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Method naming is a challenging development task in object-oriented programming. In recent years, several
research efforts have been undertaken to provide automated tool support for assisting developers in this task.
In general, literature approaches assume the availability of method implementation to infer its name. Methods
however are usually named before their implementations. In this work, we fill the gap in the literature about
method name prediction by developing an approach that predicts the names of all methods to be implemented
within a class. Our work considers the class name as the input: the overall intuition is that classes with
semantically similar names tend to provide similar functionalities, and hence similar method names. We first
conduct a large-scale empirical analysis on 258K+ classes from real-world projects to validate our hypotheses.
Then, we propose a hybrid big code-driven approach, Mario, to predict method names based on the class name:
we combine a deep learning model with heuristics summarized from code analysis. Extensive experiments on
22K+ classes yielded promising results: compared to the state-of-the-art code2seq model (which leverages
method implementation data), our approach achieves comparable results in terms of F-score at token level
prediction; our approach, additionally, outperforms code2seq in prediction at the name level. We further show
that our approach significantly outperforms several other baselines.
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1 INTRODUCTION
During software development, developers often need to think about which methods to implement
after defining a class. Devising high-quality names for these methods, which are often representa-
tives of the class’s functionalities, is important. Unfortunately, method naming can be challenging
for developers [52, 53, 64], in particular when these developers are inexperienced or unfamiliar
with the project [21, 48, 55]. It is therefore desirable to have a tool that can assist developers in
recommending names for methods that are going to be implemented in a class.

A number of approaches have been proposed in recent literature to automate the task of method
name recommendations [12, 17, 26, 58, 69, 86]. With MNire [69] and Cognac [86], researchers
proposed to translate the token sequences extracted from program entities into method names. In
another direction, code2vec [18] and code2seq [17], which leverage the structural information in the
Abstract Syntax Tree (AST) representation of a program, have been used to recommend high-quality
method names. Despite the high performance achieved by these approaches, their application
is often limited to predicting mistakes in the names of implemented methods. Indeed, literature
approaches often explicitly assume that the method body is already available and therefore leverage
it as an input in the method name recommendation process. Such an assumption is impractical in
recommending method names during the software development phase where signature definition
(including method naming) precedes method implementation [1, 3]. Consequently, current method
name recommendation approaches are more suitable to support software evolution (e.g., for method
name refactoring) rather than facilitating initial software development. On the other hand, the
usefulness of popular Integrated Development Environments (IDEs) such as Eclipse [2] is also
compromised as they can only recommend simple method names (e.g., setters/getters).

The aforementioned shortcomings in both research and practice motivate our investigation
into the problem of predicting names for all methods that are likely to be implemented within a
newly defined class. We refer to this new software automation task as “Pre-Implementation
Method Name Prediction (PI-MNP)”. To the best of our knowledge, we are the first to
address this task in the literature.

To better understand developers’ practices when implementing methods, we performed an
exploratory survey with 101 software practitioners from 19 countries across five continents. Our
survey shows that (1) more than 90% of the respondents define method signature first when
implementing methods, thus supporting our core hypothesis for this work; and (2) more than 70%
of the respondents perceive the usefulness of recommending method names before implementation,
highlighting the relevance of the newly-defined automation task. Concretely, realising PI-MNP
has two potential benefits. First, it can save developers’ efforts in designing and implementing a
class. Second, it can help improve software quality since existing literature findings suggest that
providing developers with hints on the functionalities that should be implemented can help avoid
bugs [39].
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A prerequisite to perform the PI-MNP task, however, is to understand the class’s purposes (i.e., the
developers’ potential intentions for this class), which is challenging considering that we only have
limited information at hand when the class is first defined. We rely on the class names to identify
such purposes since they often reflect the core concepts implemented in the source code [29, 33, 73].
Under this assumption, we can make several observations (cf. Motivating Example in Section 3).
First, the names of some methods relate to specific class fields, whose naming practices should also
take the field information into consideration. Therefore, we are motivated to classify the method
names into two types (i.e., those related to class fields and those independent from class fields)
to deal with them separately. Second, method names within a class are highly correlated with
those from proximate classes (i.e., those classes that are semantically similar to the target class
with respect to their names), no matter whether the method names are related to class fields or
not. Motivated by these observations, we further performed a large-scale empirical analysis on
430 well-maintained GitHub repositories in pursuit of designing a more effective approach. The
empirical results show that for a specific class (1) the tokens of method names that are independent
from the fields can be frequently observed from those of its proximate classes; and (2) the method
names that are related to class fields largely overlap with those of its proximate classes if they target
the same fields. Such results inspire us to adopt different strategies to predict these two types of
names. First, for methods that are independent from the class fields, we need an inference model to
predict the tokens composing the method names. Indeed, prior work has shown that method names
do not tend to repeatedly occur among projects [69], but their constituting tokens can be readily
inferred [58, 69, 86]. Second, for names related to the class fields, we can design a deterministic
method since our second observation suggests that such names from proximate classes are highly
similar to the ones that are required to be implemented in the target class.
Supported by our empirical findings, we propose a Method nAme pRedIctOr, Mario, to predict

the names of all the methods that are going to be implemented in a class mainly based on the class
name. Specifically, Mario utilizes a large source code corpora (a.k.a “Big Code” [14, 45, 54]) where
abundant proximate classes can be found for target classes. Mario can thus learn diverse and rich
knowledge from the codebase to make predictions for different types of method names. Specifically,
for methods independent from class fields, Mario utilizes a deep learning model, Transformer [84],
to infer their names with the help of those methods from the proximate classes. This design choice
is inspired by prior studies [58, 69, 86], which have shown that the method name can be effectively
translated by a sequence of tokens where a large proportion of its composing tokens are involved.
Upon provided with a number of fields, Mario will further investigate if the field can be observed
from the proximate classes of the target one. If so, it directly reuses the method names from
the proximate classes that are related to the field. Such a decision is supported by our empirical
findings. Otherwise, a set of pre-collected prior knowledge is utilized to decide what names should
be predicted for it.
To evaluate the effectiveness of our approach, we performed extensive experiments on 22,822

classes from 300 top-starred Java projects in GitHub. Mario can be set with several configurations
according to the desired sensitivity in identifying proximate classes. When the sensitivity is high,
the requirement for identifying a proximate class in the codebase is less rigid, and thus Mario can
work for around 90% of the classes with an F-score reaching 45% at the token level (i.e., comparing
the tokens composing the method names with the ground truth). In contrast, when the sensitivity
is low, Mario is usable for around 40% of the classes, but the F-score at the token level can go
beyond 60%, which slightly exceeds that of the state-of-the-art code2seq [17] (whose predictions
further relies on method implementation details). Additionally, the performance scores of Mario
are significantly higher than those of three rule-based baselines that we have designed. For instance,
with the intuition that there may be class pairs with high similarities due to code clone, a designed
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baseline is to reuse method names from the class whose name is the most similar with the target
class. Results show that Mario can outperform this baseline by at least 20% with respect to the
F-score at the token level.

In summary, our study makes the following major contributions:

• Significance:We target a challenging task, PI-MNP, which is in line with developers’ needs based
on their coding practices. Realising this task has a great potential to boost software development
productivity.

• Empirical results: Our study deepens our community’s understanding of the relationship
between the method names of a class and those of semantically-related classes with similar
names.

• PI-MNP with Mario: Supported by our empirical findings, we implement Mario, a recommender
system to predict the names of methods that are going to be implemented within a class. The
approach mainly relies on the class name. The experimental results have demonstrated the
effectiveness of Mario.

• Open science policy: We open source the materials in this study at https://github.com/
ShangwenWang/Mario to facilitate replications and follow-up studies.

2 DEVELOPERS’ PERSPECTIVES ON THE PI-MNP TASK
To further motivate this study, we first conducted an online survey to understand the developers’
coding practice and perspectives on the PI-MNP task.
Respondents. To obtain a sufficient number of respondents from diverse background, we

followed a multi-pronged strategy to recruit respondents. We first sent emails to our contacts at four
top-tier IT companies in China (which are ByteDance, Baidu, Alibaba, and Tencent, respectively)
and asked them to disseminate our survey. Finally, we received 61 responses from these four
companies. We then sent emails with a link to the survey to 609 Java&Android developers from
GitHub projects, aiming to recruit open-source developers working in the software industry. We
obtained 40 responses out of these emails (a response rate of 6.6%). In the end, we obtained 101
responses. These respondents reside in 19 countries across five continents. The top two countries
in which the respondents reside are China (61) and the United States (14). The respondents have an
average of 7.2 years of professional experience in software development (min: 0.5, max: 36, median:
5, sd: 6.8).

Question#1. The first question focuses on the developers’ coding practice. Specifically, we ask
them “When writing a method, do you define the signature first or implement the body first?”. The
respondents are asked to select the answer from “Define the signature first and then implement
the body” and “Implement the body first and then fulfill the signature”. From the answers, 92% of
the respondents (i.e., 93 in total) reveal that they define the signature first and then implement the
body while only 8 respondents choose to implement methods in the reverse order.

Question#2. The second question focuses on the developers’ perspectives on the PI-MNP task.
Specifically, we ask them “Would it be useful for your software development if there is a tool (or
IDE plugin) that can recommend the names for all methods that are likely to be implemented within
a newly defined class?”. The respondents are asked to assess the usefulness on a 5 point Likert
scale and one more extra option (Very Unuseful, Unuseful, Neutral, Useful, Very Useful, and I Don’t
Know). The “I Don’t Know” option was provided in case the respondents had a poor understanding
of the statement.
Figure 1 shows the respondents’ ratings of the usefulness of recommending all the names for

methods that will be potentially implemented in a class. We totally obtained 98 valid responses (i.e.,
three respondents chose “I Don’t Know”). From the results, 46% of the respondents (45) consider the
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Fig. 1. Results of the second question in our survey.

1| |class ZipOutputStream {
2| |
3| ✗| private byte[] comment;
4| ✔| private int method;
5| ✔| private boolean finished;
6| ✗|
7| ✗|
8| |
9| ✔| public void putNextEntry(){...}
10| ✗| public void writeBytes(){...}
11| ✗| public void writeExtra(){...}
12| ✗| public void getExtraLen(){...}
13| |
14| ✔| public void setComment(){...}
15| ✔| public void setMethod(){...}
16| ✗|
17| ✗|
18| |}

1| |class ZipOutputStream {
2| |
3| ✗| private String comment;
4| ✔| private int method;
5| ✔| private boolean finished;
6| ✗| private String encoding;
7| ✗| private long cdOffset;
8| |
9| ✔| public void putNextEntry(){...}
10| ✗| public void getBytes(){...}
11| ✗| public void getZipExtra(){...}
12| ✗|
13| |
14| ✔| public void setComment(){...}
15| ✔| public void setMethod(){...}
16| ✗| public void setEncoding(){...}
17| ✗| public void getEncoding(){...}
18| |}

(a) the ZipOutputStream.java from
the j2objc project

(b) the ZipOutputStream.java from
the Apache Ant project

Fig. 2. Two classes with the same name from different projects. A check (cross) mark denotes the correspond-
ing contents from the two classes are identical (different).

recommendation task useful and 28% of the respondents (27) consider it very useful. In contrast, only
3 and 7 respondents consider the recommendation very unuseful and unuseful for their development,
respectively.

Our survey results reveal that (1) the majority of developers (more than 90%) define the signature
first when writing methods; and (2) most of the developers (around 70%) consider the PI-MNP task is
useful or very useful for their development. Therefore, performing the PI-MNP task has the potential
to be useful in practice.
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3 MOTIVATING EXAMPLE
To perform the PI-MNP task, one needs to understand the intentions of the class. Utilizing the class
documentation is impractical since, usually, the class documentation is automatically generated
after the implementation of the class source code [44, 67]. On the contrary, we rely on analyzing
the class names since class names represent the core concepts encoded in Object-Oriented source
code [29, 33]. Our motivation is shown in Figure 2 where the enclosing contents of two classes
with the identical class name are briefly illustrated. Usually, the contents of a class can be split into
two parts: the fields, and the methods [5]. Besides, we observe that the methods can be further
separated into two types: those related to its fields, and those independent from its fields. The
differences between the two types of methods can be reflected by their names, that is, whether their
names are correlated with a specific class field. For instance, the method putNextEntry relates
to no field while the method setMethod obviously relates to the field method in the example as
shown in Figure 2.
Through this example, we mainly gain the following observations. ❶ The two classes tend to

possess similar names for the methods that are independent from class fields. Listed from line 9 to
line 12, some of the method names are identical (e.g., both two classes possess a method named
putNextEntry) while the others are composed by similar tokens even if they are not identical (e.g.,
the tokens get and extra occur in both getExtraLen and getZipExtra). This indicates that for
classes with similar names, the names of their methods that are independent from the fields may
share similar tokens. ❷ For the shared fields (e.g., method) which are possessed by both classes,
the classes might contain methods with identical names that are related to them (i.e., setMethod).
Listed from line 14 to line 17, we note that the two methods only possessed by the class at the right
side (i.e., setEncoding and getEncoding) are related to its unique field (i.e., the encoding which
is not in the class at the left side). This indicates that if two classes possess identical fields, they
tend to possess methods with identical names that are related to these fields. Be noted that we can
only focus on the name of the fields when deciding if they are identical among classes. The behind
intuition is that names can already represent the semantic information of identifiers well [7, 8, 24].
Taking line 3 in Figure 2 as an example, although the two fields have different data types (byte[]
vs. String), they can be considered as identical and the classes possess two methods with identical
names for them respectively (cf. line 14). Another notable phenomenon is that for fields that are
uniquely possessed by a class, some of them may still have related methods. For instance, the class
at the right side has a field encoding that does not occur in the class at the left side while this field
has two related method names (e.g., getEncoding). This indicates that to perform the PI-MNP
task, we also need to recommend names for certain fields that are uniquely possessed by a class.
From the above analysis, we find that for classes whose names are similar, the names of their

methods, no matter whether they are related to the fields, may be similar to some extent. Therefore,
we are motivated to utilize classes with similar names to infer the method names for a specific
class.

4 EMPIRICAL INVESTIGATION
Inspired by the motivation example, we further performed an empirical study to investigate whether
such observations are pervasive among real-world projects.
Dataset. To perform the empirical analysis, we used the dataset collected by Liu et al. [64],

which contains 430 well-maintained and open-sourced Java projects. In our study, we focused
on the source code to reduce potential bias from the test code. Therefore, we totally analyzed
258,321 classes. Note that we omitted constructors and main methods within the classes during our
empirical analysis as well as the evaluation, since such methods do not require any prediction.
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4.1 Definitions
To ease our presentation in the rest of this paper, we define several concepts here:

• Semantic class name: denotes the last fourwords of the full qualified class name (e.g., org.apache.
commons.fileupload.util.mime.ParseException.java). We consider the full qualified name since
the name of the package where the class is located can help understand the functionality and
intention of the class. For instance, the word util can indicate the class implements some
utility functions that can be invoked by other classes. We only consider the last four words (split
by “.”) since our statistic on the empirical dataset shows that the median number of words in
full qualified names is 7 which means the last four words are sufficient to cover the semantics
considering the first three usually denote organizations (e.g., org.apache.commons), providing
useless information about the semantic context of the class.

• Proximate class pair: denotes a pair of classes that satisfy two conditions: ➀ the rightmost
tokens of their class names are identical; and ➁ the semantic similarity between their semantic
class names exceeds a threshold (i.e., 𝛼 , which is calculated by a customized fastText model [41].
Details will be introduced later in Section 4.2). We set the above two conditions due to the
following reasons. First, Butler et al. [29] observed that class names often end up with a noun
with respect to the grammar structure, while Singer and Kirkham [79] showed that this noun is
usually an indicator of the programmer’s expectation of the class. These studies suggest that the
rightmost noun in a class name can potentially indicate the functionality the class is expected to
implement. We, therefore, set the first condition. We set the second condition to further ensure
that the involved two classes are semantic-related. A strict restriction that can ensure a proximate
class pair is strongly related would be to require the class names to be identical. However, we
performed a preliminary study on the class names and found that only around 10% of the unique
class names occur more than once in our dataset. It means that if the strict condition is applied,
very few of the classes can find their proximate classes. Consequently, there is no sufficient
dataset to guarantee the effectiveness and generality of our approach. We, therefore, set the
above conditions which are more flexible by calculating the semantic similarity. In the rest of
this paper, a class’s proximate classes denote those classes that satisfy the above two conditions
with the target one. It should be noted that our definition of “proximate class” in the paper only
focuses on the semantic similarity between class names, and it is not necessarily related to the
class body in terms of functionalities.

• Field-relevant method: denotes a method whose name is related to a field within the class.
Formally, given a class field f, the name of the method related to f can be split as: V + f where V
denotes a verb. A simple way to judge if a method’s name is related to a field is to check if the
field is a sub-string of the method’s name. However, we find that developers sometimes define
a general field as well as a more specialized field in the same class (e.g., path and detailPath).
Under such conditions, simply applying the above process will introduce noises (e.g., relating
the method whose name is getDetailPath with the field path). Our definition is based on our
observation that the name of a method relating to a class field often starts with a verb (e.g., set
and get), indicating the operation in this method, which is then followed by the associated field
name. Our definition is also supported by several previous studies. For instance, Abebe et al. [6]
and Gupta et al. [42] assert that method names should be verb phrases, while Butler et al. [28]
show that a large proportion of field names are noun phrases. Therefore, considering that a
method name is composed of a verb and a field name is, at least, consistent with the naming
conventions.

• Field-irrelevant method: denotes a method whose name cannot be matched with any field in
the class based on the above-mentioned rule.
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• Unique fields: denote those fields in a class that do not occur in any of its proximate classes
(e.g., encoding for the class at the right side in Figure 2).

4.2 Experiment Setting
Recall that our empirical analysis aims to investigate whether the two observations in Section 3 are
pervasive. Therefore, we design the following research questions:

RQ1: How pervasive are proximate class pairs?
RQ2: How is the relation between the field-irrelevant method names of a class and those of its

proximate classes?
RQ3: How is the similarity between field-relevant method names of a class and those of its

proximate classes with respect to its non-unique fields?
Suppose that we are going to perform the PI-MNP task with the help of proximate classes, one

essential question is how likely there exists proximate classes for reference, which will be answered
by RQ1 via investigating the pervasiveness of proximate class pairs. Furthermore, how to utilize
the information from proximate classes for inferring the field-(ir)relevant method names of the
target class also needs investigation: for an effective approach, we need to understand do we need
to reorganize the information from proximate classes or can we directly reuse them. The designed
RQ2 and RQ3 exactly aim to answer such critical questions for the approach design. Specifically,
RQ2 investigates to what extent the field-irrelevant method names of a class appear in those of
its proximate classes, whose results can guide the approach design for predicting filed-irrelevant
method names. For instance, if results reveal that a large number of field-irrelevant method names
of a class appear in those of its proximate classes, we may design a reuse-based heuristic for
predicting field-irrelevant method names; otherwise we may need to reorganize the field-irrelevant
method names from proximate classes. Similarly, RQ3 investigates to what extent the field-relevant
method names of a class appear in those of its proximate classes, whose results can guide the
approach design for predicting filed-relevant method names. Overall, the answers to our research
questions provide empirical foundations on the pervasiveness of proximate class pairs, and the
predictive capabilities of proximate classes on field-(ir)relevant method names of the target class.
Such foundations can shed lights on how to design effective approaches for predicting method
names.

Data processing. To represent the semantic similarity of two class names, we embed the names
as vectors and then calculate the cosine similarity as an indicator of their semantic similarity.
Existing pre-trained language models (like BERT [34]) are learned from natural language corpus,
where the co-occurrence relationships among tokens significantly differ against those from full
qualified class names. We thus chose to train a fastText model [41] from scratch on all the full
qualified class names within our dataset. Note that during training, the class names, which are
usually composed of several tokens, are split based on the camel case and underscore naming
convention while other words within the full qualified class names (whose letters are usually all in
lower case, e.g., fileupload in the example in Section 4.1) are split with the help of Word Ninja.1 After
training, the last four words from the full qualified class name are considered, and we separately
embed the class name (i.e., the last word) and its context information (i.e., the first three words).
Specifically, the class name composed of 𝑛 tokens is embedded as 𝑐1, 𝑐2, . . ., 𝑐𝑛 , and the average
𝑐 is used to represent the class name. While the other three words are split into tokens 𝑡1, 𝑡2, . . .,
𝑡𝑚 whose embeddings are 𝑑1, 𝑑2, . . ., 𝑑𝑚 . Their average value 𝑑 is used to represent the context
information. At last, the two contexts are concatenated to represent the semantic of the class name
as 𝐹 = [𝑑 ; 𝑐]. In our experiment, the dimension of each embedded token is 128.

1https://github.com/keredson/wordninja
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(a) The correlation between 𝑃𝑐 and the threshold 𝛼 . (b) The correlation between 𝐴𝑣𝑒 and the threshold 𝛼 .

Fig. 3. The values of two indicators under different threshold (𝛼).

In our study, to determine if a method name token is a verb or not, we obtained the part-of-speech
(PoS) information of each token in the method name by following previous studies [71, 90]. Such a
process requires to (1) convert each method name to a sentence by splitting the name into tokens
and prepending the result with the token “I”, and (2) apply the Stanford Tagger [4] to obtain the
results.

It should also be noted that when analyzing class fields, we discarded constants. This is because
that constants are immutable and can be easily accessed. Thus, it is unlikely that a method name
would be related to the constants. Any field whose characters are all in the upper case is identified
as a constant, following the official naming conventions of Oracle.2

4.3 Results
4.3.1 RQ1: the abundance of proximate class pairs. In this RQ, we used two indicators to approximate
the abundance of proximate class pairs under diverse values of 𝛼 . The first one is the percentage of
the classes that have at least one proximate class (𝑃𝑐 ) while the second one is the average number
of proximate classes a certain class can possess (𝐴𝑣𝑒). These two indicators reflect the abundance of
proximate class pairs from different perspectives. For a specific class, we also dissected the origin
of its proximate classes. Specifically, we investigated if the proximate classes of the target one are
from the same project. Therefore, the results are analyzed from two granularities: considering
proximate classes from all investigated projects (including those from the same project as the target
one) and considering proximate classes from non-local projects (explicitly excluding those from the
same project as the target one). While the former can be applied when a part of the current project
is implemented, the latter provides a more general perspective. Results are shown in Figure 3.

From the results, we find there are abundant proximate classes for a specific class. For instance,
if we consider all the projects, more than 80% of the total classes can find their proximate classes
and one class can possess around 35 proximate classes on average when 𝛼 is 0.5. We also note
that explicitly considering non-local projects can already provide abundant proximate classes. For
instance, 76% of the total classes can find their proximate classes when 𝛼 is 0.5, slightly lower than
the percentage obtained when local projects are considered (i.e., 82%).

4.3.2 RQ2: the relationship between the names of the field-irrelevant methods of a class and those
of its proximate classes. Inspired by our motivation example, we postulate that the names of the
field-irrelevant methods of a class can be related to those of its proximate classes. We therefore
investigated the extend to which the contents of a class’s field-irrelevant method names appear in
2https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
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(a) The correlation between P𝑚 & P𝑡 and the threshold
𝛼 .

(b) The correlation between S𝑀 & S𝑇 and the threshold
𝛼 .

Fig. 4. The values of four indicators under different threshold (𝛼).

those of its proximate classes. The analysis is based on two granularities: the method name level
and the level from the tokens composing the method names (so called token level). Suppose the
field-irrelevant methods within the class areM1 = {𝑚1,𝑚2, . . .,𝑚𝑖 }, the field-irrelevant methods
from all of its proximate classes are M2 = {𝑚′

1, 𝑚
′
2 . . ., 𝑚′

𝑗 }. The method name level result is
calculated as P𝑚 =

|M1∩M2 |
|M1 | which is the percentage ofM1’s methods that occur inM2. By splitting

method names into tokens, we can gain T1 which denotes the set of tokens from the methods within
M1 and the same for T2. Then the token level result is calculated as P𝑡 = |T1∩T2 |

|T1 | . After obtaining
the values of P𝑚 and P𝑡 for each class, the overall values (P𝑚 and P𝑡 ) on the whole dataset are
calculated as the averages.

The results are shown in Fig. 4a. We mainly note two phenomenons. First, in general, the method
name level overlap between a class’s field-irrelevant methods and those of its proximate classes is
high, which confirms our observation. Specifically, the P𝑚 is around 0.45 when 𝛼 is 0.5. Second, the
token level overlap is even higher than that of the method name level. For instance, when 𝛼 is 0.5,
the P𝑡 nearly reaches 0.7. Such results are consistent with the observations from Nguyen et al. [69]
that the method names tend to occur more uniquely than the corresponding tokens. This suggests
that the token level information of the field-irrelevant method names from a class’s proximate
classes may provide more powerful effects for predicting the field-irrelevant method names for the
target class compared with directly using the method name level information. Nonetheless, we
notice that when 𝛼 is 0.5, a class possesses 35 proximate classes on average, which could lead to a
large-size of T2. Therefore, when utilizing such information, a challenge that needs to be addressed
is how to search for the target tokens effectively. We propose to utilize deep learning techniques to
address such a challenge (see Section 5).

4.3.3 RQ3: the similarity between the names of the field-relevant methods of a class and those of its
proximate classes with respect to their overlapped fields. Motivated by our observation, we postulate
that for the non-unique fields of a class, the field-relevant method names from this class have high
chance to be identical with those from its proximate classes. We, therefore, proposed to analyze the
similarity between the field-relevant method names of a class with respect to its non-unique fields
and those from its proximate classes. Specifically, given a class 𝐶 and its proximate classes C𝑝 =

{𝐶1,𝐶2, . . . ,𝐶𝑚}, the non-unique fields of𝐶 are denoted as𝑂 𝑓 = {𝑓 | (𝑓 𝑖𝑛 𝐶) ∩ (∃𝐶 ′ ∈ C𝑝 , 𝑓 𝑖𝑛 𝐶
′)},

where 𝑓 𝑖𝑛 𝐶 denotes 𝑓 is a field of the class 𝐶 . Then, the field-relevant methods of 𝐶 related with
fields from 𝑂 𝑓 are FR𝑀 while those of C𝑝 are FR𝑀𝑝

. Tokens composing the methods within FR𝑀
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are denoted as FR𝑇 and those composing the methods within FR𝑀𝑝
are denoted as FR𝑇𝑝 . The

method name level similarity is calculated as S𝑀 =
|FR𝑀∩FR𝑀𝑝 |
|FR𝑀∪FR𝑀𝑝 | , which is the Jaccard similarity of

the two sets, while the token level similarity (i.e., S𝑇 ) is the Jaccard similarity between the sets
FR𝑇 and FR𝑇𝑝 . Finally, the values on the whole dataset (S𝑀 and S𝑇 ) are the averages of those of all
classes in the dataset. As discussed in Section 3, we only consider the field name to judge if a field
is unique.

Results are shown in Fig. 4b. We observe that the values of S𝑀 and S𝑇 are both extremely high.
Specifically, the similarity of the method name level (S𝑀 ) exceeds 0.9 at all time while the similarity
of token level (S𝑇 ) also exceeds 0.9 when 𝛼 is higher than 0.5. Another interesting finding is that
S𝑀 is higher than S𝑇 . Generally speaking, this happens because tokens composing the investigated
method names are repetitive. Therefore the sizes of FR𝑇 and FR𝑇𝑝 are smaller than those of FR𝑀
and FR𝑀𝑝

. Then when an uncommon token is introduced, which only leads to one uncommon
method, the decrease with respect to S𝑇 is more significant compared with that of S𝑀 . We give a
concrete example here. For the ErrorsTag.java class of the Apache struts project, 3 it contains
12 field-relevant method names obtained by combining the Verbs = {get, set} and the Fields =
{bundle, footer, locale, name, property, header} in pairs. When 𝛼 = 0.5, its proximate classes totally
have 14 field-relevant method names composed by the above 12 ones plus with prepareName and
createLocale. Under such a condition, the Jaccard similarity of the method name level is 0.857
(12/14), higher than that of the token level which is 0.8 (8/10).

Overall, our results indicate that if a class and its proximate classes contain identical fields, they
tend to contain the same methods that are related to these fields.

We conclude the main findings obtained through our empirical analysis as following:

[F1] Proximate class pairs are pervasive among real-world projects.
[F2] A considerable percentage of tokens composing the names of a class’s field-irrelevant methods
can be found in the names of its proximate classes’ field-irrelevant methods.
[F3] The similarity between a class’s method names of its non-unique fields and those of its
proximate classes is extremely high.

In this study, we use distributed representations to model semantics and similarities of class
names. Therefore, it is hard to ensure that the retrieved proximate class pairs possess identical
intentions. However, according to our empirical results that method names from proximate class
pairs overlap to a certain degree, we presume that the retrieved proximate class pairs, at least, have
similar semantics.

5 METHODOLOGY
5.1 Overview
Figure 5 illustrates the overall workflow of Mario, which is a hybrid approach for method name
prediction.
Given a class with a number of fields named, Mario first searches for the proximate classes

within a large class repository and the classes from the local project (i.e., the project which contains
the target class). The selection process is described in Section 4.2: a class whose similarity with
the target class regarding to their semantic class names exceeds the threshold 𝛼 will be included.
After that, Mario adopts a number of different strategies to generate method names for the target
class. For field-irrelevant method names, directly reusing those from the proximate classes is

3https://github.com/apache/struts
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Fig. 5. The workflow of Mario.

inappropriate since the previous study [69] shows that only one third of the method names occur
for multiple times among a large-scale software repository and our further investigation reveals that
this conclusion also holds for field-irrelevant methods. Fortunately, our investigation has revealed
that the field-irrelevant method names of a class and those of its proximate classes, although not
highly identical, have great correlations with respect to the tokens composing them (Finding-
2). Therefore, for predicting field-irrelevant method names, the challenge is how to search for
the target tokens from a large number of candidate tokens as we have mentioned in Section 4.3.
Manually summarizing patterns is unsuitable considering the diversity of method name tokens. On
the contrary, supported by several previous studies [58, 69, 86] where the tokens composing the
method names are automatically inferred from a large amount of inputs by deep learning techniques,
we are motivated to address this challenge by utilizing the power of deep learning. In particular,
we use a model, named Transformer [84], to transform the tokens composing the field-irrelevant
method names of the proximate classes into the tokens composing the field-irrelevant method
names of the target class. For field-relevant methods, the basic idea is the approach should work for
each individual field, since the set of class fields is usually expanded gradually with the development
process. To that end, we consider if the fields are unique (i.e., cannot be observed from the proximate
classes) or not (i.e., can be observed from the proximate classes). For fields that are non-unique, we
directly reuse all the method names from the proximate classes that are related to these fields. This
decision is based on our investigation that for fields that can be commonly observed in a class and
its proximate classes, they tend to share very similar field-relevant method names (Finding-3). For
fields that are unique, we need to decide which verbs should be combined with them to shape the
corresponding field-relevant method names. To achieve so, we performed empirical investigation
on the dataset and summarize prior knowledge to help us make such decisions. After the above
procedures, the prediction results from the individual parts are integrated as the final results of
Mario.

5.2 Transformer Based Field-Irrelevant Method Names Prediction
In our study, we use a sequence-to-sequence (seq2seq) model to infer tokens of the field-irrelevant
method names by the tokens composing the field-irrelevant method names of the proximate classes.
We decide to adopt a Transformer model [84] since it achieves the state-of-the-art performances
on a number of seq2seq tasks [9, 47, 56]. Several studies have investigated the semantic patterns
of Java method names and found that the majority of them are verb phases [6, 24, 42]. Therefore,
from the perspective of natural language processing (NLP), the rationale of this decision is that we
can train a translator which translates a series of verb phrases into another series of verb phrases.
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Primer on Transformer. We briefly introduce Transformers here. Transformers, with the
widely-known Encoder-Decoder architecture, are designed for dealing with sequence data. The
input sequence [𝑖1, 𝑖2, . . . , 𝑖𝐿] will be embedded as X = [𝑥1, 𝑥2, . . . , 𝑥𝐿], 𝑥𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 firstly. The key
point of the model is the mechanism called self-attention, which maps the embedding sequence to a
sequence of the same length [𝑧1, 𝑧2, . . . , 𝑧𝐿], 𝑧𝑖 ∈ R𝑑𝑧 . To achieve so,X is fed to three fully-connected
networks (Wq,Wk,Wv) to calculate the query, key, and value vectors:

Q = XWq, K = XWk, V = XWv (1)

The output is calculated as the weighted combination:

𝐴𝑡𝑡𝑛(Q,K,V) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (QK
𝑇

√
𝑑𝑘

)V (2)

where 𝑑𝑘 is the dimension of the key vector.
Several (ℎ) attention layers (so called heads) are applied in parallel and a Transformer block

is constituted by the multi-head attention, a residual connection, a layer normalization, and a
position-wise fully connected feed-forward network. In our study, for the Encoder and Decoder, the
numbers of blocks are both six while for each block, the number of attention layers (ℎ) is set to eight.
The values for hyper-parameters of the model are reused from the open-source implementation of
Transformers.4 For more details about the Transformer model, readers can refer to [56, 84].

Inputs of our model. We recall that Mario utilizes the information of field-irrelevant method
names from all the proximate classes. From our empirical analysis, a class may possess hundreds
of or even thousands of proximate classes, which will lead to the input of our model being too
long. To avoid such a case, we need to prioritize these field-irrelevant method names. Specifically,
we design the following heuristics to rank the method names. Method names are first ranked in a
descending order based on their numbers of occurrences in all the proximate classes. For names
that occur for the same times, those from the proximate class which possesses higher semantic
similarity with the target class are ranked in priority.
After obtaining the rankings for all the method names, Mario selects the top 10 ones. This

number is empirically determined. Specifically, we also experimented with other choices such as 5,
20, 50 and etc. , but found the effectiveness decreased under all such conditions. Indeed, if it is too
small, the input may provide limited information; while if it is too large, the task we target is more
likely to be text summarization, where distinguishing the more informative parts of the input is a
long-standing challenge [43, 78]. The selected method names are then split into tokens based on
the camel case and underscore naming conventions, and all obtained tokens are transformed in to
their lowercase form. We use a special token “,” to separate individual method names. Let us use
Figure 2 as an example. Suppose the class at the right hand is the only proximate class in the code
corpora of the class at the left hand, the input token sequence of the model is “put next entry , get
bytes , get zip extra”, and the oracle output is “put next entry , write bytes , write extra , get extra
len”. After training, we can obtain the predicted method name list via splitting the output sequence
by “,”.

5.3 Prior Knowledge Based Field-Relevant Method Names Prediction for Unique Fields
In our study, we summarize properties for class fields occurred in our empirical dataset in order to
predict method names for a class’s unique fields. Such field properties serve as the prior knowledge
of our approach, which will be introduced in detail as follows.

4https://github.com/SamLynnEvans/Transformer
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To recommend method names for a specific field, we need to leverage the knowledge from
the existing fields that are similar to it. Similar to the method names and class names, it is rare
to observe two fields with identical names. We therefore consider two fields are similar if their
rightmost tokens are identical. That is to say, we categorize the fields in our study based on their
rightmost tokens. For instance, both the fields detailedPath and abstractPath will be classified into
the cluster path. The behind intuition is that the previous study [28] shows that the overwhelming
majority of field names in Java are noun phrases (e.g., formatData). We thus postulate that the
rightmost token can serve as the representation of the semantic meaning of the field, following the
existing study on class names [79]. By doing so, after encountering a previously unseen field, we
can utilize the knowledge from its cluster to make the prediction.

For each unique field, we need to decide which verbs will be used to combine with it to construct
the field-relevant method names. To achieve so, we summarize the probabilities of each field to occur
in the method names with different verbs and then recommend the verbs with high probabilities.
Formally, for the fields whose rightmost token is 𝑡 , their cluster is denoted as C𝑡 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}.
Suppose V = {𝑣𝑒𝑟𝑏1, . . . , 𝑣𝑒𝑟𝑏𝑁 } represents the verb vocabulary. For a specific field 𝑓𝑖 , we record
from all the classes within our empirical dataset the number of classes that possess 𝑓𝑖 (denoted
as 𝑁𝐶𝑃 (𝑓𝑖 )). For each verb 𝑣𝑒𝑟𝑏 𝑗 , we also record the number of classes that possess field-relevant
method names composed by 𝑓𝑖 and 𝑣𝑒𝑟𝑏 𝑗 (denoted as 𝑁𝐶𝐹 (𝑓𝑖 , 𝑣𝑒𝑟𝑏 𝑗 )). Then, the probability of
𝑣𝑒𝑟𝑏 𝑗 to combine with fields from C𝑡 is calculated as:

∑𝑛
𝑖=1 𝑁𝐶𝐹 (𝑓𝑖 ,𝑣𝑒𝑟𝑏 𝑗 )∑𝑛

𝑖=1 𝑁𝐶𝑃 (𝑓𝑖 ) . Given a unique field, Mario
can then decide which cluster it belongs to and recommend verbs with high probabilities based
on the summarized prior knowledge. Specifically, if the probability of a verb to combine with it
exceeds a threshold (𝛽), Mario will recommend it to construct a field-relevant method name.

6 EVALUATION
6.1 ResearchQuestions
We seek to answer the following research questions in this study.
RQ4: How is the effectiveness of Mario?
RQ5:How is the effectiveness of Mario on field-relevant method names and field-irrelevant method
names respectively?

In RQ4, we compare the effectiveness of Mariowith three baselines as well as two state-of-the-art
method name recommendation approaches. Moreover, our approach involves a hyper-parameter
(𝛼). Through RQ4, we also dissect the effectiveness of Mario under diverse values of 𝛼 . As we
have introduced, the method names of a class can be split into two types: field-relevant and field-
irrelevant. Apart from the overall effectiveness, we, in RQ5, separately investigate the effectiveness
of Mario on the two types of method names. Answering such a question can help us understand
the strengths and weaknesses of Mario.

6.2 Baselines
Note that Mario is the first approach that targets PI-MNP. Nonetheless, to show that the design of
Mario is rational as well as its effectiveness, we develop three baselines based on heuristics and
also include two state-of-the-art method name recommendation approaches for comparison.
Baseline#1. Given a specific class, this baseline recommends a setter and a getter method names
for each involved field. This baseline mimics conventional IDEs’ working mechanism and thus
reflects how well the current IDEs (e.g., Eclipse [2]) can perform on the PI-MNP task. This baseline
does not require a threshold 𝛼 since it does not seek for information from proximate classes.
Baseline#2. For a specific class, this baseline always recommends all the method names from the
class that is the most similar one to it according to the similarity between their semantic class names.
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The rationale of designing this baseline is that there may exist class pairs with high similarities due
to code clone. Note that this baseline approach is also independent of the threshold 𝛼 . It can work
as long as it can find another class whose name possesses the same rightmost token with the target
class.
Baseline#3. Given a specific class, this baseline recommends the top nine method names that
occur the most frequently in its proximate classes. Such a number is selected based on the fact that
our empirical dataset reveals that a class contains around nine methods on average. The behind
intuition for this baseline is that a method name occurring more frequently in the proximate classes
may have a higher probability to be included in the target class, similar to the statistical language
models where tokens co-occurring with the target code sequence more frequently are more prone
to be predicted [51, 81]. This baseline is affected by the threshold 𝛼 to select the set of proximate
classes.
Code2vec & Code2seq. These are the two state-of-the-art method name recommendation ap-
proaches, which rely on the AST structure of programs [17, 18]. Although these two approaches
require the method body information, which is not required as the input of Mario, we compare
Mario against them to see how effectively can Mario perform on method name prediction.

6.3 Experiment Settings
Dataset. To perform a large-scale evaluation, we chose to use a dataset of 9,550 top-starred Java
projects from GitHub, named Java-large [17], which has been widely used in evaluating the quality
of predicted method names [26, 47, 86]. This dataset has been split into three different parts: 9,000
projects for training, 250 projects for validation, and 300 projects for testing. We decided to evaluate
on the test set while searching for proximate classes within the training and validation sets (i.e.,
the training and validation sets are used as the class repository). The inputs of our Transformer
model change with the value of 𝛼 . Therefore, we trained several Transformer models according
to different values of 𝛼 . Note that to avoid data leakage, the Transformer models were trained on
our empirical dataset, and we also omitted four projects in the test set that exist in our empirical
dataset. We take 𝛼 = 0.5 as an example. Under such a condition, for each class from our empirical
dataset, all other classes in this set whose semantic class names are close to that of the target class
(i.e., share the same rightmost token with the target one and the semantic similarity to the target
one exceeds 0.5) are considered as proximate classes. Then, to construct a training sample, we
extract the token sequence of the FI method names of the proximate classes (which is used as the
input during training) and the token sequence of the FI method names of the target class (which is
used as the oracle during training), as introduced in Section 5.2. The whole training samples are
constructed by iterating this process on all the classes in the empirical dataset. After training, the
learned Transformer model is applied on the classes from the test set of the Java-large dataset. We
identify proximate classes from the training and validation sets of the Java-large dataset as well as
the local project (the criterion of being proximate classes is identical to that in the training process,
e.g., the semantic similarity between the semantic class name of a proximate class and that of the
target class should exceed 0.5). With the inputs being the token sequence of the FI method names
from proximate classes, the model is supposed to predict the FI method names for the target class.
Any code token in the test set that does not appear in our training set (i.e., our empirical dataset) is
represented as ‘UNK’. We investigated that when 𝛼 equals to 0.5, only around 1.3% (5,927/462,258)
of the input tokens are represented as ‘UNK’. Therefore, the impact of the Out-of-Vocabulary (OoV)
problem on our model is limited.
During the evaluation, we discarded classes that implement interfaces since when developing

these classes, developers can directly refer to the methods as listed in the interfaces. The total
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number of classes used in our evaluation is 22,822 and the number of classes in our class repository
is 1,539,568 (1,506,706 from the training set and 32,862 from the validation set).
Metrics.We assess the effectiveness of Mario by computing the following metrics:

𝑹𝒆𝒄𝒂𝒍 𝒍𝑪 : 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 =
𝐶𝑙𝑎𝑝

𝐶𝑙𝑎𝑡
where 𝐶𝑙𝑎𝑝 is the number of classes for which Mario can make any

prediction independent of its correctness and 𝑐𝑙𝑎𝑡 is the number of classes within our test set.
𝑅𝑒𝑐𝑎𝑙𝑙𝐶 indicates in how many classes Mario could be potentially useful for developers.

𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏𝑴 , 𝑹𝒆𝒄𝒂𝒍 𝒍𝑴 , 𝑭 -𝒔𝒄𝒐𝒓𝒆𝑴 : For a specific class whose contained methods are named
as 𝑜𝑟𝑎𝑀 = {𝑜𝑟𝑎1, . . . , 𝑜𝑟𝑎𝑛} while the prediction result from Mario is 𝑝𝑟𝑒𝑀 = {𝑝𝑟𝑒1, . . . , 𝑝𝑟𝑒𝑚}.
Its precision, recall, and F-score are calculated as: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑜𝑟𝑎𝑀∩𝑝𝑟𝑒𝑀 |
𝑚

, 𝑟𝑒𝑐𝑎𝑙𝑙 = |𝑜𝑟𝑎𝑀∩𝑝𝑟𝑒𝑀 |
𝑛

,
𝐹 -𝑠𝑐𝑜𝑟𝑒 =

2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 . Then the performances on the whole dataset (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 , 𝑟𝑒𝑐𝑎𝑙𝑙𝑀 ,

𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 ) are computed as the average values of all the classes in the dataset where the approach
can make predictions.

𝑷𝒓𝒆𝒄 𝒊𝒔 𝒊𝒐𝒏𝑻 , 𝑹𝒆𝒄𝒂𝒍 𝒍𝑻 , 𝑭 -𝒔𝒄𝒐𝒓𝒆𝑻 : These metrics are calculated similarly with the above three
but are analyzed based on the token level. That is, the method names are split into tokens and the
calculation is performed based on the obtained token sets. Note that the token level analysis is
widely adopted in studies about method names [15, 58, 69, 86] and the reason can be explained as
the quality of a method name prediction depends mainly on the tokens used to compose it [18].

Originally, code2vec and code2seq were assessed on each individual method. To keep consistent
with the application scenario of Mario, we re-evaluated them at the class level. Specifically, we
calculated their effectiveness based on the prediction results for all the methods in each individual
class as introduced above.
Empirical decision for the value of 𝛽 . To decide the value of 𝛽 , we conducted a pre-experiment
where we set 𝛼 to 0.5 and changed the value of 𝛽 from 0.1 to 0.9 with an interval of 0.1. Results
showed that the optimal effectiveness was obtained when 𝛽 equaled to 0.2. Therefore, we empirically
set 𝛽 to 0.2 in our evaluation.

6.4 Results
6.4.1 The effectiveness of Mario (RQ4). The performances of Mario and the baselines under five
different values of 𝛼 are shown in Table 1. As we have introduced, the application of Baseline#1 and
Baseline#2 does not require a threshold. Therefore, they can make predictions on different class
sets compared with Mario (illustrated by the value of 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 ). For instance, Baseline#1 can work
for all the classes in the test set (with a 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 of 100%), while Mario can make predictions for
87.1% of the classes in the test set when 𝛼 equals to 0.1. Directly comparing the overall effectiveness
each approach achieves on the classes they can work is not completely fair, since the performance
of an approach on a certain subset of the classes may be better than its overall performance. For
instance, Baseline#1 could perform better on classes with more FR method names since it only
targets FR method names. To fairly compare Mario with these two baselines, we also calculated
the performances of these two baselines on the set of classes where Mario can make predictions,
under different values of 𝛼 . As shown by the results, Mario outperforms the baseline approaches at
both the method name level and token level under all the five values of 𝛼 . For instance, when 𝛼

equals to 0.1, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 of Mario reaches nearly 45%, while the best performance of the baselines
is 25%, which is achieved by Baseline#2. Specifically, the 𝑟𝑒𝑐𝑎𝑙𝑙𝑇 reaches nearly 55%, indicating
that in general more than half of the tokens composing the method names can be predicted by
Mario. Similarly, when 𝛼 equals to 0.9, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 of Mario reaches around 65%, while the
best performance of the baselines is 55%, which is achieved by Baseline#3. The 𝐹 -𝑠𝑐𝑜𝑟𝑒 values of
Baseline#1 on method name level and token level are relatively low (4.0% and 15.2% respectively).
This indicates that the current IDEs perform rather poorly on method name prediction for the
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Table 1. Comparisons between Mario and the baselines under different values of 𝛼 (in %).

Approach 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 𝑟𝑒𝑐𝑎𝑙𝑙𝑀 𝐹 − 𝑠𝑐𝑜𝑟𝑒𝑀 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇 𝑟𝑒𝑐𝑎𝑙𝑙𝑇 𝐹 − 𝑠𝑐𝑜𝑟𝑒𝑇

Baseline#1 100.0 4.7 4.5 4.3 22.2 13.3 15.2
Baseline#2 94.7 18.0 18.3 16.9 28.0 28.5 24.8
Code2vec 100.0 27.4 26.2 26.6 43.7 39.6 40.6
Code2seq 100.0 37.3 36.8 36.9 66.3 63.2 63.4

𝛼 = 0.1

Baseline#1 87.1 4.4 4.2 4.0 22.3 13.2 15.2
Baseline#2 87.1 18.0 18.3 16.9 28.0 28.5 24.8
Baseline#3 87.1 10.1 21.9 11.8 19.7 32.8 20.1

Mario 87.1 35.3 46.6 36.5 44.5 54.3 44.7

𝛼 = 0.3

Baseline#1 85.1 4.4 4.2 4.0 22.3 13.2 15.2
Baseline#2 85.1 18.0 18.3 16.9 28.0 28.7 25.0
Baseline#3 85.1 16.0 32.0 18.2 24.5 42.0 26.6

Mario 85.1 35.8 48.2 37.2 44.4 56.3 45.4

𝛼 = 0.5

Baseline#1 80.6 4.3 4.1 3.9 22.2 13.1 15.1
Baseline#2 80.6 18.4 19.3 17.4 28.5 29.6 25.4
Baseline#3 80.6 22.2 40.3 24.5 30.3 49.9 32.7

Mario 80.6 34.0 42.8 34.4 44.3 53.6 44.2

𝛼 = 0.7

Baseline#1 68.1 4.1 3.9 3.7 22.1 12.8 14.8
Baseline#2 68.1 19.3 21.1 18.6 29.6 31.4 26.7
Baseline#3 68.1 29.9 49.8 33.9 37.7 59.3 42.0

Mario 68.1 39.2 50.0 42.4 48.8 59.9 51.5

𝛼 = 0.9

Baseline#1 40.4 3.6 3.4 3.2 21.9 12.3 14.4
Baseline#2 40.4 22.2 26.6 22.0 32.7 36.3 30.2
Baseline#3 40.4 48.8 57.5 48.3 56.5 65.0 55.6

Mario 40.4 51.9 61.8 52.5 67.1 68.9 63.6

class. We conducted the Wilcoxon Signed-Rank Tests [89] to analyze the statistical significance of
the difference between the effectiveness of Mario and the baselines. We opted for non-parametric
tests since they do not make assumptions about the distribution of the data or the equality of
variance and thus provide a more flexible approach to analyzing experimental data [36, 38, 60].
Specifically, we compared the achieved 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 values of Mario on each individual class against
those achieved by the three specially-designed baselines. Such a comparison was conducted for the
five different values of 𝛼 and the results show that Mario significantly outperforms the baselines
under all the situations. Specifically, all the p-values are less than 0.001 in the comparison results.
We also computed the Cliff’s delta [31], a non-parametric effect size measure that can evaluate the
amount of difference between two variables.5 Results show that the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 has at least a medium
effect size under all the situations. For instance, when 𝛼 = 0.1, the Cliff’s delta values between
Mario and the three baselines with respect to 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 are 0.590, 0.418, 0.448, respectively. Such
results indicate that the performance differences between Mario and the baselines are significant.
Another interesting phenomenon is that when 𝛼 varies from 0.1 to 0.5, the performances of

Mario only change slightly (e.g., the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 is always around 45%). Therefore, users of Mario
can set three configurations depending on its sensitivity to the potential proximate classes: 𝛼 = 0.1
(high sensitivity); 𝛼 = 0.7 (medium sensitivity); and 𝛼 = 0.9 (low sensitivity). When setting with
the high sensitivity, Mario can work for nearly 90% of the classes with the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 and 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇
being around 35% and 45%. Although such results may indicate that more manual inspections
are required in practice, we note that the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 of around 45% already exceeds that of the
state-of-the-art technique code2vec (i.e., 40.6%). When setting with the medium sensitivity, Mario

5Cliff defines a delta of less than 0.147, between 0.147 and 0.33, between 0.33 and 0.474 and above 0.474 as negligible, small,
medium, large effect size, respectively.
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Fig. 6. The distribution of the numbers of method names predicted by Mario on each individual class and
the oracle distribution of the numbers of method names in each class from the test set.

Table 2. The performances of Mario on field-relevant (FR) and field-irrelevant (FI) method names (in %).

𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 𝛼 = 0.9
FR FI FR FI FR FI FR FI FR FI

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 57.9 33.7 58.8 34.3 58.9 32.4 58.8 37.9 58.3 52.3
𝑟𝑒𝑐𝑎𝑙𝑙𝑀 72.6 44.0 71.9 45.9 71.1 40.3 69.8 48.0 67.6 60.9
𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 59.6 34.3 59.8 35.2 59.5 32.2 58.9 40.8 57.7 52.1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇 71.4 41.6 71.9 41.7 72.0 41.6 72.0 46.7 71.8 66.8
𝑟𝑒𝑐𝑎𝑙𝑙𝑇 87.0 50.1 86.4 52.5 85.8 49.7 84.9 56.7 83.8 66.9
𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 75.1 40.7 75.2 41.7 75.0 40.6 74.5 48.8 73.9 62.1

can work for nearly 70% of the classes and the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 and 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 increase to around 45%
and 50% respectively. When setting with the low sensitivity, which means Mario becomes more
strict and can make predictions for fewer classes (i.e., around only 40% of the classes), these results
are quite accurate. Especially, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 with 63.6% slightly exceeds that of the state-of-the-art
technique code2seq (i.e., 63.4%). Furthermore, the 𝑟𝑒𝑐𝑎𝑙𝑙𝑀 exceeds 60% which means more than half
of the oracle method names can be directly predicted by Mario. Such a values also significantly
outperforms that of code2seq which is 36.8%.

Since the number of method names to predict is not a fixed value, we therefore also investigated
how many method names are predicted by Mario on each individual class and the results are shown
in Figure 6. We find that the number of method names predicted by Mario remains consistent to
the oracle distribution (i.e., the number of methods in each class from the test set). Specifically, the
median values of these distributions are all three. Moreover, with the increase of 𝛼 , the number of
predicted method names does not change a lot. This means that the number of predicted method
names has low correlations with the inputs.

The effectiveness of Mario demonstrates the potential towards the PI-MNP direction. It also outper-
forms the baselines significantly w.r.t 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 under different values of 𝛼 .

6.4.2 The effectiveness of Mario on field-relevant (FR) and field-irrelevant (FI) method names (RQ5).
The effectiveness of Mario on the two types of method names is listed in Table 2. It is clear that
the performance of Mario on FR names is significantly better than that on FI names. For instance,
when 𝛼 is 0.1, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 on the FR names is 75.1%, nearly twice as that on the FI names (i.e.,
40.7%). Also, our statistical test results show that the p-values comparing the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 values on FR
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1| |class DetailActivity {
2| |
3| ✔| protected void onCreate(){...}
4| ✔| private Intent createShareForecastIntent(){...}
5| ✔| public boolean onCreateOptionsMenu(){...}
6| ✔| public boolean onOptionsItemSelected(){...}
7| |}

1| |
2| |
3| ✔| onCreate()
4| ✔| createShareForecastIntent()
5| ✔| onCreateOptionsMenu()
6| ✔| onOptionsItemSelected()
7| |

(a) the DetailActivity.java from the ud851-Sunshine
project

(b) the predicted results from Mario

Fig. 7. An example where Mario predicts all the method names correctly.

method names and FI method names are all less than 0.001 under the five 𝛼 values. This is within
our expectation as empirical evidence and domain knowledge sometimes perform better than deep
learning [53, 59]. However, we also tried to apply the same strategy as we did for Baseline#3 on
FI names, that is, we selected the top-8 FI method names (such number is adopted since in our
empirical dataset, one class possesses 8 FI method names on average) that occur the most frequently
in the proximate classes as the result. The results reveal that this strategy performs even worse. For
instance, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 is around 20% when 𝛼 is 0.1. Therefore, how to effectively infer the names
for the FI methods deserves further exploration in future.
Another interesting finding is that with the increase of 𝛼 , the performance of Mario on FR

names only slightly changes while that on the FI names increases significantly. This indicates that
our strategies for inferring FR names, which are based on prior knowledge summarized from Big
Code, can generate high-quality prediction results under all thresholds. On the contrary, our deep
learning model relies heavily on the input data.

Thanks to the prior knowledge summarized from Big Code, the effectiveness of Mario on the FR
names is significantly better than that on the FI names.

7 CASE ANALYSIS
To better investigate the usefulness of Mario, in this section we analyze several cases to showcase
how Mario could alleviate developers from the burdens of naming methods during development.
All the predictions we demonstrate in this section were obtained during our evaluation in RQ4,
that is, we pick an existing class from an application, provide its semantic class name to Mario,
and then check if Mario can predict the method names within this class accurately. Note that the
predictions are obtained under the medium sensitivity (𝛼 = 0.7) since Mario achieves a promising
trade-off between the effectiveness and the generality under such a setting.

Figure 7 shows an example where Mario can correctly predict all the method names in the target
class, which is from an Android application, ud851-Sunshine.6 The predictions from Mario therefore
contain common method names in Android applications such as onCreate. To our surprise, Mario
also accurately predicts a non-trivial method name (i.e., createShareForecastIntent). This
method has attracted much attention from developers as they wrote a detailed Javadoc to describe
its functionality (“creating our Forecast intent for sharing”), the operations in the method body
(“set the type of content that we are sharing and the text itself”), as well as its return value (“return
the newly created Intent”). From this perspective, applying Mario could both help developers name
the methods accurately and avoid developers missing key functionalities of the class.

6https://github.com/udacity/ud851-Sunshine
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1| |class WsFrameTextFilter {
2| |
3| ✔| protected Object doFilterWriteWsBinary(){...}
4| ✔| protected void wsTextReceived(){...}
5| |
6| |}

1| |
2| |
3| ✔| doFilterWriteWsBinary()
4| ✔| wsTextReceived()
5| ✗| ReadFrom()
6| |

(a) the WsFrameTextFilter.java from the gateway
project

(b) the predicted results from Mario

Fig. 8. An example where Mario predicts an extra method name.

1| |class AttendeeModifiedCommentEmail {
2| |
3| ✔| public List<String> getHeader(){...}
4| ✔| public String getMessage(){...}
5| ✔| public String getFromAddress(){...}
6| ✔| public String getSubject(){...}
7| ✗| public List<VEvent> generateEvents(){...}
8| |
9| |}

1| |
2| |
3| ✔| getHeader()
4| ✔| getMessage()
5| ✔| getFromAddress()
6| ✔| getSubject()
7| |
8| |
9| |

(a) the AttendeeModifiedCommentEmail.java
from the sakai project

(b) the predicted results from Mario

Fig. 9. An example where the prediction of Mario misses a method name.

Figure 8 shows an example where Mario predicts an extra name for the target class. Specifically,
besides the two oracle names, Mario recommends another name, i.e., ReadFrom. This is potentially
because the semantic class name of the target class contains a token “text” and Mario therefore
recommends a common method name from other classes which deal with text information. This
example shows that the information of each token in the semantic class name makes sense in the
recommendation of Mario. Besides, even if extra method names are predicted, developers can still
filter the undesired predictions based on their domain knowledge.

Figure 9 illustrates an example where Mario successfully predicts most of the method names in
the target class but misses a specific one, i.e., generateEvents. Here, all the names predicted by
Mario are field irrelevant because there is no filed named header or message in the target class.
Nonetheless, since such method names are common in email-related classes, Mario successfully
predicts them. As a comparison, the missed generateEvents is more likely to exist in classes
which specially serve as event generators to deal with a standard or specified event, such as the
linked one.7 Indeed, in-depth investigation shows that the body of this method only contains a
single statement return null;, which does not contain much semantic information.
Figure 10 shows an example where Mario makes an incorrect prediction for the target class.

The target class provides services for users to ask for a leave. It contains a method named
startWorkflow to start this service and another method named findTodoTasks to find out
what else should be done before the application will be dealt with. Mario successfully predicts the
names of these two methods. The target class also contains a method named complete to save
the tasks performed by the users. However, Mario predicts another one named getDescription,

7https://github.com/gillesdami/QuestPortal/blob/main/app/src/common/shared/org/mozilla/vrbrowser/input/
MotionEventGenerator.java
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1| |class LeaveWorkflowService {
2| |
3|✔| public public ProcessInstance startWorkflow(){...}
4| ✔| public List<Leave> findTodoTasks(){...}
5| ✗| public void complete(){...}
6| |
7| |}

1| |
2| |
3| ✔| startWorkflow()
4| ✔| findTodoTasks()
5| ✗| getDescription()
6| |
7| |

(a) the LeaveWorkflowService.java from the
activiti-in-action-codes project

(b) the predicted results from Mario

Fig. 10. An example where Mario makes an incorrect prediction.

Table 3. The detailed information of the fifteen classes implemented in the user study.
Project Class Name8 Functionality

Softbot
***.db.Bot.java Perform some operations in the database
***.user.UserController.java Control the users’ activities
***.impl.MarketService.java Make some service to the softbot market

Online forum
***.controller.LoginController.java Control the logic of the login activity
***.controller.UserController.java Control the users’ activities
***.controller.ManagerController.java Control the managers’ activities

Knowledge base system
***.router.DBRouterJoinPoint.java Do database routing
***.aspect.LogAspect.java Maintain the logs of the system
***.service.DocService.java Manage the documents

Risk control system
***.addresssimilarity.addressSimilarityService.java Calculate the similarity between two IP addresses
***.dataclean.messageRouteAndSendService.java Send network messages
***.dataclean.convertMessageStructureService.java Convert the data structure of a message

Device update platform
***.dto.ClientLoginDto.java Transport data for a client login subsystem
***.impl.IdaasServiceImpl.java Interact with a third-party system
***.login.LoginService.java Fulfill the login activity

which contains weak correlation with the functionalities of the target class. This example suggests
that Mario still has spaces for improvements.

8 USER STUDY
To further investigate the practical usefulness of Mario, we performed a user study where we
focused on studying how well Mario can help developers in their daily programming tasks.

8.1 Procedure
To perform the user study, we recruited five developers working at top-tier IT companies in China,
including Alibaba, Huawei, Tencent, and ByteDance. They all have more than five years of Java
development experience and Java is the primary programming language in their daily work. Their
current working projects cover a wide range of topics including softbot, online forum, knowledge
base system, risk control system, and device upgrade platform.

To perform our experiment, we asked each participant to provide us with the full qualified class
names of three classes theywere going to implement in their working projects. After that, we showed
them the prediction results from Mario and then they implemented the classes with the suggestions
from Mario. Table 3 lists the detailed information of these classes as introduced by the participants.
As shown in the table, these classes possess diverse functionalities. We confirmed that they had
no detailed design about the methods of these fifteen classes before the implementation and the
predictions from Mario were the only prompts for them. Finally, after their implementations, they
helped us calculate the metric performance of Mario based on their implementations and complete

8Due to the confidential policy, we only show the last two words of the full qualified class name.
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Table 4. The results of our user study.
Usefulness Naturalness Adequacy Relevance Uniqueness

Developer#1 4 5 2 3 4
Developer#2 4 3 2 3 4
Developer#3 5 5 4 4 3
Developer#4 5 4 4 4 5
Developer#5 3 3 2 3 4
Average 4.2 4.0 2.8 3.4 4.0

our online questionnaire which focuses on investigating their feelings about the predictions of
Mario. Similar to the case analysis in the above section, the predictions of Mario are also obtained
under the medium sensitivity (𝛼 = 0.7). Since we have no access to the working projects of the
participants, the predictions of Mario are only based on the class repository without any target
project information available. This setting will be discussed later in Section 9.4. All the developers’
needs and the predictions from Mario are released in our online repository.

In our questionnaire, each participant was asked to rate the prediction results of Mario from five
aspects: (1) Usefulness: reflecting how the predicted names help developers address the method
naming problem during their implementations; (2) Naturalness: reflecting how the predicted
names are similar to those that are used by developers in their daily programming; (3) Adequacy:
reflecting how the predicted names are abundant compared to the developers’ implementations
(this aspect assesses the recall from developers’ perspective); (4) Relevance: reflecting how the
predicted names are needed by the developers (this aspect assesses the precision from developers’
perspective); and (5) Uniqueness: reflecting how the predicted names are semantically unique to
each other (i.e., whether there are duplicate predictions). All scores are integers, ranging from 1
to 5 (1 for poor, 2 for marginal, 3 for acceptable, 4 for good, and 5 for excellent). After rating, the
participants could also write additional comments as they like.

8.2 Results
8.2.1 Class Complexity. After implementations, the participants helped us record the lines of code
(LOC) and the number of local methods (NLM) of each class, which are two widely-used metrics to
assess the class complexity [70, 91]. Results show that on average, the implemented class contains
175.8 lines of code and 8.5 methods. We also investigated that on average, a class from our empirical
dataset contains 172.4 lines of code and 8.5 methods. Such results indicate that the implemented
classes are similar to the classes from open source projects in terms of the complexity.

8.2.2 Qualitative. The scores given by the participants are listed in Table 4. We note that the
developers generally perceive the usefulness of Mario: none of them gave a negative score towards
the usefulness and the average score for usefulness is 4.2, a relatively high score. Developer#4
leaves a comment: “My merge requests sometimes fail because of the poor method names and
re-submissions of the requests take a lot of time, so I find the suggestions very useful”. Such results
illustrate the rationale of the motivation of this study, i.e., performing the PI-MNP task is useful
for developers. We also note that developers give positive feedback towards the naturalness and
uniqueness of Mario’s predictions. Specifically, both naturalness and uniqueness receive an average
score of 4.0. Developer#1 says “I really once used or met the recommended names in my projects
or somewhere else, so I feel they are natural”.

One weakness of Mario identified through the user study is the adequacy of its predictions. The
average score towards this point is lower than 3 and three participants gave a marginal score. We
recall that a class in our empirical dataset contains around nine methods on average. Therefore,
with the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 being 31.9%, developers may still need to conceive the names for more than six
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Fig. 11. The overlap degrees of (1) the recommendation results of Mario for two classes from the same
project and (2) the method names of cloned classes in real-world projects with respect to different clone
types.

methods in one class, which might lead to their low ratings towards the adequacy. For instance,
Developer#5 leaves a comment: “The predicted method names for the ClientLoginDto.java
class are not enough”. Such results reflect that future studies could focus on enhancing the adequacy
of the prediction results when performing the PI-MNP task.

8.2.3 Quantitative. According to the confidential policy, the participants did not share their code
with us. Hence, after their implementations, we asked them to help us calculate the performance of
Mariowith respect to the metrics defined in Section 6.3. Results show that on average, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀
and 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 of Mario on the fifteen classes are 31.9% and 44.2%, respectively. Such a performance
is similar to that of Mario on our test set when the local project information is unavailable and
𝛼 = 0.7 (which will be detailed later in Section 9.4).

9 DISCUSSION
9.1 Will Mario Recommend Similar Method Names to Classes from the Same Project

and Incur Code Clones?
Given that the application of Mario relies on the semantic name of the target class to identify
proximate classes, there is thus a concern that Mario could generate similar recommendations for
classes from the same project since they are likely to possess similar semantic class names and
have similar proximate classes. If this is the case, Mario will recommend similar method names to
classes from the same project and thus may incur code clones. We investigate this potential side
effect of Mario from two perspectives.

From one perspective, we calculate the similarity between the method names predicted for two
different classes by Mario and compare such similarities with those of real-world code clone pairs.
The intuition behind is that two classes would have similar method names if they are clones, since
method names usually represent the key functionalities of a class [7, 8]. Specifically, we randomly
selected 1,000 pairs of classes from the test set and compared the recommendation results for them.
For each pair of classes, we ensured the two classes (1) are from the same project, and (2) possess the
identical rightmost token in their semantic class names (this is because according to our definition,
two classes can only have similar proximate classes if the rightmost tokens in their class names are
identical). We calculated the Jaccard similarity (which is utilized to represent the overlap degree)
between the two sets of recommended names with respect to both method name level and token
level, as introduced in Section 4.3. We investigated the results obtained under three different values
of 𝛼 , which correspond to three different configurations (i.e., high sensitivity, medium sensitivity,
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and low sensitivity). We also noted thatWhite et al. [88] manually checked 398 class-level code clone
pairs from eight well-known Java projects, among which 371 pairs were evaluated to be real clones.
These clones were found to map to all four clone types (Type-I: identical code, Type-II: identical
code except for variations in identifier names and literal values, Type-III: Syntactically similar code
but has some statement insertion/deletion/modification, Type-IV: Syntactically dissimilar code that
implements the same functionality) and we chose to use these code clones in real-world projects
for our investigation. For each clone pair, we also calculated the Jaccard similarity between the
method names of two classes. Results are shown in Figure 11. We first note that cloned classes are
very similar with respect to their method names. Specifically, our results show that the type-I and
type-II class clones have identical method names (the method name level and token level overlap
degrees are all 1). For type-III and type-IV class clones, such similarities are also extremely high,
with method name level and token level overlap degrees exceeding 0.8. Such results also reveal the
rationale of our intuition. In contrast, the overlaps of the recommendations from Mario keep in
a low degree in general. For instance, under the low sensitivity setting (which demonstrates the
highest similarities among the three settings), the median values of the method name level and
token level overlap degrees are lower than 0.2. We also performed the one-sided Mann-Whitney
U-Test [66] to analyze the statistical significance of the similarity differences with respect to the
token level. Our Null hypothesis is that H0: the token level overlap degree of method names
from two cloned classes is not significantly higher than that from the recommendations of
Mario, and the Alternative hypothesis is H1: the token level overlap degree of method names
from two cloned classes is significantly higher than that from the recommendations of
Mario. Results reveal that the similarity differences are statistically significant (i.e., p-value < 0.01)
when comparing the recommendations from Mario and the real-world code clones, indicating
that H0 can be rejected with a confidence level of over 0.99. Such results indicate that Mario can
generally predict different method names for classes from the same project whose rightmost tokens
in the semantic class names are identical. Therefore, applying Mario in practice would unlikely
lead to a proliferation of nearly duplicate classes (i.e., code clones).
From another perspective, whether the code written by developers is a clone mainly depends

on the detailed implementation of the class, while Mario only recommends the method names
and recommends nothing related to the detailed implementations. To demonstrate this point, in
our user study, we asked the participants to check if their implemented classes are clones of other
classes in the project after they finished their implementations. Note that since we have no access
to their working projects, such a check was performed by our participants. We asked them to use
the easy-to-deploy and efficient SourcererCC [77], which has been used to analyze large-scale
GitHub projects [65], to perform this check. Results show that among the fifteen classes which
were implemented under the help of Mario, only one was identified to be a clone of other classes.
The participant explained this result as “Indeed, I reused some code from other classes during my
implementation”. Such results reveal that when applying Mario in practice, whether a class will be
a clone depends on the implementation of the developers, and it is unlikely to incur code clones if
the class is appropriately implemented.

9.2 Field Availability
In our evaluation, we assess the overall effectiveness of Mario on a class by providing it with
all the fields in the class. Nonetheless, applying Mario in practice does not require defining all
the fields in advance. In fact, Mario can predict FR method names each time a field is defined
since it only needs proximate classes and the prior knowledge for making such recommendations.
Therefore, developers can use Mario to recommend a set of FI method names first, possibly with a
partially-defined class field set. The developers’ knowledge will increase with the implementation

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: April 2023.



Pre-Implementation Method Name Prediction for Object-Oriented Programming 25

Table 5. The performances of Mario under different values of 𝛼 when the local project information is
unavailable (in %).

𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 𝛼 = 0.9
𝑅𝑒𝑐𝑎𝑙𝑙𝐶 63.2 60.5 53.4 37.4 16.1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 22.2 22.8 23.5 27.5 44.2
𝑟𝑒𝑐𝑎𝑙𝑙𝑀 35.5 36.1 36.8 41.9 58.0
𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 26.5 27.0 27.7 32.2 48.8
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇 34.8 34.9 35.9 40.7 58.8
𝑟𝑒𝑐𝑎𝑙𝑙𝑇 48.5 49.4 50.7 53.4 65.9
𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 38.9 39.1 40.2 44.4 60.1

of such methods. Finally, with a comparatively complete list of class fields, Mario will return a
set of FR method names. Subsequently, in the software iterations, Mario can still work for the
newly-defined fields.

9.3 The Complementarity Between Mario and Existing Studies
In this study, we propose Mario, a method name predictor that aims at boosting software develop-
ment. One thing needs clarification is that Mario and the existing method name recommendation
techniques are not mutually exclusive but can be complementary to each other. Mario can propose
a skeleton for a class in the early phase of software development while existing techniques can
refine method names after detailed implementations have been finished.

9.4 The Effect of the Local Project
In the default setting of Mario, it assumes that the other classes within the same project are available
when predicting the method names of a specific class. The rationale for this decision is that due
to the bloom of open source, software is not developed from scratch any more [57], which means
when implementing a new class, there already exists a number of classes in the project. However,
this assumption might not always be true. Therefore, we also assess Mario’s effectiveness when the
information from the local project cannot be provided. Since the inputs of our model will be changed
under such a condition, we re-trained our Transformers for each value of 𝛼 . The experimental
results are shown in Table 5. Specifically, we find that the overall performances of Mario are only
slightly affected under different values of 𝛼 . For instance, compared with the performance obtained
when the local project information is available, the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 drops from 63.6% to 60.1% with a
decrease of 3% when 𝛼 is 0.9. This indicates that without the local information, our utilized “Big
Code” can still provide accurate information for prediction, demonstrating the robustness of Mario.
Nonetheless, we find that 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 experiences significant decreases compared with the values
shown in Table 1, especially when 𝛼 ≥ 0.5. It suggests that for a large amount of classes, their
proximate classes with high similarities only exist in the local project. This phenomenon could
be alleviated by enlarging the size of our source code corpora. Hence, in the future, if we include
more high-quality repositories, the performance of Mario can be potentially boosted.

9.5 The Effectiveness of Mario when the Information of Local Projects is Partially
Available

Our experiment setting in RQ4 can be considered as investigating the effectiveness of Mario when
the implementation of a project is nearly finished (because we assume the classes of the local project
are all available), while our setting in the above subsection can be considered as investigating
the effectiveness of Mario at the beginning of a project (because we assume the classes of the
local project are all unavailable). We further investigate the effectiveness of Mario during the
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Table 6. The performances of Mario under different values of 𝛼 when the local project information is partially
available (in %).

𝛼 = 0.1 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 𝛼 = 0.9
𝑅𝑒𝑐𝑎𝑙𝑙𝐶 82.8 80.8 73.6 61.0 34.5
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 30.2 32.3 33.1 37.4 47.8
𝑟𝑒𝑐𝑎𝑙𝑙𝑀 38.1 44.4 11.6 49.4 61.8
𝐹 -𝑠𝑐𝑜𝑟𝑒𝑀 32.6 35.9 36.4 40.8 52.0
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇 41.4 42.4 42.6 46.4 63.2
𝑟𝑒𝑐𝑎𝑙𝑙𝑇 47.2 53.2 52.9 57.7 68.6
𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 42.6 45.2 44.9 48.9 63.1

Fig. 12. The performances of Mario on classes with different numbers of method names (#MN) under three
sensitivities (in %).

development of a project. Since modern software systems often evolve, which indicates that we
could have a number of local classes on hand when applying Mario while some others are going
to be implemented in the future. To mimic such an application scenario, we set a time stamp (i.e.,
30/6/2017) for the projects in our test set according to their history information. Specifically, classes
created before this time stamp are considered as available, and they together with those in the
class repository are used to make predictions for the classes created after the time stamp. Such a
splitting leads to 3,786 classes being evaluated, which account for around 20% of the original test
set (3,786/22,822).
Results are listed in Table 6. Note that the 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 in this table denotes how many classes out

of the 3,786 used ones can Mario make predictions. We note that the achieved 𝑅𝑒𝑐𝑎𝑙𝑙𝐶 values are
much higher than those achieved when local project information is unavailable (cf. Table 5). This
indicates that more information could be utilized by Mario to make recommendations with the
evolution of the software. We also notice that Mario demonstrates promising effectiveness under
such an experiment setting. Specifically, its 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 achieved when 𝛼 equals to 0.9 is 63.1%, only
slightly lower than the value achieved when all the local project information is available (i.e., 63.6%).
Therefore, we conclude that Mario can also work effectively during the incremental development
process.

9.6 The Performances of Mario on Classes with Diverse Numbers of Method Names
We also investigated the performances of Mario on classes with different numbers of method names
(#𝑀𝑁 ). The 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 obtained under three settings (𝛼 = 0.1, 0.7, 0.9, respectively) are demonstrated
in Figure 12. We find that Mario achieves relatively poor performance on classes with small #𝑀𝑁 .
Especially, when #𝑀𝑁 = 1, the values of 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 are 23%, 30%, and 44% under each setting. On
the contrary, when #𝑀𝑁 ≥ 6, Mario achieves comparatively high performances. Specifically, its
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𝐹 -𝑠𝑐𝑜𝑟𝑒𝑇 can nearly reach 70% when 𝛼 is 0.9. The behind reason for this phenomenon is that classes
with small #𝑀𝑁 rarely possess field-relevant method names. Specifically, when 𝛼 is 0.9, for the 5,840
classes whose #𝑀𝑁 ≤ 5, 5,274 (90.3%) of them do not possess any field-relevant method names.
Therefore, the performance of Mario on such classes is compromised since it cannot effectively
deal with FI names as we have mentioned above. We recall that previous studies have shown that
the number of class fields are positively correlated with the number of class methods since both of
them can indicate the complexity of a class [10, 11]. As a result, when applying Mario in practice,
developers can expect to obtain more accurate prediction results for classes with more fields.

9.7 The Potential Help from the Requirements
As the first study exploring the PI-MNP direction, we rely merely on the class name to approximate
the intended functions of the class. This decision is based on the development experience shared
by our contacts at four IT companies. They all expressed that currently, their groups do not have
detailed instructions for class functions on hand during the development. Therefore, the class name
seems to be the only available information for our target task under most conditions. However, in
future work, one would also expect to design a more effective approach for classes where detailed
requirement instructions are available.

9.8 Implications
For researchers. Our survey with 101 developers reveals that developers usually name the method
first before detailed implementations and they generally consider that recommending the names
for the methods to be implemented is useful. This indicates that it has potential to boost developers’
daily development activities by performing the proposed PI-MNP task. We are the first to tackle
this ambition by proposing to utilize the power of “big data”. Both the results of our empirical
investigation and evaluation demonstrate the effectiveness of such a strategy: proximate classes
are pervasive among real-world projects and can provide strong predictive ability, and the pre-
implementation method name prediction based on proximate classes can achieve promising results.
This indicates that utilizing the big data for addressing the PI-MNP task is a promising research
direction. However, the effectiveness of Mario still has a large space for improvement. Oneweakness
exposed through our user study is that the predictions are not considered as adequate by the
developers. Future efforts could be devoted to address this concern. For instance, loosening the
criteria for the proximate classes may increase the number of proximate classes and improve the
adequacy of predictions, but at the cost of sacrificing precision. Also, our quantitative evaluation
calls for a more comprehensive class repository to make Mario applicable for more classes, which
is also a promising direction.
For practitioners. If practitioners are going to integrate Mario into their daily activities, we

foresee two potential application scenarios from our case studies. First, Mario can be directly called
after defining a class name and it can predict the names of the methods that are likely to be imple-
mented by the practitioners. Second, since Mario sometimes predicts some extra method names (as
revealed by our second example in the case studies), it can also be used after the implementation of
a class to help the practitioners check if more functionalities are desired. Moreover, given that the
predictions of Mariomay not be adequate, we recommend practitioners to set a low value of 𝛼 (e.g.,
0.1) if possible since Mario may predict more method names under such a setting (cf. Figure 6).

9.9 Threats to Validity
Internal threats. In our survey, the participants from IT companies were selected by a contact at
each company. The threat of selection bias would always be present when the participants were
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not fully randomly sampled. However, given that our survey includes participants from different
companies and open-source projects, this threat is thus limited.

Another threat is that the heuristic we used to identify field-relevant method names is based on
our observation. There is no study explicitly claiming that a method name related to a field can
certainly be split into a verb plus with the field. However, this threat is mitigated as (1) this splitting
is consistent with the Java naming conventions as we have introduced in Section 4.1, and (2) we
randomly investigated 100 classes within our evaluation dataset and only found one exception
where the field-relevant method is named the same as the field.

Our proposed approach builds upon the assumption that in the existing classes in a codebase,
the semantics and purpose of a given method are correctly captured by its name. Therefore, the
quality of the method names pose threats to our study. Unfortunately, it is impossible to manually
check each involved method and the literature approaches always assume that information from
top-ranked, well-maintained projects is accurate [16–18, 58, 69, 86]. Nonetheless, this threat is
mitigated considering that (1) existing studies have concluded that inconsistent method names (i.e.,
names that incorrectly reflect the method’s functionality) are rather rare in top-ranked real-world
projects [64, 86]; and (2) we applied an existing inconsistent method name detection tool [86] on
the 100 classes randomly chosen in the above paragraph but detected no inconsistency.

Also, another threat is that whether we can split the method names into tokens accurately. In our
study, we use a parser implemented by ourselves which is based on the camel cases and underscore
naming conventions (and it works well in some previous studies of our group which need to split
identifiers [59–61, 85]). However, its effectiveness can worsen if the names do not strictly follow
these conventions. To investigate such a threat, we randomly sampled 100 classes from the test set
and manually checked if the splitting results of our parser are consistent with the authors’ domain
knowledge. We only found one contradiction where the method name XMLizableBit is split into
XM, Lizable, and Bit, but actually XMLizable is the name of a tool. Such results indicate that
generally our approach can accurately split method names into tokens and thus the effects of this
threat is largely mitigated. Incorporating more advanced identifier splitting technique like LINSEN
[32] could further boost the effectiveness of Mario, which is left as our future work.
External threats. In this study, we only focus on Java language. This is because many of our

definitions and decisions are based on naming conventions of programming languages and Java is
the most widely-studied one in this direction. However, the principle of Mario is not limited to one
specific language. Applying Mario to other languages needs to deeply understand their naming
conventions and thus is left as our future work.
Our user study only involves the implementations of fifteen classes, which is not a statistically

significant number. Therefore, the explanation of our user study should focusmore on our qualitative
findings rather than the quantitative results.
Construct threats. In our survey, we sent questionnaires to the participants to learn their

coding practices without introducing the details of our study (e.g., the Mario approach and its
potential application scenarios). This is to avoid the bias in the survey results and thus mitigates
the threats to the construct validity.
Conclusion threats. In our study, we conclude that our approach significantly outperforms

the baselines via a Wilcoxon signed-ranked test. It is possible that the statistically significant
relationship is found by chance. However, we believe such a threat is limited since the significance
level used in our test is 0.001, a relatively low value.
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10 RELATEDWORK
10.1 Method Name Recommendation
Given that method names play a critical role in program comprehension, a number of approaches
have been proposed to recommend high quality method names. Allamanis et al. [12] introduced a
language model for source code which can project code token into a vectorial space and then select
the name whose resulted embedding is similar to that of the method body. The tokens of program
identifiers were used to translate into method names [58, 69, 86]. The program structure information
revealed by the Abstract Syntax Tree (AST) is widely utilized in this task. Mou et al. [68] proposed
a tree-based convolutional neural network (TBCNN), where they integrated a convolutional kernel
with programs’ ASTs. To increase the learning accuracy, Bui et al. [26] fused this model with
capsule networks and improved the effectiveness. Code representation techniques that utilize AST
paths linking any two leaf nodes in an AST can embed a method body well and then predict its
corresponding name. Beyond the tree structure, the graph information which involves data-flow
and control-flow relations also demonstrates its potential. Allamanis et al. [15] proposed to represent
programs as Program Dependency Graph (PDG) to jointly capture the syntactic and semantic
information. Hellendoorn et al. [47] combined this model with a sequence model, with the aim
to utilize both the semantic structural information provided by the graph and the long-distance
information represented by the sequence. All of the aforementioned approaches, however, can only
be used after the implementation of the target method. Our study is the first to explore method
name prediction without implementation information. Therefore, our study advances the method
naming practices by trying to make the names of high quality upon their appearances in the project.
Moreover, existing approaches only recommend one method name at a time while our study tries
to predict a batch of method names simultaneously.

10.2 Java Language Coding Convention
A wide range of studies focus on the conventions of developers when writing Java programs and
their potential applications. Hindle et al. [51] provided evidence to the hypothesis that real-world
programs are rather repetitive and such a property can be captured well by statistical language
models for supporting software development tasks. Tu et al. [81] revisited the hypothesis and
found that another special property of software is its localness (e.g., some program identifiers
only occur in specific files). They thus integrated the statistical language model with a specially
designed cache component to exploit the localness. Allamanis et al. [13] proposed to learn coding
conventions such as the identifier naming and formatting from a local codebase and then improve
code stylistic consistency. A branch of this field is naming convention, that is, how developers name
an identifier during coding. Two widely adopted ways to represent multi-token identifiers are the
use of underscores and the use of camel casing [22, 23, 35, 49]. Caprile and Tonella [30] analyzed
the grammar of method names and created a set of formal grammar patterns, while Wu and Clause
[90] focused on the grammar patterns of test names and designed a heuristic-based approach to
automatically detect non-descriptive test names. Abebe et al. [6] mined naming conventions for
other identifiers in the code. For instance, class names should contain at least one noun and should
not contain verbs, while method names should start with a verb. Arnaoudova et al. [20, 21] presented
the catalogue of linguistic anti-patterns for method and attribute names. They than investigated
the presence of linguistic anti-patterns in real-world Java software projects and found they are
rather popular. Butler et al. [28, 29] mined class naming conventions via investigating the grammar
structure patterns of class names and the class name construction patterns related to inheritance.
They then investigated the naming conventions of references (e.g., fields and local variables) with
respect to their constitutions and phrasal structures [28]. A recent study surveyed professional
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developers about their opinions towards Java naming conventions derived from the academia [19].
Results reveal that participants very much agree about the importance of various standards. After
realizing the general naming conventions, a number of software engineering tasks can be further
boosted [7, 8, 27, 37, 42, 50, 79]. For instance, Singer and Kirkham [79] explored the correlation
between the class names and the micro patterns [40], which are the implementation patterns within
the code. They then designed a prototype tool, checking which classes break coding conventions
at code review time. Butler et al. [27] introduced a naming convention checking library, Nominal,
which looks at abbreviations, phrasal structures, and typography. Gupta et al. [42] presented a
part-of-speech (PoS) tagger for source code names, which was shown to significantly outperform
traditional POS taggers from the NLP field. Abebe and Tonella [7, 8] proposed to extract concepts
and relations from the source code via parsing program identifier names and they demonstrated
that such a technique can help purify the extracted domain concepts of programs. The above studies
build empirical foundations for our study. For instance, inspired by Singer and Kirkham [79] who
successfully recommended micro patterns of the class using its name, we also treat the class name
as a proxy of programmers’ expectations on the functionality of the class.

10.3 Code Completion
Many recommender systems have been proposed to solve a wide range of software engineering
tasks [72, 74, 80, 82, 83]. Code completion, which recommends the next contents a developer
is likely to type under a specific context, is considered as one of the killer features of current
Integrated Development Environments (IDEs) [25, 76]. Originally, the context information [25] and
the change history of the project [75, 76] are basis for recommending candidate tokens. Bruch et al.
[25] recommended candidate tokens according to the current working context. Robbes and Lanza
[75, 76] improved code completion via involving the information about how the project is changed
recently. Then, a number of statistical language models [46, 63, 81] have been proposed based on
the software naturalness [51]. After Hindle et al. [51] found that source code contains statistical
properties, a number of models are used to perform the code completion task [46, 63, 81], among
which N-gram is the most popular one. For instance, Hellendoorn and Devanbu [46] improved the
N-gram model by addressing three issues which are unlimited vocabulary, locality, and dynamism.
Recently, deep learning techniques [54, 56, 62], adopting a pre-training technique and so on, are
also applied. Karampatsis et al. [54] proposed an open-vocabulary language for source code which
utilizes specially designed algorithms to deal with OoV tokens as well as restrict the size of the
vocabulary. Kim et al. [56] fed the program’s syntactic structure into a transformer model and
improved the baseline performance of code completion. Liu et al. [62] adopted a pre-trained model
to generate contextual embedding for tokens and utilized the predicted type of the next token to
help the token prediction. The aforementioned techniques, however, can only recommend one token
or at best, the next few tokens for developers. Wen et al. [87] supported developers from another
perspective, which is predicting the next method they are likely to implement. Their basic idea is
to categorize methods into different clusters based on the similarities among different methods
determined by a code clone detection tool and then summarize cluster level association rules mined
from the evolution process of GitHub projects. Then after obtaining the methods that are already
implemented, the proposed approach, FeaRS, selects a suitable association rule and recommends
the centroid (i.e., the method with the highest number of edges) of the cluster inferred by the
rule. Our Mario, predicting the names of all the methods that developers are going to implement
in the current class, can also be considered as a code completion recommender. It advances the
software development process by saving developers’ efforts in designing and implementing a class
as well as helping improve software quality (since providing developers with the intentions and
functionalities that are not yet implemented is able to improve the quality of the software [39]).
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11 CONCLUSION AND FUTUREWORK
Existing approaches for recommending method names assume that the method is already imple-
mented. In practice, however, developers need support in devising names for the methods that
are likely to be implemented when a class is created. We introduce this task in the literature as
PI-MNP (Pre-Implementation Method Name Prediction). We further propose Mario for addressing
the PI-MNP task. Mario takes the class names as inputs and leverages the knowledge from classes
having semantically similar names to predict the methods’ names for the target classes. Experiment
results have demonstrated that Mario is effective in predicting method names and offers comparable
or higher performance to prior approaches that leverage implementation details.
Our future work will focus on how to utilize the proximate classes for further boosting the

software development process. For instance, we foresee a scenario where we can recommend code
from proximate classes to developers to help their implementations in the class they are writing.
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