

various kinds of neural networks. To answer this question, we conduct experiments that explore

two aspects.

Fairness Repairing. Our approach works on any network whose activation function is differ-

entiable (or, piece-wise differentiable). Using AutoRIC, we first repair fairness of FFNN and LSTM

on aforementioned datasets. We describe the details of our experiments in the following.

Following the previously mentioned procedures for fault localization, fairness calculation, and

sampling, we establish the mapping relationship between the faulty parameters and fairness.

Meanwhile, we determine the coefficients like 𝑐 , 𝒑 and 𝑸 after fitting. Take the fairness of feature

gender of census dataset for example, the faulty neurons which have outstanding contributions are

the 7
𝑟𝑑

neuron, 11
𝑟𝑑

neuron and 12
𝑟𝑑

neuron at 3
𝑡ℎ

hidden layer. Each neuron has 8 parameters,

the dimension of 𝑸 is 24 × 24. Based on the result of fitting, we get the approximation of 𝑓 (𝒚24,1).

𝑓 (𝒚24,1) ≈ ˆ𝑓 (𝒚24,1) =
1

2

𝒚T

24,1𝑸24,24𝒚24,1 + 𝒑T

24,1𝒚24,1 + 𝑐

Then we extract and select the classification and feasibility constraints and perform quadratic

programming with constraints. It is worth noting that we extract constraints from testing dataset.

For example, the testing dataset of census consist of 7543 instances of data and the testing dataset

of census consist of 11303 instances of data. According to the optimization results, we obtain the

optimal values of the parameters to be repaired.

Table 3 reveals the results of repairing with constraints. The table provides the parameters

after localization, positive constraints sorted in descending order, negative constraints sorted in

ascending order, in addition to the fairness increase percentage and accuracy drop percentage.

Fairness increase means the training model exhibits less bias when when facing different groups,

treating all categories more fairly. Accuracy drop means a decline in the network’s performance on

classification tasks. Taking the age feature of bank dataset as example, we choose top 0.04% positive

constraints sorted in descending order and top 0.4% negative constraints sorted in ascending order.

The faulty neurons which have the largest contributions are the 7
𝑟𝑑

neuron, 11
𝑟𝑑

neuron and 12
𝑟𝑑

neuron at 3
𝑡ℎ

hidden layer. AutoRIC successfully repairs M2, with 100% fairness improvement and

the accuracy drops slightly(1%). For census dataset, we select less percentage of both positive and

negative constraints. For example, we choose top 0.2% positive constraints and top 0.2% negative

constraints for protected feature—gender. Therefore, it is essential to select appropriate percentage

of constraints for specific dataset.

Table 4 concludes the fairness repairing results, which includes model, protected feature, fairness

before/after repairing, accuracy before/after repairing, and the percentage of fairness increase and

accuracy drop. Table 4 demonstrates that distinct datasets have distinct fairness concerns. Bearing

in mind that fairness is the measure of evenness of distribution, the lower the value the more

equitable the networks tend to be. For M1, the fairness of gender is more outstanding with 0.138.

AutoRIC has an average 51.17% and 3.77% fairness increase and accuracy decrease. AutoRIC is able

to repair the fairness of M2 to a near-zero level with slight accuracy drop (1%). Meanwhile, for M3

with LSTM cells, AutoRIC increases fairness by 66.67%, with a mere 2.15% decrease in accuracy.

Robustness Repairing. To verify the generality of our framework, we measure robustness by

calculating the robustness radius and apply it to our framework. For robustness repair tasks, we use

DeepZ [35] to verify the robustness of neural networks. This verification tool can process quickly
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Table 3. Details of Repairing

Model_Feature Param. localization Pos-constraints(d) Neg-constraints(a)

Census_gender (3,7), (3,11), (3,12) 0.20% 0.20%

Census_age (3,2), (3,7), (3,10) 0.40% 0.10%

Census_race (3,3), (3,7), (3,10) 0.60% 0.20%

Bank_age (3,7), (3,11), (3,12) 0.04% 0.40%

*
Pos-constraints(d), Neg-constraints(a) is short for positive constraints sorted in descending order,

negative constraints sorted in ascending order.

Table 4. Fairness Repair with Constraints

Model P.Feature Fair-B Fair-A Acc-B Acc-A Fair-Increase(%) Acc-Decrease(%)

M1 gender 0.138 0.069 0.840 0.814 50.22 3.01

M1 age 0.076 0.0441 0.840 0.829 41.97 1.32

M1 race 0.076 0.0299 0.840 0.803 60.66 4.40

M2 age 0.048 0.000 0.892 0.883 100.00 1.00

M3 race 0.060 0.020 0.930 0.910 66.67 2.15

*
P.Feature, Fair-B, Fair-A, Acc-B, Acc-A, Fair-Increase, Acc-Decrease is short for Protected Feature, Fairness

Before, Fairness After, Accuracy Before, Accuracy After, Fairness Increase, Accuracy Decrease.

Table 5. Robustness Repair

Model Robust-B Robust-A Acc-B Acc-A Robust-Increase(%) Acc-Decrease(%)

M4 0.126 0.140 0.990 0.980 15.87 1.01

*
Robust-B, Robust-A, Robust-Increase is short for Robustness Before, Robustness After, Robustness Increase.

when the answer is accurate, or it may take longer. The robustness radius of M4 was improved by

15.87% (from 0.126 to 0.140) with a 1.01% decrease in accuracy.

In summary, AutoRIC successfully addresses neural network issues and significantly increases

fairness by over 50% on average. The robustness radius has a 15.87% increase. However, further

experimentation reveals an inverse relationship between neural network properties and classifi-

cation accuracy when constraints are adjusted. When the fairness reaches a specific percentage,

there will be a significant drop in accuracy. Since fairness and accuracy do not always align, it is

challenging to maintain a high degree of accuracy while ensuring fairness. Therefore, we select

a balance between improving fairness and minimizing the drop in accuracy within a set range,

ultimately finding the optimal balance point.

Answer to RQ1 AutoRIC effectively transfers the neural network repairing to an opti-

mization problem and successfully repairs quantitative properties such as fairness and

robustness. Meanwhile, further experimentation reveals an inverse relationship between

neural network properties and classification accuracy when constraints are adjusted. It is

essential to select a balance between repairing and maintaining accuracy.

RQ2: Are the constraints necessary?
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Fig. 3. Optimization results without constraints of M1_Gender

Note that we currently can not extract the constraints from all kinds of trained neural networks

since the activation function which is not differentiable. Therefore we propose another repairing

method without constraints. In practice, we combine the optimization without constraints and

bisectional detection method to repair the trained networks since unconstrained optimization may

result in a large drop of accuracy. The frequency of bisectional detection depends on the results of

fairness and accuracy. Performance of this method is demonstrated to be linked to the dataset and

model through experimental results.

Figure 3 illustrates the results of the experimental results of unconstrained optimization with
bisectional detection (UOBD, for short) for M1 w.r.t. the protected feature gender. As it demonstrates,

fewer bisectional search after optimization will produce an alarming decrease in fairness and

accuracy. Such a search strategy works most effectively at the setting of time = 7.

Figure 4 illustrates the results of the experimental results of UOBD for M1 w.r.t. the protected

feature age. Figure 4 follows the same trend as Figure 3 regarding fairness and accuracy. Nevertheless,

when split three times, the fairness and accuracy is comparable to the initial network. Evidently,

this method is ineffective for this feature and model.

Figure 5 reveals the results of the experimental details of UOBD for M2w.r.t. the protected feature

age. As a whole, the accuracy and fairness all diminish as further bisections are done. By dividing

three times, the outcome gives the best outcome. The fairness decreases to zero with a slight drop

in accuracy(1%). This method is evidently successful for this dataset and model.

Answer toRQ2As a result, optimizationwithout constraints is not stable in its performance

and output, therefore, imposing constraints when performing repairing is necessary.

RQ3: How about the effectiveness and efficiency of AutoRIC?
For the effectiveness of AutoRIC, we choose Retraining, CARE and PVNN as the baseline. Table

6 illustrates the results, including fairness improvement percentage, accuracy decrease percentage

and cost of time.
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Fig. 4. Optimization results without constraints of M1_Age

ori_net opti_without_cons bisec_1 bisec_2 bisec_3
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

fa
ir

ne
ss

fairness

76

78

80

82

84

86

88

90

92

ac
cu

ra
cy

(%
)

accuracy(%)

Fig. 5. Optimization results without constraints of M2_Age

Compared with Retraining, AutoRIC achieves a higher percentage increase of about 42.56%

in fairness for all features compared to retraining, indicating that AutoRIC is more effective in

improving model fairness. Meanwhile, AutoRIC results in a lower percentage decrease of about

1.86% in accuracy than retraining, suggesting that AutoRIC is better at maintaining the original

accuracy of the model.

Compared with CARE, AutoRIC has the advantage in terms of fairness improvement and time

consumption. However, for M1, AutoRIC has a higher decrease in accuracy of about 1.1% compared

to CARE. We attribute this to the inability to achieve the same high initial accuracy as CARE. For
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Table 6. Comparison with Retraining, CARE and PVNN

Model Feature Tech. Fair-Increase(%) Acc-Decrease(%) Time(s)

M1

gender

AutoRIC 50.22 3.01 79
Retraining 26.81 4.18 1

CARE 46.15 2.27 240

age

AutoRIC 41.97 1.32 112
Retraining 5.70 1.43 1

CARE 30.50 2.27 276

race

AutoRIC 60.66 4.40 139
Retraining 13.16 5.42 1

CARE 73.40 3.40 314

M2 age

AutoRIC 100.00 1.00 69
Retraining 77.43 1.09 2

CARE 94.85 1.09 435

M3 race

AutoRIC 66.67 2.15 79
PVNN 21.96 0.70 1638

Table 7. Time cost of tasks

Model Feature Fitting(s) Linearize(s) Optimization(s) Total(s)

M1 gender 54.10 0.07 24.76 78.93

M1 age 84.77 0.05 26.78 111.60

M1 race 113.81 0.04 25.57 139.42

M2 age 63.68 0.04 4.51 68.23

M3 race 74.11 — 4.65 78.76

M4 — 8192 — 0.23 2209.95

M2, AutoRIC performs best in both accuracy decrease and fairness improvement. For M3, results

show that AutoRIC yields 3 times more fairness improvement than PVNN.

For the efficiency of AutoRIC, the majority of time cost comes from quadratic fitting and quadratic

programming, which all take polynomial time in the number of faulty parameters. Concerning

quadratic fitting, there are two steps —the first step is to generate discrete points used for fitting,

i.e. a pair of fairness and faulty parameters, the second step is to perform quadratic fitting to

gain the quadratic function. Followed by optimization with constraints or optimization without

constraints and bisection. Table 6 reveals the total time comparison with CARE and PVNN. In

total , our approach is around 2 and 7 times more efficient than CARE and PVNN in fairness tasks.

Considering fairness improvement, accuracy decrease, and time efficiency, AutoRIC offers superior

overall performance compared to others.

Table 7 provides the cost of time for performing fitting and UOBD, respectively. It has been

experimentally evaluated that AutoRIC is efficient. It is worth mentioning that the fitting cost of

M4 depends on the robustness verification by DeepZ. “— ” indicates that the experimental setup

lacks the protected feature or that a certain operation is not performed.
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Table 8. Comparison of two optimization methods

Model_Feature Method Fair-Increase(%) Acc-Decrease(%) Time(s)

M1_gender

QP 78.99 4.26 80
LP 72.46 6.49 55

M1_age

QP 90.39 6.63 114
LP 86.89 8.61 88

M1_race

QP 84.87 7.66 135
LP 84.64 8.55 110

Answer to RQ3 It is shown that AutoRIC is effective and efficient in repairing tasks. With

a slight accuracy decrease, AutoRIC repairs the high-level properties with more increase

than state-of-art methods. AutoRIC is around 2 and 7 times more efficient than CARE and

PVNN in fairness tasks. Likewise, AutoRIC repairs robustness within a short time.

RQ4: Why choose Quadratic Programming? Neural networks can model complex, non-

linear relationships between inputs and outputs. Therefore, it is difficult to convert the repair task

into a linear programming problem. Quadratic programming (QP) performs better than linear

programming (LP) to model this problem, and the following experimental results also illustrate

this concept. In table 8, We compare the fairness repair effectiveness of two methods on M1. After

selecting appropriate amounts of constraints, linear programming has greater accuracy drop with

less fairness improvement. For the feature gender of M1, QP improves the fairness by 78.99% with

4.26% accuracy decrease while LP improves the fairness by 72.46% with 6.49% accuracy decrease. In

total, M1 outperforms LP by 3.42% on average when considering fairness, while sacrificing 1.7% in

accuracy. Considering fairness and accuracy can not achieve optimal results at the same time, there

is a trade-off between fairness and accuracy. Therefore, LP is not an effective option for performing

repair task. Futhermore, theoretical support for programming beyond quadratic programming has

not been sufficient. So we choose to use QP in our repair framework. Compared to QP, LP method

takes significantly less time for optimization, almost negligible, while the time consumption in

other aspects is similar.

Answer to RQ4When performing the same repairing task, QP results in a smaller decrease

in accuracy than LP. Therefore, QP has the upper hand in repairing effectiveness.

6 DISCUSSION
Based on the aforementioned experiments, we observed a potential tradeoff between the network’s

properties and its performance. For instance, in the fairness repair task concerning the protected fea-

ture gender within the census dataset, we selected eight sets of constraints with varying proportions

of positive and negative constraints. These serve as constraints to solve quadratic programming,

resulting in eight different results. Figure 6 illustrates the concurrent trend of increase of fairness

and decrease of accuracy. The experimental results exhibit a pattern where the percentage increase

in network fairness and the percentage decrease in accuracy tend to show a roughly positive

correlation. Certainly, not all repair tasks exhibit such a strong positive correlation. The general

relationship between properties and network performance still requires further investigation. Other
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Fig. 6. The fairness increase trend and accuracy decrease trend of M1_Gender

related works such as FairNeuron [13] also observe that optimizing accuracy and fairness can be

contradictory goals in training.

7 RELATEDWORK
Currently, there are three mainstream repairing approaches, namely retraining, fine-tuning without

fault localization and fine-tuning with fault localization. Towards the pre-trained neural networks,

the retraining approach trains the neural networks again to satisfy certain properties. Fine-tuning

focuses on repairing a specific subset of neural network parameters. Fault localization can identify

such a subset that have a greater impact on misbehavior of neural networks. This procedure can

make fine-tuning more targeted and purposeful. In the following, we introduce the related works

mentioned above respectively.

With reaching analysis, Veritex [49] can repair unsafe neural networks that are used in safety-

critical systems. It calculates the reachable domain of unsafe DNNs and during retraining adds

a loss function term to optimize parameters. This approach can also repair faulty behavior of

DNN Agent combined with deep reinforcement learning algorithms. The FairNeuron [13]and

RUNNER [43] are both approaches aimed at enhancing the fairness of deep neural networks by

addressing unfair neurons. FairNeuron is a method designed to enhance fairness in learning models

by employing a multi-step diagnosis process that includes profiling and analysis to identify neurons

that contribute to fairness. Its strengths lie in its comprehensive approach to understanding model

fairness and its capability to selectively retrain on specific samples. However, FairNeuron presents

certain disadvantages, such as high computational overhead due to its iterative diagnosis process

and the complexity involved in hyperparameter tuning. RUNNER is an efficient and effective

framework for enhancing fairness in machine learning models. It simplifies the diagnosis of unfair

neurons through an importance-based criterion and stabilizes them via retraining with a tailored

loss term. The advantages include reduced computational overhead, direct reduction of neuron

discrimination, and robust generalization across different data types. However, the framework

also has limitations, such as the necessity of a white-box model to access internal parameters and

the reliance on a single hyperparameter, which requires careful calibration for optimal neuron
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selection. Ethical Adversaries [9] framework integrates adversarial machine learning to improve

fairness in predictive models. This framework employs a dual-adversary approach, utilizing evasion

attacks to iteratively refine the model, with the objective of improving demographic parity and

equal opportunity while maintaining utility. Key strengths of the framework include its innovative

methodology, empirical validation, and utility preservation. However, it faces challenges such

as computational complexity, risk of overfitting, generalizability concerns, reliance on surrogate

models, and sensitivity to hyperparameter tuning.

REASSURE [12] is the first sound and complete repair framework for ReLU networks with strong

theoretical guarantees. This technique proposes to use a patch function and it supports whole

network repair. Unlike other repairing strategies, REASSURE changes the function space locally

and guarantees the removal of the buggy behavior. Knowing that ReLU networks are piece-wise

linear (PWL), this method constructs a patch network working on the linear space of faulty input.

This method has both completeness and soundness guarantees. PRDNN [39] is a provable deep

neural network repairing algorithm, which introduces a decoupled DNN based on the original

one, then it reduces the repair problem to a linear programming problem. Followed by APRNN, it

expands the PRDNN to V-polytope provable repair and can modify multiple layers of the DNN with

polynomial time. However, this approach aims to improve the accuracy of models, e.g. MNIST. Our

work pays attention on the properties of trained models. MDNN [15] is a method making provably

minimal modifications of Deep Neural Networks without retraining and less unexpected effects

on behavior. Combined with newest verification techniques, this approach proposes a modified

technique with specific demand. But this approach is shown to be NP-complete and time-consuming.

Editable Fine-Tuning [36] proposes a training technique which can quickly edit the trained model.

However, this method can not guarantee the soundness and completeness. LocalRepair [30] offers

general applicability to various neural networks, emphasizes layer-wise repairs using Mixed-Integer

Quadratic Programming (MIQP), and maintains model accuracy by minimizing modifications.

Nonetheless, the approach confronts scalability due to computational demands, susceptibility to

overfitting, and challenges in reflecting overall network behavior. The success of this method is

also contingent upon the linearity of predicate representation for constraints. Counterexample-

guided-Repair [5] explores the robust optimization perspective for counterexample-guided neural

network repair, highlighting its potential for safety-critical applications. The method’s strengths

are highlighted, including its proven termination for specific models and the development of an

efficient repair algorithm based on QP. However, it also acknowledges limitations, including the lack

of termination guarantee in general settings and the theoretical disadvantage of using early-exit

verifiers.

NNRepair [46] is a constraint-based technique for repairing neural network classifiers. This

technique firstly proposed fault localization to locate faulty parameters based on uncommon

activation functions of neurons. Then it performs repairing using constraint solving by correcting

faulty activation functions and solves it as linear programming problem. It focuses on repairing the

network logic on the intermediate layer or the last layer. Sun et al have presented CARE [41], a

causality-based neural network repair framework, which applies causality-based fault location to

all layers of neural networks and performs optimization using PSO algorithm. Also, this framework

can repair both FFNNs and CNNs. CARE suggests the causality-based fault localization technique,

wherein a neural network is modeled as a structural causal model (SCM), and then the casual

contribution to measure the relationship between hidden neurons and predictions is calculated.

This technique chooses the faulty neurons based on the casual contribution, which is scalable to

various properties of neural networks. Meanwhile, Sun et al [40] present another approach to verify

neural networks against fairness. Based on targeted neural networks, this approach learned Markov

chains to verify neural networks against fairness via optimization, and it can deal with both FFNNs
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and RNNs. BIRDNN [26] is an approach which supports both retraining and fine-tuning. It intends

to study the behavior of neurons at bottom, and integrates Monte Carlo sampling technique to local

behavior of NNs. Thus the domain repair process is converted to sampled repair process. Similar to

CARE, BIRDNN uses PSO algorithm to fix the faulty neurons. Arachne [37] is an innovative search-

based repair approach for Deep Neural Networks (DNNs) that addresses specific misclassifications

by directly optimizing neural weights through Differential Evolution(DE). It introduces an advanced

fault localization technique, Bidirectional Localisation(BL). It demonstrates effectiveness across

various datasets and DNN architectures, including handling fairness issues. Despite these strengths,

Arachne’s method may face challenges with complex model architectures, computational intensity

for larger networks, and potential overfitting. RNNRepair [48], a model-based approach for the

automatic repair of Recurrent Neural Networks (RNNs). The method’s strength lies in its ability to

interpret and rectify incorrect behaviors by constructing an influence model that efficiently assesses

the impact of training samples on predictions. Nevertheless, it relies on Gaussian Mixture Models

for state clustering, which may introduce complexity in determining the optimal number of clusters.

Despite this, RNNRepair demonstrates effectiveness in identifying influential training samples and

offers a practical solution for enhancing RNN reliability. DeepRepair [50], an innovative approach for

the automatic repair of deep neural networks in real-world operational environments. This method

leverages style-guided data augmentation to incorporate unknown failure patterns into training

data, enhancing the network’s robustness against various corruptions. Despite its effectiveness

in improving performance across different DNN architectures and failure modes, DeepRepair

may demand substantial computational resources and relies on the diversity of collected failure

samples. Moreover, its generalizability to unseen failure patterns and adversarial attacks remains

an open challenge. VeRe [27] is a verification-guided framework for neural network repair, focusing

on identifying and optimizing faulty neurons via linear relaxation. It efficiently enhances model

robustness against backdoors and safety violations without performance drawdown. Nevertheless,

its application is currently limited to fully-connected layers and formal-specifiable issues. Airepair

[38] is a pioneering repair platform for neural networks, enabling the systematic assessment of

repair methods. It supports diverse models and datasets, offering a modular framework for direct

weight modification, retraining, and architecture extension. Despite its early-stage limitations

and potential configuration dependencies, Airepair provides a valuable benchmarking tool for the

neural network repair community.

8 LIMITATIONS
Nevertheless, our work has the following limitations:

• Assumption of Differentiability: The repair algorithm with constraints relys on the

assumption that the DNN’s activation functions are differentiable, which may not hold for

all types of activation functions used in practice.

• Scalability: Although we present a polynomial-time reduction for repair problems, the

scalability of the approach to very large and deep neural networks requires further exploration

remains an issue. The repair scalability of AutoRIC relies on the solvers of QP currently.

• Layer-wise Repair: Limited to the linearization of networks, the implemention of incre-

mental constraint solving with constraints focuses on repairing one layer at a time, which

might not capture complex faults that span multiple layers. Although bisectional detection

can perform cross-layer repairs, their current performance is mediocre and requires further

improvement.

• Lack of Unified Input Description: AutoRIC is designed to calculate properties such as

fairness, and robustness from case to case. Nevertheless, we need to establish a unified input
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description of properties that serves as the input interface for AutoRIC, which remains a

challenging issue at present.

In conclusion, while AutoRIC shows significant potential, it is constrained by several limitations.

These include the assumption of differentiability, scalability issues with very large and deep neural

networks, limitations in layer-wise repair, and the absence of a unified input description framework.

Addressing these challenges is crucial for the further development and effectiveness of AutoRIC.

9 CONCLUSION
In this work, we present AutoRIC, an optimization-based technique for repairing neural networks

for various properties and the first white-box repair method based on analytical approach. We

devise the function between faulty parameters and high-level properties, and convert the repairing

problem into an optimization problem. AutoRIC is experimentally evaluated with multiple neural

networks trained on benchmark datasets. Results demonstrate that AutoRIC is efficient and effective

on repairing the model, accompanied with minor decrease in accuracy of the existing model. Future

work could explore the linearization technique on crossing layers of networks. Meanwhile, future

work may try to establish a unified input description using specification language of various

properties.
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