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Despite its effectiveness in ensuring software quality, code review remains a labor-intensive and time-
consuming task. In order to alleviate this burden on developers, researchers have proposed the automation
of code review activities, particularly focusing on automating code revisions. This automation can benefit
both code authors, as they are relieved from the manual task of code revision, and code reviewers, as they
are spared from addressing minor code flaws through manual comments. While current code revision ap-
proaches have shown promising results, they typically operate within a single phase, in which the code
requiring revision is treated as the input of a deep learning model, and the revised code is directly generated
through a sequence-to-sequence transformation. Consequently, these approaches tackle both the challenges
of localization (i.e., where to revise) and revision (i.e., how to revise) simultaneously. Attempting to handle
the entire complex process with a single model goes against the principle of “Divide-and-Conquer”, which
encourages breaking down complex problems into smaller sub-problems and addressing them individually.
In fact, we have observed that existing code revision approaches often yield inaccurate results in both the
localization and revision phases. In this paper, we present a two-phase code revision approach that aims to
overcome the aforementioned limitations by adhering to the “Divide-and-Conquer” principle. Our approach
comprises two key components: a localizer, responsible for identifying the specific parts of the input code
that require revisions, and a reviser, tasked with generating the revised code based on the localization result.
Extensive experiments conducted on two widely-used datasets demonstrate the substantial superiority of
our approach over existing code revision approaches. For instance, when revising code based on the code
reviewer’s comments, our approach achieves a success rate of over 20% in implementing the ground-truth
code revisions. In comparison, the widely-used pre-trained model CodeT5 achieves a success rate of less than
16% on the same test set, which contains 16K+ cases.
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1 INTRODUCTION
Code review is a critical activity inmodern software development [1, 35, 36], during which the poten-
tial bugs are prevented and the software quality is thus ensured [2, 34]. Given the easily-recognized
benefits, code reviews are widely adopted in both open-source projects [44] and industrial software
[45]. However, these advantages often require significant human efforts, as code reviewers have
to manually inspect the code and code authors have to manually make revisions to address both
functional (e.g., compilation and testing) and non-functional (e.g., readability and maintainability)
concerns that have been identified. For instance, it was reported that Microsoft Bing requires more
than 3K reviews per month [43]. Quantitatively, developers spend an average of more than six
hours per week reviewing code submitted by others [3]. Moreover, reviewing forces developers
to switch context away from their current work, which may also increase the efforts spent in the
code review process [6].
To reduce the burden on developers, researchers have proposed a number of approaches to

automate code review activities [49, 53, 54]. In this domain, there is a particular emphasis on
automating code revisions. This can involve proactively addressing potential flaws before submitting
the code (i.e., Code Revision before Review) [49, 53] or making intended code changes in response
to comments from code reviewers (i.e., Code Revision after Review) [27, 67], both of which are
considered as effective to boost the code review process. For instance, Tufano et al. made the
first step in this direction by using a supervised Transformer model [54], and they later applied
self-supervised pre-training techniques on such tasks [53]. We will refer to the existing studies as
code revision approaches hereafter.
Despite some promising results achieved, existing code revision approaches do not follow a

common practice of making code changes. Specifically, the process of making a code change
typically consists of two primary steps: localization (addressing the question of where to change)
and revision (addressing the question of how to change). For instance, the widely-studied automatic
program repair (APR) techniques usually contain a fault localizer, which identifies the buggy
statements, and a patch generator, which performs program transformations to generate candidate
patches [13, 32]. In contrast, all the existing code revision approaches perform the task within a
single phase in which a deep learning model is utilized to change the submitted code, probably
with the review comment, into the code revised by the developer through a sequence-to-sequence
transformation. In this paradigm, the model is required to perform both the localization and revision
tasks simultaneously, which means that it needs to first understand which parts of the code require
modifications and then autonomously make the necessary revisions to such code. Having an
individual model fulfill such a complex process contradicts a foundational principle in software
engineering, i.e., the “Divide-and-Conquer” principle, where it is encouraged to break down a
complex problem into smaller, more manageable sub-problems for facilitating problem-solving
[21]. Indeed, we have observed (and will illustrate with specific examples in Section 3) that models
operating within this paradigm could either pinpoint inaccurate locations for making modifications
or generate incorrect modifications, which can be considered as two primary limitations of existing
code revision approaches. Previous studies in the software engineering domain have shown that
splitting the original problem into several sub-problems and solving them independently would
result in effectiveness enhancement [23, 29, 38]. We therefore postulate that the effectiveness of
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code revision approaches could also be boosted if they could follow the “Divide-and-Conquer”
principle.
Based on the above idea, in this paper, we propose a two-phase approach named CodeReviser

for automating code revisions. CodeReviser consists of two main components, i.e., a localizer to
identify which parts of the code need to be revised, and a reviser to perform the modifications based
on the localization results of the localizer. The behind intuition is that by breaking down the code
revision task into two comparatively trivial sub-tasks, the localizer and reviser could effectively
accomplish their respective roles, thereby overcoming the aforementioned two limitations of
existing code revision approaches, and combining these two components would lead to more
qualified code revision results at the end. To provide qualified localization results, the localizer of
CodeRevisermainly faces two challenges, i.e., how to make use of the domain knowledge encoded
in the pre-trained code models and how to localize multiple code entities that need to be changed.
To tackle these challenges, the localizer in CodeReviser employs a novel generative localization
strategy, which offers a dual rationale. First, by formulating the localization task as a sequence-to-
sequence transformation, the localizer can leverage an encoder-decoder architecture and initialize
its parameters using pre-trained code models such as CodeT5 [62], which enables it to incorporate
domain knowledge about programming languages captured from vast amounts of data. Second, by
generating the localization result rather than selecting a fixed number of entities, the localizer can
theoretically provide a more flexible outcome, allowing for the localization of an arbitrary number of
code entities. Building on the impressive code generation capabilities demonstrated by pre-trained
code models [5, 57, 58, 62, 66], the reviser in CodeReviser leverages the existing CodeT5 model
and undergoes additional fine-tuning specific to its task. Consequently, from the holistic view,
both the localizer and the reviser components of CodeReviser adhere to the sequence-to-sequence
paradigm, where the former translates the input code into an intermediate representation that
includes the localization result; while the latter takes this intermediate representation as input and
generates the revision.
To assess the effectiveness of CodeReviser, we perform extensive experiments on two widely-

used datasets in the code revision domain, i.e., 𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 [54] and 𝑇5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 [53].
Results reveal that CodeReviser outperforms the state-of-the-art code revision approaches to a
large extent on both the Code Revision before Review and the Code Revision after Review tasks.
For instance, in terms of the Code Revision after Review task, CodeReviser achieves Exact Match
values (indicating how often an approach generates a code revision that is identical to that made
by developers) of 40.8% and 20.5% on the two datasets, respectively, exceeding the best-performing
baseline, i.e., CCT5 [28], by 17% and 22%. Moreover, a thorough analysis reveals that CodeReviser
exhibits more superior proficiency than state-of-the-art approaches in both precisely identifying
modification locations and generating accurate revisions. These findings suggest that adhering to
the “Divide-and-Conquer” principle holds promise in mitigating the limitations of current code
revision approaches.

In summary, our study makes the following major contributions:

• Significance: Through case analysis, we identify the two primary challenges of current code
revision approaches as: ➀ pinpointing the accurate locations for making code revisions, and ➁
generating the correct modifications.

• Approach:We propose CodeReviser, a two-phase code revision approach that adheres to the
“Divide-and-Conquer” principle. It employs a localizer to identify the specific parts of the code
requiring revision, and a reviser to generate the necessary code changes. In particular, the localizer
employs a novel generative localization strategy, which empowers the localizer to leverage the
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.a Accept Submit Code

.b Reject & Comment

Author Reviewer

 Re-submit

Fig. 1. A brief illustration of the code review process.

capabilities of pre-trained code models while also enables it to identify multiple code segments
in need of revision.

• Experiments: We conduct extensive experiments in four different settings (two datasets × two
code revision tasks), and find that our approach consistently outperforms existing approaches. We
also open source the artifacts of this study at https://zenodo.org/record/8373320 to facilitate
replications and follow-up studies.

2 BACKGROUND
2.1 Code Review Process and the Involved Code Revision Tasks
Figure 1 illustrates the process of code reviews. Typically, there are three main activities in this
process. In the first step, code authors submit the code for review. Then, code reviewers check the
submitted code and judge its correctness. The result of this step would be either accepting the
code and merging it into the main repository or rejecting the code and explaining how to improve
the code with a detailed comment. Later, the code authors revise the code, address the received
comment, and resubmit the code for review again. Note that the resubmitted code may receive an
additional comment made by the reviewer, which could result in a second revision. Such a process
ends when the reviewer accepts the revised code.
During this process, there are mainly two derived code revision tasks that can be automated

to enhance software development. We follow the existing studies to formulate these two tasks
[49, 53, 54, 68].
Code Revision before Review (CRB). This type of revision could happen before the code

authors submit their code (i.e., before Step ①). The benefits of this type of revision are twofold: on
the one hand, it could help the authors address some simple flaws and thus improve the quality of
the code before the code review; on the other hand, it also releases the burden of the reviewers on
commenting on simple flaws during the review. Formally, given a code snippet to submit for review
𝐶𝑠 , and its revised version 𝐶𝑟 that fulfills the recommended code changes from reviewers, this task
is formulated as: 𝑓 (𝐶𝑠 ) → 𝐶𝑟 , where 𝑓 is a transformation approach, e.g., a deep learning model.
Code Revision after Review (CRA). This type of revision aims at revising the code based

on reviewer’s comments (i.e., happens between Step ②.b and Step ③). The benefits of this type of
revision are also twofold: on the one hand, the reviewer is able to attach to the comment a preview
of how the code could look like by addressing his/her concerns; on the other hand, the author is
able to revise the code more quickly since the initial revised version can be automatically generated.
Formally, given𝐶𝑠 and𝐶𝑟 together with a comment 𝑅𝑛𝑙 written by the reviewer in natural language,
this task can be formulated as: 𝑓 (𝐶𝑠 , 𝑅𝑛𝑙 ) → 𝐶𝑟 , where 𝑓 is another transformation approach.
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2.2 Existing Code Revision Approaches
In recent years, researchers have proposed a number of approaches based on the popular Trans-
former architecture [55] to automate code revisions. In the following, we briefly introduce the
existing approaches in the literature.
Trans-Review [54] applies the Transformer architecture on the code revision tasks through a
sequence-to-sequence (seq2seq) translation paradigm (i.e., translating code before review into code
after review), and such a paradigm is adopted by all the follow-up studies going to be introduced
below. The main point of this approach is that to reduce the vocabulary size, the literals and
identifiers in the code are abstracted, e.g., the method name hasProperties will be assigned the
ID of METHOD_1.
AutoTransform [49] utilizes a Byte-Pair Encoding (BPE) tokenization [46] to overcome the
limitation of Trans-Review on generating new identifiers. Specifically, although Trans-Review
could be able to predict the correct ID for a new identifier or literal in the revised code (e.g., VAR_10),
it cannot map the ID back to the actual content (e.g., sidePanel). BPE splits a code token into a
sequence of frequently occurring sub-tokens, reducing the vocabulary size while preserving the
ability of generating new tokens.
T5-Review [53] leverages the Text-To-Text Transfer Transformer (T5) architecture [40]. The model
is pre-trained on a dataset collected from Stack Overflow and the CodeSearchNet dataset [18], with
the Masked Language Modeling (MLM) pre-training task where the model is asked to predict some
randomly masked contents.
CodeT5 [62] is another pre-trained model. Beyond the MLM task, it is also trained to tag identifiers
in the code and further predict the detailed identifier names. The recent reproduction study [68]
shows that CodeT5 outperforms the aforementioned approaches on code revision tasks.
NatGen [5], an extension of CodeT5, introduces an additional pre-training task where the model
is trained to transform unnatural code into a developer’s original writing style. This pre-training
process aims to strengthen the model’s grasp of code semantics, enabling it to produce code that
closely resembles human-written code. The ultimate result could be that its proficiency in code
revision tasks is enhanced.
CoditT5 [67] builds on top of CodeT5 and designs a new pre-training task to enable the model to
reason about edits. Specifically, before outputting the revised code, the model is trained to generate
an edit plan first, which entails the detailed operations that are going to be performed on the given
code. It is expected that the edit plan can guide more accurate and precise code revisions.
CodeReviewer [27] also initializes the model parameters from CodeT5 and continuously pre-trains
the model on a dataset collected from code review processes (i.e., consisting of code diffs and review
comments). This model is expected to be more capable of understanding code changes since during
the pre-training, the input to the model is in the code diff format.
CCT5 [28] also takes code diffs as inputs in the pre-training phase. The difference between this
model and CodeReviewer mainly lies in its pre-training on a dataset gathered from software
evolution processes (i.e., consisting of code commits and commit messages). Moreover, it also
acquires the knowledge about program structure during the pre-training by predicting the code
diff based on the data flow change.
Summary. From the above introduction, it is evident that although existing code revision

approaches may vary in their chosen pre-training tasks, they generally operate within a seq2seq
paradigm in which the submitted code is translated into its revised version through an individual
deep learning model. This necessitates the model to not only identify errors in the code but also
autonomously generate revisions for those errors. As we will demonstrate in the next section,
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// Oracle Code Revision
public HueBridgeNupnpDiscovery() {
- super(SUPPORTED_THING_TYPES, DISCOVERY_TIMEOUT);
+ super(SUPPORTED_THING_TYPES, DISCOVERY_TIMEOUT, false);
}

// Code Revision by CodeT5
public HueBridgeNupnpDiscovery() {
- super(SUPPORTED_THING_TYPES, DISCOVERY_TIMEOUT);
+ super(false, DISCOVERY_TIMEOUT);
}

Listing 1. The oracle code revision and the revision generated by CodeT5 for the method
HueBridgeNupnpDiscovery.
attempting to have a single model perform such a complex process may lead to its ineffectiveness
in both steps, which could be considered as the limitations of current code revision approaches.

3 MOTIVATING EXAMPLES
In this section, we demonstrate two cases where CodeT5 [62], the state-of-the-art code revision
approach [68], fails to generate the desired revision. We fine-tune and test the CodeT5-base model
on the widely-used 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset [53], and both demonstrated cases are from the test set
of this dataset.
In the first case shown in Listing 1, the code reviewer leaves a comment “Call Super with false

as a parameter”, which indicates that false should be used as a parameter in the function call.
However, in the original code, the function call only passes two constants as arguments (i.e.,
SUPPORTED_THING_TYPES and DISCOVERY_TIMEOUT). To perform this revision, the developer
inserts false as the third argument. In contrast, CodeT5 replaces the first argument with false,
which leads to an incorrect function call. This indicates that CodeT5 comprehends the requirement
from the code reviewer is to use false as a function argument, but it unfortunately locates a wrong
place to pass the false parameter. From the coding conventions of Java language,1 parameters
with the boolean type (e.g., true and false) are typically placed at the end of the parameter list.
This example demonstrates that when the submitted code is transformed directly into the revised
code, the code revision model may struggle to identify the specific locations for modifications,
resulting in the generation of inaccurate revisions.

In the second case shown in Listing 2, the code reviewer asks for a code change by commenting
“Use a constant for "://"”, indicating that the string "://" in the code snippet should be replaced
by a constant with a descriptive name, which could potentially enhance the readability of the
code compared with the original hard-coded value [7]. To implement the necessary modification,
the developer utilizes a constant PROTOCOL_SEPARATOR, which aptly represents the semantic
information of the string, to serve as a replacement. Indeed, the string "://" is usually used to
separate a Uniform Resource Locator (URL). In detail, the URL generally follows the structure of
“<protocol>://<hostname>:<port>/”, in which the string "://" separates the protocol used to access
the resource and the hostname that identifies the server. However, CodeT5 uses another constant
URL_PROTOCAL to replace the string, which incorrectly represents its meaning. Specifically, the
protocol of the URL typically refers to HTTP, HTTPS, FTP, etc., but it is unrelated to the replaced
string. As a result, CodeT5 generates an inaccurate replacement. This example demonstrates that
when the submitted code is transformed directly into the revised code, the code revision model

1https://www.baeldung.com/java-best-practices-many-parameters-method
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// Oracle Code Revision
private void setPublicURIs(final FileSystem fileSystem) {

final String[] uris = fileSystem.toString().split("\\\\r?\\\\n");
final List <PublicURI> publicURIs = new ArrayList <> (uris.length);
for (final String s: uris) {

- final int protocolStart = s.indexOf("://");
+ final int protocolStart = s.indexOf(PROTOCOL_SEPARATOR);

publicURIs.add(getPublicURI(s, protocolStart));
}
repo.setPublicURIs(publicURIs);

}

// Code Revision by CodeT5
private void setPublicURIs(final FileSystem fileSystem) {

final String[] uris = fileSystem.toString().split("\\\\r?\\\\n");
final List <PublicURI> publicURIs = new ArrayList <> (uris.length);
for (final String s: uris) {

- final int protocolStart = s.indexOf("://");
+ final int protocolStart = s.indexOf(URL_PROTOCOL);

publicURIs.add(getPublicURI(s, protocolStart));
}
repo.setPublicURIs(publicURIs);

}

Listing 2. The oracle code revision and the revision generated by CodeT5 for the method setPublicURIs.
may struggle to generate accurate modifications even if it identifies which parts of the code should
be revised.

These two cases demonstrate that performing the code revision tasks in a seq2seq transformation
paradigm mainly faces two limitations, i.e., ➀ the inaccurate identification of the specific locations
for modifications and ➁ the inability of accurately generating desired modifications at the ground-
truth locations (the locations where the developers make revisions). Drawing on such observations,
we hypothesize that the effectiveness of code revision approaches could be improved by either
enhancing the accuracy of localization results or enhancing their ability to generate accurate
modifications. Inspired by the previous studies [25, 26, 29, 38] which split a complex task into several
sub-tasks, effectively address each sub-task, and successfully achieve effectiveness enhancements for
the original complex task in the end, we also propose to adopt the “Divide-and-Conquer” principle to
address the aforementioned limitations. Specifically, we can design a two-phase approach in which
a localizer first identifies the localizations for modifications, followed by a reviser that makes the
specific revisions. The underlying assumption here is that, by doing so, both the localizer and reviser
handle relatively trivial tasks compared to the direct transformation of the input code into the
revised code, which allows them to effectively address their respective assignments. Ultimately, by
combining these twomodels, we can enhance the effectiveness of code revisions. Indeed, experiment
results show that our approach can generate oracle outputs (i.e., the developer-provided code) in
the two cases shown in Listing 1 and Listing 2.

4 METHODOLOGY
The overall workflow of CodeReviser is shown in Figure 2. Following the “Divide-and-Conquer”
principle, CodeReviser consists of a localizer, which identifies which parts of the code need to be
changed, and a reviser, which revises the code based on the output of the localizer. We introduce
the details of the two components in the following.
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Localizer ReviserOriginal Code
Localization 

Result
Revised Code

Step 

Localization

Step 

Revision

Fig. 2. The workflow of CodeReviser.

4.1 Localizer
Generative localization. Given a code snippet, the target of the localizer is to identify the code
tokens that need to be changed. We propose to identify the token or token spans that need to be
changed since as observed in cases like Listings 1 and 2, code revisions typically pertain to specific
parts of a statement, such as an expression or an individual code token. Therefore, the traditional
statement-level localization in the APR domain [69] would provide too coarse-grained localization
results for code revision approaches. In the literature, there is an approach named BEEP [59] that
can take the buggy method as the input and predict which code token is incorrect. However, directly
applying this approach on our task is inappropriate due to two limitations. First, the BEEP model is
trained from scratch through a supervised learning manner. However, as demonstrated by recent
studies [39, 57, 66, 68], pre-trained code models have outperformed traditional supervised deep
learning models on a wide range of software engineering tasks, potentially due to the domain
knowledge of programming languages captured during the pre-training. As a result, the exclusion
of utilizing pre-trained code models leads to a missed opportunity to leverage the extensive domain
knowledge encoded within them. Second, the BEEP model (with the help of the pointer generator
network [56]) assigns a value to each input token, which indicates the probability of it being
associated with a bug, and always selects the one with the highest probability as the buggy token.
However, code revisions usually involve multiple code tokens. For instance, as revealed by the
existing study [48], over half of the patches in the Defects4J benchmark [20], which contains
hundreds of bug-fixing patches mined from projects on GitHub, involve modifications in more than
four statements. Consequently, it is hard for BEEP to provide an accurate localization result when
multiple code tokens need to be changed.
To overcome the aforementioned limitations, the localizer of CodeReviser adopts a generative

localization strategy that follows the seq2seq paradigm and translates the input code token sequence
into another sequence, where the localization result is included. The rationale of such a design
is twofold. On one hand, by treating the localization task in a seq2seq paradigm, we can borrow
the weapon of pre-trained code models with encoder-decoder architectures such as CodeT5, equip
the localizer with commonsense knowledge upon initialization instead of random initialization,
and therefore overcome the first limitation. On the other hand, the localization result is generated
rather than selected, so that such a strategy can theoretically localize an arbitrary number of code
tokens as long as the model generates accurate results, which addresses the second limitation.
Representation of the input. Formally, suppose the token sequence of the submitted code

is 𝑇 = 𝑡1, 𝑡2, . . . , 𝑡𝑛 with the length of 𝑛, and the token sequence of the reviewer’s comment is
𝐶 = 𝑤1,𝑤2, . . . ,𝑤𝑥 with the length of 𝑥 . For the CRB task, the input to the localizer 𝐼𝑙𝑜𝑐 is the code
token sequence: 𝐼𝑙𝑜𝑐 = 𝑇 ; while for the CRA task, the input to the localizer is the concatenation
of 𝑇 and 𝐶: 𝐼𝑙𝑜𝑐 = 𝑤1,𝑤2, . . . ,𝑤𝑥 , [𝑆𝐸𝑃], 𝑡1, 𝑡2, . . . , 𝑡𝑛 , where [𝑆𝐸𝑃] is a special token indicating the
separation between the code and the comment.

Representation of the output. We identify several (𝑚) code token spans that are modified by
developers through comparing the original code token sequence with the sequence of the oracle
code, i.e., the code revised by the developer (by performing token-level code diffs with the help
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/* Case 1 */
// Input code token sequence
... super ( SUPPORTED_THING_TYPES , DISCOVERY_TIMEOUT ) ...
// Oracle localization result

... super ( SUPPORTED_THING_TYPES , DISCOVERY_TIMEOUT [START] [END] ) ...

/* Case 2 */
// Input code token sequence
private void ... protocolStart = s . indexOf ( "://" ) ; ...
// Oracle localization result

private void ... protocolStart = s . indexOf ( [START] "://" [END] ) ; ...

Listing 3. The oracle localization results for the two motivating examples.

of the difflib2 library of Python). Such𝑚 code token spans are denoted as 𝑇𝑆 = {𝑡𝑠1, 𝑡𝑠2, . . . , 𝑡𝑠𝑚}
where 𝑡𝑠𝑖 = 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑡𝑖𝑒𝑛𝑑 is a consecutive token sequence from𝑇 with the length of |𝑖𝑒𝑛𝑑 − 𝑖𝑠𝑡𝑎𝑟𝑡 +
1|, 1 ≤ 𝑖𝑠𝑡𝑎𝑟𝑡 ≤ 𝑖𝑒𝑛𝑑 ≤ 𝑛. It should be noted that a token span can represent various entities
in the original code, such as a changed code token, a modified expression, or even a sequence
of consecutive statements. If 𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑖𝑒𝑛𝑑 , it means that compared with the original code, the
oracle code inserts some contents starting from the position 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 . The identified token spans
correspond to the specific sections in the original code that require modifications. The objective of
the localizer is to identify these spans, thereby facilitating the subsequent task of the reviser. To
that end, we use two special tokens (i.e., [𝑆𝑇𝐴𝑅𝑇 ] and [𝐸𝑁𝐷]) to signify the beginning and ending
positions of each modified token span and train the localizer to accurately predict the positions
of these two special tokens in its output. As a result, the oracle output of the localizer is denoted
as 𝑇𝑙𝑜𝑐 = 𝑡1, 𝑡2, . . . , [𝑆𝑇𝐴𝑅𝑇 ], 𝑡1𝑠𝑡𝑎𝑟𝑡 , . . . , 𝑡1𝑒𝑛𝑑 , [𝐸𝑁𝐷], . . . , [𝑆𝑇𝐴𝑅𝑇 ], 𝑡𝑚𝑠𝑡𝑎𝑟𝑡

, . . . , 𝑡𝑚𝑒𝑛𝑑
, [𝐸𝑁𝐷], . . . , 𝑡𝑛 .

In Listing 3, we demonstrate the oracle localization results for the two motivating examples in
Section 3. The first case is a vivid insertion example whose 𝑖𝑠𝑡𝑎𝑟𝑡 equals to 𝑖𝑒𝑛𝑑 . In such a case, the
localizer identifies the insertion point and downstream reviser is expected to insert two tokens at
that point, i.e., , and false. The second case has one modified code token span in the original code
that represents an individual token (the string "://"). The oracle output of the localizer should
start the token span with a [𝑆𝑇𝐴𝑅𝑇 ] token and end it with an [𝐸𝑁𝐷] token (as highlighted in
yellow).
It is widely observed that the outputs of large code models can be unstable. There is thus a

concern that whether we can ensure the generated localization result is in the required form (i.e.,
inserting a number of [START] and [END] token pairs into the original code token sequence). To
answer this question, we have checked our experiment results and confirmed that the outputs of
the localizer are in the ideal form. One possible explanation would be that during fine-tuning, the
model has learned the domain knowledge about how to perform such a task.

Loss calculation. Formally, the loss during the training process can be described as:

L(𝜃 ) =
𝐿𝑙𝑜𝑐∑︁
𝑗=1

−𝑙𝑜𝑔𝑃𝜃 (𝑡 𝑗 |𝐼𝑙𝑜𝑐 , 𝑡< 𝑗 ) (1)

where 𝐼𝑙𝑜𝑐 is the input of the model whose contents depends on the ongoing task, 𝜃 is the set of pa-
rameters of the localizer, 𝐿𝑙𝑜𝑐 denotes the number of tokens in the oracle output𝑇𝑙𝑜𝑐 (mathematically,
𝐿𝑙𝑜𝑐 = 𝑛 + 2 ∗𝑚), and 𝑡< 𝑗 is the token sequence generated so far.

2https://docs.python.org/3/library/difflib.html
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4.2 Reviser
Given the output token sequence of the localizer, the target of the reviser is quite straightforward,
that is, to generate the revised code. Considering the superior generation capability of the pre-
trained code models [5, 28, 62], the reviser of CodeReviser also follows the encoder-decoder
architecture to seek for a promising effectiveness.
During training, for the CRB task, the input to the reviser 𝐼𝑟𝑒𝑣 is the oracle localization result

𝑇𝑙𝑜𝑐 ; while for the CRA task, the input 𝐼𝑟𝑒𝑣 is the concatenation of 𝑇𝑙𝑜𝑐 and 𝐶 (the behind intuition
is that the reviewer’s comment could also help guide the revision process). Formally, suppose the
token sequence of the oracle code associated with 𝑇 is 𝑇𝑜𝑟𝑎 = 𝑡

′
1, 𝑡

′
2, . . . , 𝑡

′

𝑛
′ where 𝑛

′ denotes the
length of the token sequence after revision, the loss during the training process can be described as:

L(𝛽) =
𝑛
′∑︁

𝑗=1
−𝑙𝑜𝑔𝑃𝛽 (𝑡

′
𝑗 |𝐼𝑟𝑒𝑣, 𝑡

′
< 𝑗 ) (2)

where 𝐼𝑟𝑒𝑣 is the input of the reviser, 𝛽 is the set of parameters of the reviser, and 𝑡 ′< 𝑗 is the token
sequence generated so far.

It should be noted that during testing, the input to the reviser is not the oracle localization result
𝑇𝑙𝑜𝑐 , but the output obtained from the localizer.

4.3 Implementation Details
Our approach is implemented with the popular deep learning development framework PyTorch.3
All the experiments are performed on a server with 4 NVIDIA GeForce RTX 4090 GPUs. We adopt
the same architecture as the T5 model [40] for both the localizer and the reviser. Specifically, each
model is based on the encoder-decoder architecture with 12 Transformer encoder layers and 12
Transformer decoder layers. In each layer, there are 12 attention heads and the hidden size is set to
768.

Both the localizer and the reviser are initialized with the parameters released by CodeT5. This is
because the CodeT5 model captures some commonsense knowledge about programming languages
and natural languages, and has served as the starting point for a number of recent studies [5, 27,
28, 67]. After that, these two models are further fine-tuned on the code revision datasets. During
fine-tuning, the learning rate and batch size for the two models are set to 5e-5 and 32, following
the existing study [28].

5 EXPERIMENTAL DESIGN
5.1 ResearchQuestions
We have conducted several experiments to evaluate our approach CodeReviser. Specifically, we
seek to answer the following research questions:

RQ1. Effectiveness ofCodeRevision beforeReview.What is the effectiveness of CodeReviser
on the CRB task? To answer this question, we compare the performance of CodeReviser with
those of the state-of-the-art approaches on the CRB task.

RQ2. Effectiveness of Code Revision after Review.What is the effectiveness of CodeReviser
on the CRA task? To answer this question, we compare the performance of CodeReviser with
those of the state-of-the-art approaches on the CRA task.

RQ3. Localization Ability. To what extent can CodeReviser generate revisions at the correct
locations? To answer this question, we check the output of CodeReviser and investigate the

3https://pytorch.org/
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Table 1. The statistics of our evaluation datasets.

Dataset Training Validation Test
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 13,756 1,719 1,719
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 134,239 16,780 16,780

proportion of the cases where CodeReviser performs modifications at the ground-truth locations
(i.e., the locations where the developers make revisions).

RQ4. Revision Ability. To what extent can CodeReviser generate accurate modifications at the
ground-truth locations? To answer this question, we investigate how often CodeReviser generates
correct revisions under the condition that it identifies the ground-truth locations.
To answer RQ3 and RQ4, we conduct post-processing after obtaining the revision results by

analyzing (1) whether the approach revised the code at the correct locations and (2) how well the
approach revises the code if it knows the ground-truth location. It should be noted that the inputs
to the models in RQ3 and RQ4 are identical to those in the first two RQs (i.e., we do not provide the
ground-truth locations to any approach in RQ3 or RQ4).

5.2 Datasets
Following existing studies [67, 68], we include twowidely-used datasets for evaluating CodeReviser,
namely𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 [54] and𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 [53]. These two datasets contain the code change
information as well as the reviewers’ comments, and thus can be used for both the CRB task and
the CRA task. As a result, both datasets are utilized to address all the four research questions.
When performing the CRB task (e.g., RQ1 and the CRB perspectives in RQ3 and RQ4), only the
original code is used as the input to the model; while for the CRA task (e.g., RQ2 and the CRA
perspectives in RQ3 and RQ4), both the original code and reviewers’ comments are used as the
input. Note that all the code changes in the datasets are from the method-level granularity, which
is the most widely-studied granularity in the code revision domain [51, 52]. The detailed statistics
of the datasets are shown in Table 1.
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 is collected from 6,388 projects in Gerrit and 2,566 projects from GitHub.

Tufano et al. manually create a set of heuristics to filter out noisy data. For instance, a comment
with only one word or requests to add some test code is removed. They also require that the
submitted code and the revised code should each have a maximum of 100 tokens, and the revised
code must not introduce new tokens that are not originally present in the submitted code, which
may simplify the task for the model.
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 is mainly mined from 4,901 Java open-source projects from GitHub, which have

at least 50 pull requests, 10 contributors, and 10 stars. Tufano et al. also preprocess the collected
data by various means, e.g., by excluding the non-English comments, removing any emoji and
non-ascii characters from the comments, and preforming the deduplication.

5.3 Baselines
We have introduced existing code revision approaches in Section 2.2. In this work, we choose
to use CodeT5, NatGen, CoditT5, CodeReviewer, and CCT5 as the baselines. According to a
recent study [68], CodeT5 outperforms other popular pre-trained code models like CodeBERT [11]
and GraphCodeBERT [16], as well as previous code revision approaches including Trans-Review,
AutoTransform, and T5-Review, making it the top performer in code revision tasks. The other four
selected baselines have all strengthened the capability of CodeT5 in different aspects. In particular,
NatGen is trained to transform unnatural code into the form originally written by developers,
potentially enabling it to better revise code; CoditT5 is trained to generate edit plans, allowing
it to reason about code edits; whereas CodeReviewer and CCT5 are trained using code change
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data, making them more proficient in comprehending code modifications. As a result, the selected
baselines can represent the state of the art in the code revision domain well.

5.4 Metrics
To answer RQ1 and RQ2, we report the performance of each code revision approach by comparing
the revised code with the oracle code (i.e., the code revised by the developer) from three different
aspects.
• Exact Match (EM), also known as perfect prediction, focuses on assessing whether the code
revised by a model exactly matches the oracle. Specifically, if the token sequence of the model’s
output is identical to that of the ground truth, then EM = 1, otherwise, EM = 0. This is a strict
metric, as even a subtle difference from the oracle can result in the model’s output receiving a
score of 0. This metric has been widely adopted in the evaluation of previous studies [49, 53, 54].

• CodeBLEU [42] assesses the similarity between the generated code and the oracle code. The
central concept behind this metric lies in recognizing that, unlike plain text, code snippets inher-
ently contain structural and semantic information in addition to lexical contents. Consequently,
it assesses the generated code against the oracle code from various perspectives, encompassing
token similarity (denoted as TM, calculated using standard BLEU metrics), syntactic similarity
(denoted as SM, determined through AST structure comparisons), and dataflow similarity (re-
ferred to as DM, evaluated based on data flow analysis). The final evaluation score is a composite
measure that integrates these similarities, offering a comprehensive assessment of the quality
of the generated code (more details about this metric are referred to the original study [42]).
This metric has been widely used to assess the quality of the generated code by previous studies
[57, 66].

• Edit Progress (EP) [68] measures the progress made by the generated code on changing the
submitted code into the oracle code. The basic idea of this metric is that in certain cases, the
generated code might have reduced the number of errors in the submitted code, even if it is not an
exact match to the ground truth. In such cases, the Exact Matchmetric falls short in fully capturing
the effectiveness of code revision approaches. Let 𝐶 , 𝐶 , and 𝐶 denote the initial submitted code,
the ground-truth code, and the revised code generated by the model, respectively. Then, the value
of this metric represents the percentage of the modifications that are successfully accomplished
by generating 𝐶 from 𝐶 , compared with the total modifications required to transform 𝐶 into 𝐶 .
Formally, this metric can be calculated as:

𝐸𝑑𝑖𝑡 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠 =
|𝐷�̃�→𝐶 | − |𝐷𝐶→𝐶 |

|𝐷�̃�→𝐶 |
(3)

where |𝐷𝐴→𝐵 | denotes the token-level edit distance [24] between a token sequence𝐴 and a token
sequence 𝐵. In this paper, we calculate and report the average EP value on all the cases from the
test set. This value indicates to what extent a code revision approach can release developers’
burdens from manual revisions: the higher, the better. It should be noted that an exact match
would achieve a 100% EP score while a model’s output 𝐶 could also achieve a negative EP value
if it generates more errors.
To answer RQ3, we propose a metric named Localization Accuracy (LA) to measure the

localization ability of different code revision approaches. The basic idea of this metric is to assess if
an approach can accurately identify which parts of the code should be revised. We recall that in
Section 4.1, we have introduced that we can identify𝑚 code token spans (denoted as 𝑇𝑆) from the
token sequence of the submitted code that are modified by the developer. Such a result is obtained
by performing token-level code diffs between the submitted code and the oracle code. To calculate
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the value of this metric, we also identify code token spans (denoted as𝑇𝑆 ′ ) from the submitted code
that are modified by the code revision approach (by comparing the original code token sequence
with the sequence of the generated code). An approach is deemed successful in identifying the
code requiring revisions if 𝑇𝑆 ′ exactly matches 𝑇𝑆 . Take Listing 2 as an example. By performing
token-level code diffs between the submitted code and the oracle code, we note the 𝑇𝑆 contains
only one token span, which involves a single code token ”://”. Then, by performing token-level
code diffs between the submitted code and the generated code, we note the𝑇𝑆 ′ also merely contains
such a single token. This implies that in such a case, the code revision approach performs revisions
at the same locations where developers make code revisions, accurately identifying which parts
of the code should be modified. Finally, the value of LA is the percentage of the submitted code
whose 𝑇𝑆 ′ is identical to 𝑇𝑆 . Formally, suppose the total number of samples in the test set is 𝑁 , the
number of the submitted code whose 𝑇𝑆 ′ is identical to 𝑇𝑆 is 𝑛𝑢𝑚1, then LA can be calculated as:

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃 (𝑇𝑆 = 𝑇𝑆
′ ) = 𝑛𝑢𝑚1

𝑁
(4)

To answer RQ4, we propose a metric named Revision Accuracy (RA) to measure the revision
ability of different code revision approaches. The basic idea of this metric is to check if an approach
can generate correct revisions if it already knows the ground truth locations. Consequently, this
metric is essentially a conditional probability. Formally, suppose the number of the submitted code
whose 𝑇𝑆 ′ is identical to 𝑇𝑆 is 𝑛𝑢𝑚1, the number of perfect predictions (the generated code 𝐶 and
the ground-truth code 𝐶 are the same) is 𝑛𝑢𝑚2, then RA can be calculated as:

𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃 (𝐶 = 𝐶 |𝑇𝑆 = 𝑇𝑆
′ ) = 𝑛𝑢𝑚2

𝑛𝑢𝑚1
(5)

5.5 Experiment Details
To mitigate the performance variance brought by different machines [66], we fine-tune and test all
the baselines on our own server. To avoid potential implementation biases, in our experiments, we
use the replication packages of CodeT5,4 NatGen,5 CoditT5,6 CodeReviewer,7 and CCT5.8

During fine-tuning, the learning rate and the batch size of the baselines are set according to their
original studies. The best-performing model checkpoint on the validation set is used for testing.
We feed each submitted code from the test set (and the reviewer’s comment for the CRA task) into
the approaches and obtain the generated code. Then we calculate the metrics by comparing the
generated code with the ground truth.

6 EXPERIMENT RESULTS
6.1 RQ1: Effectiveness on the CRB Task
The results of different approaches on the CRB task are shown in Table 2. We observe that
CodeReviser consistently outperforms the baselines with respect to all the three metrics. Specifi-
cally, on the 𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset, CodeReviser achieves an Exact Match of 19.3%, exceeding
the best-performing baseline (CCT5 with 13.5%) by around 43%. The Edit Progree of CodeReviser
reaches 48.4%, indicating that it is capable of addressing nearly half of the revisions needed to
transform the submitted code into the oracle version. It is worth noting that the CodeBLEU values
of different approaches exhibit minimal variation, ranging from 71.6% to 73.4%. This similarity can
4https://github.com/salesforce/CodeT5
5https://github.com/saikat107/NatGen
6https://github.com/EngineeringSoftware/CoditT5
7https://github.com/microsoft/CodeBERT/tree/master/CodeReviewer
8https://github.com/Ringbo/CCT5
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Table 2. The effectiveness of different approaches on the code revision before review task (in %).

Dataset Approach Exact Match CodeBLEU Edit Progress

𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎

CodeT5 8.7 72.9 44.6
NatGen 10.7 71.6 43.5
CoditT5 8.9 73.0 45.8
CodeReviewer 12.4 73.0 46.0
CCT5 13.5 72.6 45.0
CodeReviser 19.3 73.4 48.4

𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎

CodeT5 4.7 73.8 7.6
NatGen 4.5 73.4 7.2
CoditT5 5.5 72.8 9.2
CodeReviewer 5.6 72.4 9.3
CCT5 5.7 73.2 7.2
CodeReviser 7.6 74.1 12.8

be attributed to the fact that code revisions sometimes involve minor modifications (e.g., renaming
a variable), resulting in a high degree of similarity between the original code and the revised code.
This suggests that CodeBLEU may not be a differentiating metric when evaluating code revisions.
However, it is important to highlight that the CodeBLEU value of CodeReviser remains higher
than those of the baselines. This indicates that the code generated by CodeReviser exhibits the
closest resemblance to the oracle code among all the approaches considered.

We observe the similar trends on the 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset. Specifically, the Exact Match value
of CodeReviser reaches 7.6%, which already exceeds that of the state-of-the-art CCT5 by 33% (7.6%
vs. 5.7%). While the EM value of CodeReviser may appear small, it indicates that CodeReviser
generates the oracle code for over 300 additional cases compared to CCT5 given the large size of
this dataset. Similarly, CodeReviser achieves an Edit Progress of 12.8%, which is the only one that
surpasses 10% among all the involved techniques. We conduct the Wilcoxon Signed-Rank Tests [63]
to analyze the statistical significance of the difference between the effectiveness of CodeReviser
and the baselines. We opt for non-parametric tests since they do not make assumptions about the
distribution of the data or the equality of variance and thus provide a more flexible approach to
analyzing experimental data [14, 29, 60]. Specifically, we compared the achieved Edit Progress values
of CodeReviser on each individual test case against those achieved by the baselines (we exclude
the CodeBLEU score in the analysis since it may not be a differentiating metric when evaluating
code revisions, as observed from the experiment results). Such a comparison was conducted for
the two datasets and the results show that CodeReviser significantly outperforms the baselines in
both datasets. Specifically, all the p-values are less than 0.01 in the comparison results.
It is also worth highlighting that code revision approaches tend to achieve relatively higher

performances on the𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset. As we have discussed in Section 5.2, this observation
can be attributed to certain pre-processing steps employed on this dataset, such as limiting the
number of tokens in the code. These pre-processing steps may reduce the complexity of code
revisions, thus making it easier for the approaches to achieve better results on this particular
dataset.

6.2 RQ2: Effectiveness on the CRA Task
The results of different approaches on the CRA task are shown in Table 3. We observe a phenomenon
similar to that in Table 2, i.e., CodeReviser consistently outperforms the existing code revision
approaches. In terms of the Exact Match metric, CodeReviser achieves impressive results on the
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 and 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 datasets, with scores of 40.8% and 20.5%, respectively. These
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Table 3. The effectiveness of different approaches on the code revision after review task (in %).

Dataset Approach Exact Match CodeBLEU Edit Progress

𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎

CodeT5 30.2 77.2 59.8
NatGen 32.8 78.6 59.5
CoditT5 34.0 77.6 60.6
CodeReviewer 32.9 78.5 61.2
CCT5 34.9 79.0 61.8
CodeReviser 40.8 80.0 64.4

𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎

CodeT5 15.9 75.9 25.3
NatGen 16.6 76.3 23.8
CoditT5 16.4 76.3 23.5
CodeReviewer 16.6 76.0 26.3
CCT5 16.8 76.1 25.7
CodeReviser 20.5 76.4 31.3

scores surpass the best-performing baseline, i.e., CCT5, by 17% (40.8% vs. 34.9%) and 22% (20.5%
vs. 16.8%). Regarding the CodeBLEU metric, CodeReviser continues to outperform the baselines,
albeit with subtle improvements. However, it is worth noting that CodeReviser demonstrates
significant advancements in terms of the Edit Progress metric for the CRA task. For instance, on
the𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset, CodeReviser achieves an EP value of 31.3%, representing an increase of
around 20% compared to the state-of-the-art CodeReviewer (31.3% vs. 26.3%). Also, our statistical
test results show that the p-values comparing the Edit Progress values of CodeReviser and those
achieved by the baselines are all less than 0.01 in the two datasets.

By comparing the results listed in Tables 2 and 3, we note that all the code revision approaches
achieve higher performances on the CRA task compared with the CRB task. This implies that
incorporating reviewer’s comments as guidance in code revision tasks can result in higher quality
revision outcomes. Upon manual examination, we observe that reviewer’s comments often offer
clear instructions on how to carry out code revisions, without which the model might perform
common but incorrect code transformations. Listing 4 gives a concrete example. In this case, the
reviewer’s comment, “Return quickFilters”, likely suggests a code revision to standardize the coding
style across the entire project by unifying the way of invoking class fields. The comment provides
highly specific guidance on how to perform the revision, and when incorporated into the approach
input, CodeReviser successfully produces the desired code, indicating the effectiveness of this
guidance. However, without the comment, CodeReviser changes the return type of this method
from List to Collection. The intent behind this code change may be to utilize a more abstract
interface type as the return type, thereby reducing dependencies on specific implementation classes.
This modification offers the potential advantage that if there is a need to substitute the specific
collection implementation in the future, one would only have to adjust the code within the method,
leaving the code that calls it unaffected. As a result, altering the return type in this scenario could
enhance the flexibility, extensibility, and maintainability of the code. It is worth noting that updating
the return type, known as Return Type Update is a common practice in software maintenance [12],
which could be a reason for CodeReviser to learn to perform this type of revision.

6.3 RQ3: Localization Accuracy
The localization accuracy of different approaches is shown in Table 4. We observe that the localiza-
tion capability of CodeReviser exceeds those of the baselines to a large margin. Specifically, when
performing the CRB task, the localization accuracy of CodeReviser reaches 26.1% and 12.3% on the
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 and 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 datasets, respectively, outperforming the best performances
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// Oracle Code Revision
public List<QuickFilter> getQuickFilters() {
- return this.quickFilters;
+ return quickFilters;
}

// Code Revision by CodeReviser when the reviewer's comment is unavailable
- public List<QuickFilter> getQuickFilters() {
+ public Collection<QuickFilter> getQuickFilters() {

return this.quickFilters;
}

Listing 4. The oracle code revision and the revision generated by CodeReviserwhen the reviewer’s comment
is unavailable for the method getQuickFilters.

Table 4. The localization accuracy of different approaches (in %).

Task Dataset CodeT5 NatGen CoditT5 CodeReviewer CCT5 CodeReviser

CRB
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 11.9 15.8 13.5 17.3 18.6 26.1
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 7.7 7.3 9.4 9.9 9.8 12.3

CRA
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 40.3 38.7 41.8 40.5 42.5 47.1
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 25.0 25.0 24.5 26.5 25.7 30.5

Table 5. The revision accuracy of different approaches (in %).

Task Dataset CodeT5 NatGen CoditT5 CodeReviewer CCT5 CodeReviser

CRB
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 71.8 67.8 66.1 71.6 72.6 74.2
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 61.4 61.2 58.9 56.6 57.8 61.7

CRA
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 74.9 84.7 81.4 81.1 82.1 86.7
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 63.6 66.3 66.9 62.6 65.3 67.2

from existing approaches by around 40% (26.1% vs. 18.6%) and 25%(12.3% vs. 9.9%). In terms of
the CRA task, the localization accuracy of CodeReviser increases to 47.1% and 30.5% on the two
datasets respectively, exceeding the best-performing baselines by around 11% (47.1% vs. 42.5%) and
15% (30.5% vs. 26.5%). The obtained results provide evidence that our approach excels in identifying
the code segments that require revisions, which may be attributed to the utilization of a specialized
localizer specifically designed for this task. By customizing the localizer to focus on the accurate
localization, our approach demonstrates enhanced performances in identifying the areas of code
that necessitate revisions.

6.4 RQ4: Revision Accuracy
The revision accuracy of different approaches is listed in Table 5. We note that CodeReviser still
consistently outperforms the existing approaches in terms of the revision accuracy under different
settings. For instance, when performing the CRA task, the revision accuracy of CodeReviser reaches
86.7% and 67.2% on the 𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 and 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 datasets, respectively, while the best
performances from the baselines are 84.7% and 66.9%. Such results suggest that CodeReviser is
more capable of generating correct revisions at the ground-truth locations, compared with existing
approaches. We also investigate the values of CodeBLEU and Edit Progress of different approaches
on the test samples whose ground truth locations are already identified. Such results are listed in
Table 6 and Table 7. We observe the same phenomenon as that from Table 5, i.e., compared with
existing approaches, CodeReviser achieves better effectiveness in terms of CodeBLEU and Edit
Progress on the test samples whose ground truth locations are already identified. For instance,
regarding the CRB task, the CodeBLEU value of CodeReviser reaches 91.6% and 89.5% on the
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Table 6. The CodeBLEU of different approaches when the ground truth locations are already identified (in
%).

Task Dataset CodeT5 NatGen CoditT5 CodeReviewer CCT5 CodeReviser

CRB
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 90.3 89.7 88.1 90.9 90.5 91.6
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 86.4 86.2 85.6 85.7 86.4 89.5

CRA
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 91.4 94.2 93.0 93.4 93.5 94.8
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 90.2 90.0 91.0 90.0 90.6 91.2

Table 7. The Edit Progress of different approaches when the ground truth locations are already identified (in
%).

Task Dataset CodeT5 NatGen CoditT5 CodeReviewer CCT5 CodeReviser

CRB
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 79.4 75.7 73.6 79.3 80.1 80.2
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 70.3 70.3 68.7 66.0 65.9 70.4

CRA
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 83.9 89.2 87.4 86.9 86.2 90.7
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 74.3 72.9 75.8 72.9 74.0 76.7

𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 and 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 datasets, respectively, while the best performances from the
baselines are 90.9% and 86.4%.

By comparing the figures in Tables 4 and 5, we have made two key observations. First, the revision
accuracy of CodeReviser significantly surpasses its localization accuracy. This may indicate that
the localizer of CodeRevisermay be the main performance bottleneck for the overall approach. To
gain a quantitative understanding of this observation, we conduct an experiment on the large-scale
𝑇5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset in which we provide the reviser with the oracle localization results and
evaluate its performance. The results reveal that under these ideal conditions, the reviser achieves
an Exact Match value of 31.0%, surpassing the current value of 20.5% by over 50%. This finding
indicates that improving the effectiveness of the localizer is likely to have a significant impact
on the overall performance of the approach, and therefore, future efforts could be devoted into
this direction. Second, the improvement of CodeReviser over the baselines in terms of revision
accuracy is not as significant as its improvement in terms of localization accuracy. One possible
explanation is that existing approaches have already acquired substantial knowledge about code
revisions during their pre-training processes, which may narrow the performance gap between
them and CodeReviser. For instance, NatGen is specifically trained to transform unnatural code
into its formal version, which likely enhances its capability for code revision. Consequently, when
applied to the CRB task, NatGen achieves a revision accuracy of 61.6% on the𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset,
which is only slightly lower than that of CodeReviser.

7 DISCUSSION
7.1 Is Precise Localization a Prerequisite for Correct Revision?
Since CodeReviser comprises a localizer and a reviser, a relevant question arises: is precise localiza-
tion a prerequisite for correct revision? To address this, we explore whether the reviser can produce
the correct code with inaccurate localization information. The answer, it turns out, is affirmative.
For instance, in the 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset, there are 295 cases where the localizer initially fails to
precisely identify the parts requiring revisions but the reviser ultimately produces an exact match
(w.r.t the CRA task). Such results reveal the actual localization capability of the localizer might be
slightly lower than the figures shown in Table 4.
A concrete example is shown in Listing 5. In this case, the reviewer asks for a code change by

commenting “Maybe call expectThrowable for consistency?”, indicating that within the body of
the revised method, it should invoke an overloaded method with the same name. To make this
revision, the developer simply needs to modify the name of the invoked method. As demonstrated

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: September 2024.



18 Shangwen Wang, Bo Lin, Liqian Chen, and Xiaoguang Mao

// Oracle Code Revision
public static ExceptionThrowingSubTest expectThrowable(Runnable runnable) {
- return expectException(runnable.toString(), runnable);
+ return expectThrowable(runnable.toString(), runnable);
}

// Input code token sequence
... return expectException ( runnable . toString ( ) , runnable ) ; }
// Oracle localization result

... return [START] expectException [END] ( runnable . toString ( ) , runnable ) ; }

// Localization result from the localizer

... return [START] expectException ( runnable . toString ( ) , runnable ) ; [END] }

Listing 5. An example where the localizer of CodeReviser does not generate an accurate localization result
but the reviser finally produces the oracle revision.

in the second part of the listing, the oracle localization result is only associated with such a single
token. On the contrary, CodeReviser’s localizer identifies the entire expression (highlighted in
grey) as contents that require revisions, resulting in an inaccurate localization outcome for the
reviser. Nevertheless, CodeReviser’s reviser still produces the correct ground-truth code. This
example highlights the reviser’s ability to overcome inaccurate localization results, demonstrating
that it can generate accurate revisions even when the localization is not precise.

The example presented in this section aims to showcase that CodeReviser can generate accurate
revisions even with imprecise localization. In other words, the localisation information given by
the localiser does not limit the location of code revision, and the reviser has a recovery capacity if
wrong localisation information is given.

7.2 Comparison with Large Language Models
Recently, various large language models (LLMs) have been proposed to facilitate developers’
development activities, such as ChatGPT9 and GPT-410. A number of studies have showcased that
LLMs can achieve competitive results through prompting when compared with the state-of-the-art
approaches in tasks like code summarization [15], code generation [9], and test generation [8].
Therefore, it is crucial to evaluate the performance of LLMs in the context of code revision tasks.
To that end, we perform experiments from two perspectives to understand how well the LLMs
can achieve on the code revision task: we first directly prompt a commercial LLM, after which we
fine-tune an open source LLM to make it be aware of the domain knowledge of code revision.

7.2.1 Prompting of the Commercial LLM. Considering the costs of prompting a commercial LLM,
we perform an experiment on the test set of the large-scale 𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset to quantitatively
understand the code revision effectiveness of ChatGPT. Specifically, we use the ChatGPT API
(accessed on November 5, 2023, and the temperature is set to 0) with the prompts to the model in
the form of:

9https://chat.openai.com/
10https://openai.com/product/gpt-4
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Assume that you are a Java programmer.
Below is a code snippet that may contain some syntax or semantic errors:
# <CODE>
The comment from the code reviewer is:
# <COMMENT>
Please help me revise the code and output a new version.
You can only show me the revised code.

The first sentence is to prepare ChatGPT for the task related to Java language, followed by the
detailed task. The last sentence is to restrict ChatpGPT to only output the code. Note that for the
code revision before review task, the review comment information is removed from the prompt.
We calculate the metrics for the revised code generated by ChatGPT. Results show that for the
code revision before review task, the performances of ChatGPT are: 0.8% of Exact Match, 59.6% of
CodeBLEU, and 3.2% of Edit Progress; for the code revision after review task, the performances of
ChatGPT are: 9.3% of Exact Match, 70.2% of CodeBLEU, and 17.2% of Edit Progress. Compared with
the results listed in Tables 2 and 3, it is worth noting that ChatGPT, when utilized in the zero-shot
manner, does not outperform the state-of-the-art code revision approaches. For instance, on the
code revision after review task, CodeReviser can generate oracle code for more than 20% cases,
while the percentage of ChatGPT is less than 10%.

7.2.2 Fine-tuning of the Open Source LLM. A recent study has proposed an approach, LLaMA-
Reviewer [33], to fine-tune the LLMs on the code revision task, and in our study, we decide to
reproduce their approach on our test datasets. Specifically, the utilized LLM is LLaMA 11 and
the fine-tuning process adopts a parameter-efficient way, i.e., the LoRA approach that contains
less than 1% of trainable parameters compared with the original model. We fine-tune LLaMA
under the four settings (two datasets × two tasks) and the results are shown in Table 8. Results
show that our CodeReviser systematically outperforms LLaMA-Reviewer with respect to all the
metrics. Specifically, LLaMA-Reviewer achieves similar CodeBLEU values to CodeReviser, but
it is significantly outperformed by CodeReviser on the other two metrics, particularly on the
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset (e.g., 31.3% v.s. 9.8% in terms of the Edit Progress achieved on the CRA task).

Table 8. The Comparison Between CodeReviser and LLaMA-Reviewer (in %).

Task Dataset
LLaMA-Reviewer CodeReviser

Exact Match CodeBLEU Edit Progress Exact Match CodeBLEU Edit Progress

CRB
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 6.2 72.3 42.2 19.3 73.4 48.4
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 1.7 70.7 3.9 7.6 74.1 12.8

CRA
𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 22.0 78.6 54.1 40.8 80.0 64.4
𝑇 5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 6.0 75.6 9.8 20.5 76.4 31.3

Our investigations in this section reveals that both directly prompting or fine-tuning the LLMs
may not achieve the optimal results compared with the state-of-the-art approaches, underscoring
the need for further explorations into the utilization of LLMs for code revision tasks, which we
plan to pay attention to in our future work.

7.3 Automated Code Revision v.s. Automated Program Repair
Another long-studied task in the software engineering domain, automated program repair [4, 10, 19,
30, 31, 64], also involves automatically changing the source code of a program (i.e., modifying the
buggy code into a correct version). This task, however, is mainly different from our study subject,
automated code revision, in the following two aspects. From the code specification perspective,
11https://llama.meta.com/
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automated code revision approaches modify the code to implement the requirements described by
the review comments, which are in the natural language form; while automated program repair
approaches try to generate patches that can pass all the test cases, which are in the programming
language form. This means that automated program repair approaches can adopt a try-and-error
strategy to generate patches and finally output a test-adequate patch, while the patch generation
process of automated code revision approaches is one-shot since there is no clear indicator for
the correctness of the patches. From the approach input perspective, automated code revision
approaches usually take a function plus with review comments as the inputs, since they are unaware
of the specific buggy locations; while thanks to the test coverage analysis, automated program
repair approaches often take a buggy statement as the input, which is a finer-grained granularity.
Despite the differences, our “Divide-and-Conquer” approach design is inspired by the existing
automated program repair techniques, which usually have a fault localization step that identifies
the buggy statement from the entire code project and then modify the buggy statement to generate
patches.

7.4 Threats to Validity
External threats. Recent years have witnessed a large number of pre-trained models being
proposed [39]. Our study may have a selection bias by considering several of them as baselines.
However, the involved pre-trained models are the most popular ones and have been shown to be
the state-of-the-art approaches on code revision tasks [68].

Another threat is from the dataset perspective. In this study, we choose two widely-used datasets
in the code review domain to evaluate the effectiveness of CodeReviser. These two datasets only
contain code review data from Java programming language. In our future work, we plan to extent
the evaluation to other languages, probably by reusing another dataset released by the previous
study [27].
Internal threats. The evaluation metrics may influence the experiment results as well as the

reached conclusions of the study. To mitigate the bias incurred by the metric selection, we use three
metrics in our evaluation that assess the quality of the generated code from different perspectives.

CodeReviser builds on a pre-trained model (i.e., CodeT5) which is pre-trained on extensive
code-related data. There is thus a risk of data leakage. To investigate such a situation, we have
checked the evaluation datasets in our study and the pre-training dataset of CodeT5, and confirmed
that there is no overlapped data, meaning that our study does not face the threat from data leakage.
Another threat comes from the dataset splitting. The two evaluation datasets (i.e., 𝑇𝑟𝑎𝑛𝑠-

𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 and 𝑇5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎) are split into training, validation, test sets in an 8:1:1 ratio by
the original studies [53, 54]. Although such splittings are widely adopted by recent studies, the
effect of such a splitting to the overall performance is unknown. To better investigate this question,
we perform 10-fold cross validation [22, 61] to evaluate the effectiveness of CodeReviser on the
CRB task. Results show that CodeReviser achieves rather similar performances in each round.
Specifically, the Exact Match of CodeReviser ranges from 19.1% to 19.6% on the 𝑇𝑟𝑎𝑛𝑠-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎

dataset, while such a value ranges from 7.3% to 7.7% on the 𝑇5-𝑅𝑒𝑣𝑖𝑒𝑤𝑑𝑎𝑡𝑎 dataset. Such results
indicate that the dataset splitting has a negligible impact on the overall performance. Therefore, in
this paper, we report the performances of different approaches achieved on the common dataset
splitting.
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8 RELATEDWORK
8.1 Automating Other Code Review Activities
In this study, we focus on automating code revisions during the code review process. In the literature,
there are also a number of studies automating other code review activities. For instance, studies
have proposed to reduce the workload of developers on writing reviews [17, 47]. Specifically, CORE
[47] uses a multi-level embedding approach, which focuses on both word-level and character-level
information of code tokens, to embed code changes and reviews. After that, an attention neural
network is used to predict the relevance score between a code change and a review, and the review
with the highest score will be recommended. CommentFinder [17] is also a retrieval-based approach
which does not require any deep learning model. Given a changed method, it searches for the most
similar changed methods in a large-scale corpus through a two-step similarity measurement and
reuses the associated reviews. Recent studies have also proposed to utilize pre-trained models to
generate reviews directly based on the submitted code [27, 53].
Reviewer recommendation is also a hot topic in this domain since the previous study finds

that a non-negligible proportion of pull requests cannot be assigned to appropriate reviewers,
which negatively results in longer reviewing time [50]. CORRECT considers not only the relevant
cross-project work experience of a developer but also his/her experience in certain specialized
technologies when determining the potential reviewer [41]. The previous study [65] proposes to
construct a novel Comment Network by mining historical commenting interactions between code
authors and code reviewers, and predict highly relevant reviewers based on this social network.
The behind intuition is that developers who share common interests with the authors could be
appropriate reviewers.

8.2 Divide-and-Conquer in Software Engineering
As a foundational principle in software engineering, “Divide-and-Conquer” has been widely applied
in researches from this domain. According to whether the updated contents can be found from the
code change, Toper splits the just-in-time comment updating task into two sub-tasks (i.e., code-
indicative updates and non-code-indicative updates) and respectively utilizes a heuristic-based
approach and a deep-learning-based model to effectively address the sub-tasks [29]. Traditional
translation-based code migration approaches often produce syntactically incorrect code [37]. To
overcome this limitation, mppSMT splits the task into multiple phases where the syntactic structure
of the target code is generated first and the lexical tokens (e.g., APIs) are filled later [38]. Similarly,
SkCoder employs a retrieval-and-edit paradigm to accomplish the task of automatic code generation
(i.e., generating code snippets that fulfill the given natural language descriptions), instead of
generating the code from scratch [26]. Specifically, the process involves utilizing a retriever to select
a code snippet from a corpus as a preliminary sketch, followed by employing an editor to modify
the sketch and obtain the final target code. These studies motivate us to explore a code revision
approach that follows the “Divide-and-Conquer” principle.

9 CONCLUSION
This study introduces a two-phase code revision approach, designed to address the labor-intensive
nature of code review. By adhering to the “Divide-and-Conquer” principle, we separate the tasks of
localization and revision, which allows us to focus on each task individually and develop targeted
solutions for more effective code revision. Our approach, consisting of a localizer and a reviser,
outperforms existing approaches in extensive experiments. Specifically, when revising code based on
reviewer’s comments, our approach demonstrates a remarkable success rate of over 20% to generate
the oracle revision, surpassing the state-of-the-art approaches by a significant margin. These results
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underscore the effectiveness of our approach in automating the code revision activities during
code review processes. Our analysis reveals that boosting the localization ability is a promising
direction for improving the effectiveness of code revision approaches. Technical strategies that can
be foreseen include utilizing more advanced code models and exploring the semantic relationships
between the review comments and the code.

10 DATA AVAILABILITY
All code and data in this study are publicly available at:

https://zenodo.org/record/8373320
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