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Abstract—Docker containers are being widely used in large-
scale industrial environments. In practice, developers must man-
ually specify the base image in the dockerfile in the process of
container creation. However, finding the proper base image is
a nontrivial task because manually searching is time-consuming
and easily leads to the use of unsuitable base images, especially
for newcomers. There is still a lack of automatic approaches
for recommending related base image for developers through
dockerfile configuration. To tackle this problem, this paper makes
the first attempt to propose a neural network approach named
DCCimagerec which is based on deep configuration comprehen-
sion. It aims to use the structural configuration features of dock-
erfile extracted by AST and path-attention model to recommend
potentially suitable base image. The evaluation experiments based
on about 83,000 dockerfiles show that DCCimagerec outperforms
multiple baselines, improving Precision by 7.5%-67.5%, Recall
by 6.2%-106.6%, and F1 by 7.5%-150.2%.

Index Terms—Docker container, Base image, AST

I. INTRODUCTION

As the de-facto container technology standard, docker has

become one of the most popular containerization tools. Docker

allows packaging an application with its dependencies and

execution environment into a standardized, self-contained unit,

which can be rapidly deployed in any environment without

dealing with compatibility and dependency issues [4]. The ap-

plication encapsulated by docker container is distributed in the

form of image, which is an executable package that includes

everything needed to run the application [9]. Particularly, the

contents of a docker image are defined by declarations in the

dockerfile (see Fig. 1) which specifies the required instructions

and the order of their execution, following the notion of IaC.

Similar to the concept of inheritance in object-oriented

programming, docker images can define the FROM instruction

to inherit image definitions from another base image [15]. The

new image will inherit all the attributes and files encapsulated

in the base image [13]. In practice, to find a suitable image,

developers often need to manually search the base image from

docker registries, e.g., Docker Hub. Docker Hub provides the

place for sharing and distributing docker images among the

docker community. However, it contains 4.9M+ of available

images (as of January 2021), which makes the selection of an

image a nontrivial task. Furthermore, the current tool support

for searching docker images is limited, as Docker Hub only

permits indexing images “by name” [5], developers still need

to go to the pages of many images and check their detailed
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1 FROM ubuntu:18.04

2 COPY . /app

3 RUN make /app

4 CMD python /app/app.py

Fig. 1: An example of dockerfile

descriptions before making the decision. The entire selection

process might be challenging, especially for newcomers who

lack experience in using docker. What’s more, replacing

existing image with a more suitable image can reduce the

image size and improve the quality of the image by instruction

verification. Therefore, as Cito et al. [6] envisioned, developers

need a recommender system that analyzes existing dockerfile

codes and produces transformations, thereby recommending

appropriate base images.

To fill the research gap, we propose an automatic approach

named DCCimagerec based on deep configuration compre-

hension. Inspired by traditional code representation (e.g.,

code2vec [3]) and dockerfile characterization (e.g., binnacle

tool [8]), DCCimagerec firstly parses dockerfile code into

nodes by AST and extracts its node paths, then it builds and

trains neural network models based on path-attention algo-

rithms. With the trained model, we can generate embedding

vectors for input queries and compute the similarity with all

the pre-embedded vectors of the dockerfile corpus. As a result,

for a given dockerfile function code (i.e., without base image),

DCCimagerec can recommend potential base images for it.

To evaluate DCCimagerec, we design two research ques-

tions and perform experiments on a large scale of dockerfiles

(�83,000). The results show that DCCimagerec can achieve a

good performance and significantly outperform eight baseline

approaches. In summary, our contributions are as follows:

• We introduce the idea of using path-based representation of

dockerfile code for the task of base image recommendation.

To the best of our knowledge, this is the first study to

explore the problem of recommending base images for

docker containers.

• We propose a novel approach named DCCimagerec, which

uses the structural configuration features of dockerfile ex-

tracted by AST and path-attention model to recommend

potentially suitable base image.

• Based on a large-scale dockerfile dataset, we verify that

DCCimagerec outperforms multiple baselines, improving

Precision by 7.5%-67.5%, Recall by 6.2%-106.6%, and F1



by 7.5%-150.2%. Ablation study confirms the effectiveness

of each component in our proposed approach.

II. MOTIVATION

Adopting a suitable base image is important to the docker

image creation, as different base image selection may have

various effects on the quality and efficiency, and size of the

resulting image [6], [15]. For instance, Cito et al. [6] suggests

that the same application can be run with a different base

image to reduce the overall size and preferably also build

time. Recently, with the widespread use of docker, how to find

a proper docker base image has become a difficult problem

for developers. E.g., a developer posts the question “What is
the advantage over using a heavy base image like Ubuntu
14.04 than a lightweight one like Alpine?” in StackOverflow1.

Actually, Docker Hub provides the support for searching

docker images “by name” [5], i.e., when developers specify

a term, it is exploited to only return all images where such

term occurs in the name, in the description, or in the name

of the user that built the image. However, this current tool

support is limited, developers still need to spend a lot of time

to distill the proper image from the image list by checking

the detailed description on the image page. Thus, base image

recommendation techniques are needed to help developers

who seek to find a suitable base image in their dockerfile

configuration process without arbitrary decisions.

In practice, the code after the FROM instruction can indicate

the function of a docker image, involving its application

runtime requirements and detailed operations. In this work,

we call them as dockerfile function code. Unlike the keywords

used by developers when searching for base images on Docker

Hub, the dockerfile function code itself contains a lot of

syntactic structure and semantic information, which can help

us better extract useful features for the construction of the

recommendation system. Thus, how to represent dockerfile

function code effectively needs to be addressed first.

As shown in Figure 2, if we consider the whole function

code snippet as a token sequence and embedding each single

token, it would separately encoder the tokens {RUN, apt, add,

–no-cache, –virtual, ..., bzip2-dev} in order and aggregate

them to represent the function code snippet. Obviously, the

structural information of function code snippet is missing.

To capture more syntactic structure and semantic information

before learning, Alon et al. proposed the embedding model

of source code, i.e., code2vec [3]. These model demonstrated

that representing code with the AST path is effective. Recently,

Henkel et al. [8] developed a rule enforcement tool, binnacle,

to characterize dockerfiles using phased AST parsing and

achieved a good characterization effect. These facts motivate

us to integrate the AST-based path technique to our approach

for the representation of dockerfile function code.

III. APPROACH

In this work, we propose an automatic approach to use Deep

Configuration Comprehension of dockerfile for docker base

1https://stackoverflow.com/questions/43509647

1 RUN apk add --no-cache --virtual .ruby-builddeps \
2 autoconf \
7 gcc \
8 bzip2 \
9 bzip2-dev \
10 && mkdir -p /opt/yarn

Fig. 2: A snippet of function code in dockerfile

image recommendation, called DCCimagerec. The overall

framework of DCCimagerec is illustrated in Figure 3.

A. Phase 1: Characterizing Dockerfile With AST Paths

To extract structural information of dockerfile as much as

possible, we employ phased parsing to progressively enrich the

AST created by an initial top-level parse. Similar to Henkel

et al.’s approach [8], the root node in each dockerfile is set

as “DOCKER-FILE”. Then, we parse each code line in each

dockerfile, and extract all commonly used instruction/param-

eter nodes. Finally, for each dockerfile, we obtain a sequence

of AST nodes. Figure 4 gives an example of the process of

phased parsing dockerfile function code. In the first phase, all

of the instruction nodes are parsed, i.e., RUN. Their specific

parameter information is wrapped up in string literals as leaf

nodes. During the second phase, we enrich the structured

representation by parsing the embedded bash. All the param-

eter leaf nodes are parsed, e.g., “apt-get install -y anaconda
pycharm”→“APT-GET-INSTALL”, “ARG”, “PACKAGE”. We

keep the tail token information of each parameter node because

they can retain dockerfile semantic information. For example,

./scripts/custom.sh will be retained in our parsed AST structure

instead of been ignored.

Following previous work [2], we extract syntactic paths

between all leaf nodes traversing through their lowest common

ancestor. Then we present each path as a sequence of interme-

diate AST nodes between two leaf nodes. So elements of the

whole path can be divided into three main elements, including

start-terminal, statement-queue linked by up and down arrows,

and end-terminal. As shown in Figure 4, one AST path is:

(None, ARG ↑ APT-GET-UPDATE ↑ DOCKER-RUN ↑ DOCKER-FILE ↓
DOCKER-RUN ↓ APT-GET-INSTALL ↓ ARG, -y)

Thus, dockerfile code can finally be represented by an

arbitrary number of such paths without a great loss of informa-

tion [12]. Different from shallow features, AST paths contain

both semantic information in terminal tokens and structural

information in non-terminal nodes, which can provide a full

view of dockerfile configuration for a better comprehension.

B. Phase 2: Trainning Path-attention Model

After obtaining the AST paths of each dockerfile, we first

use code encoders to embed a function code into a high-

dimensional vector v. To create a vector representation zi for

each path zi = < ti1, n
i
1...n

i
l, t

i
l >, we encoder the structural

sequence(ni
1...n

i
l) and terminal token(i.e., ti1 and til) separately.

1) Sequence encoder: In detail, for syntactic sequence

token si = ni
1...n

i
l , we directly encoder the structural sequence

as a single vector based on the fact that the sequence type

in our corpus is 4,815, and the max li is 13. We represent

sequence s = n1...nl using a learned embedding matrix Es.
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Fig. 3: Overall framework of DCCimagerec
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Fig. 4: Characterizing dockerfile function code with AST paths

2) Terminal-token encoder: If encoding for the whole ter-

minal token directly, some terminal tokens might be too long

to capture semantics information. Similar to Allamanis et al.

[1], we thus split terminal tokens into subtokens. For example,

path ‘/src/pythonproject’ will be split into ‘/src’ and ‘/python-

project’. We use a learned embedding matrix Esubtoken to

represent each subtoken, and then sum the subtoken vectors

to represent the full token.

3) Combined content representation: For each AST path

embedded by three multi dimensional vectors, we concate-

nate them into a new vector instead of vector summation.

The size of embedded vectors of the sequence and the

terminal-tokens are both referred as d. The concatenated

single context vector zi∈R3d, thus, can be described as[
terminal token(ti1), sequence(n

i
1...n

i
l), terminal token(til)

]
.

Since every context vector zi is formed by a concatenation

of three independent vectors, a fully connected layer learns to

combine its components. The computation of this layer can be

described simply as: z̃i = tanh(W · zi). Where W ∈ R2d×3d

is a learned weights matrix and tanh is the activation function:

tanh(z) = (ez − e−z)/(ez + e−z). The height of the weights

matrix W determines the size of z̃i , and is set as 2d here.

Then we build and train the models of base image rec-

ommendation using the path-attention algorithm. Attention

mechanism is a model that selects the important paths from

the input sequence for each target base image. For example,

the target base image ubuntu usually aligns with APT-GET-
INSTALL node in AST sequence. In this task, over these k

combined representations z̃1, ..., z̃k, The attention mechanism

will work through dynamically path selection. An attention

vector α ∈ R2d is initialized randomly and learned simultane-

ously with the network. Given the combined context vectors:

z̃1, ..., z̃k The attention weight αi of each z̃i is computed as
exp(z̃T

i ·α)
∑k

j=1 exp(z̃T
j ·α) . Thus, the aggregated vector, which represents

the whole dockerfile snippet lacking FROM instruction, is a

linear combination of the combined context vectors z̃1, ..., z̃k
factored by their attention weights, i.e., v =

∑k
i=1 αi · z̃i.

C. Phase 3: Recommending Potential Proper Base Image

The path-attention model takes a set of AST paths

z1, z2, ..., zk as input and the official base image y as output.

k is the number of the sampled length. We formulate the

recommendation problem as a multiple classification task, i.e.,

given a query dockerfile (i.e., function code snippet without

base image), our task is to classify it into different labels of

base images. In particular, we define the image tag which is

learned as part of training, i.e., image tag ∈ R|Y |×d. Y is the

set of base image values found in our dataset corpus, in our

experiment is 122. The predicted distribution of the model q(y)
is computed as the (softmax-normalized) dot product between

the dockerfile vector and each of the image tag embeddings,

i.e., q (yi) =
exp(vT ·image tagi)

∑
yj∈Y exp(vT ·image tagj)

.

IV. EVALUATION

To assess DCCimagerec we ask two research questions:

• RQ1. How does DCCimagerec perform in the recommen-

dation task of docker base image?

• RQ2. Does the specific component affect the performance

of DCCimagerec?
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Considering that the usage of docker images varies in

practice and most docker containers use the official image

as their base images [9], so in this study we select those

dockerfiles that FROM official images as the research object

when evaluating the DCCimagerec.

A. Baselines

Because no existing approach has been proposed on the

recommendation problem of docker base image, in this work

we compare DCCimagerec with several classical machine

learning algorithms (i.e., SVM, Random Forest, and XGBoost)

and neural network algorithms (i.e., TextCNN and Bi-LSTM).

Machine learning classifiers usually take feature vectors as

inputs. In the field of NLP, embedding techniques such as

Doc2vec [11] and Bert [7] have been successfully applied for

different semantics-related tasks due to their ability to advance

machine learning tasks. Thus, we use Doc2vec and Bert to

gain features from each dockerfile as inputs for those machine

learning classifiers.

For machine learning baselines, we gain features by em-

bedding (i.e., Doc2vec and Bert) the whole function code

for each dockerfile and train classifiers (i.e., SVM, Random

Forest, and XGBoost) through the input feature. The vector of

function code generated by Doc2vec and Bert is set as default

(768 dimensions). For each classifier, we use grid search to

optimize important parameters. And we use the “linear” kernel

in the SVM because it performs better than using “rbf ” kernel

in handling this task. For those neural network baselines, we

train function code snippets as plain texts to obtain the token

sequences. Similar to Zhang et al. [14], for TextCNN, the

kernel size is set to 3 and the number of filters is 100. For

Bi-LSTM, the dimension of hidden states is set to 100.

B. Dataset

In this work, we use the public deduplicated-dockerfile

dataset (see Henkel et al. [8]) as our init datasets. This dataset

contains 178,506 dockerfiles which were extracted from the

public repositories with ten or more stars from January 2007

to June 2019. Then, we remove 53 dockerfiles with only

comments but no instructions, resulting in 178,453 dockerfiles.

As aforementioned, we select the dockerfiles that use official

images for our model training and testing. Thus, we filter

dockerfiles that use community docker images and finally get

82,972 dockerfiles using official images.

C. Evaluation Settings

To measure the recommendation performance of DCCim-

agerec, we use three evaluation metrics that are most com-

monly used by previous studies: Precision, Recall, and F1-
score. Note that we use the weighted metrics to evaluate the

overall performance of different approaches.

As mentioned above, we character Dockerfiles with AST

paths. AST paths, including AST node sequence, terminal

tokens, thus, will be used as input to the netural model.

Following code2vec [3], we encode elements in AST paths

with the same 100 dimensions. For AST node sequence,

TABLE I: Performance of DCCimagerec and baselines
Approach Precision Recall F1

SVM+Doc2vec 0.503 0.475 0.420
SVM+Bert 0.588 0.553 0.540
RF+Doc2vec 0.489 0.391 0.325
RF+Bert 0.653 0.593 0.582
XGBoost+Doc2vec 0.503 0.485 0.463
XGBoost+Bert 0.615 0.573 0.562

TextCNN 0.762 0.761 0.756
Bi-LSTM 0.760 0.756 0.753

DCCimagerec 0.819 0.808 0.813

we use 100-dimensional vectors to embedding the whole

sequence. For terminal tokens, we randomly sample up to

3 split subtokens from each terminal token, and each subto-

ken embedding vector is also set as 100 dimensions. AST-

based path Encoder, terminal token Encoder, fully-connected,

attention, and target base images in our model are jointly

trained to minimize the cross entropy. During training, we

optimize the parameters of our model using Adam [10] with

a batch size of 32, and a learning rate of 0.01. A dropout

rate of 0.4 is used to avoid our model overfitting. Although

the attention mechanism can aggregate an arbitrary number of

inputs, we randomly sampled up to k=350 path-contexts from

each training example. Because we find that lower values than

k=300 shows slightly lower results, and increasing to k>400

does not result in consistent improvement.

To make a fair comparison, each baseline is trained and

tested on the same data as our model. Meanwhile, each

experiment is calculated from a 10-fold cross validation to

evaluate the stability of DCCimagerec. We implement our

model using Pytorch and run our experiments on a ubuntu

18.04 server with NVIDIA T4 GPU and 128GB memory.

V. PRELIMINARY RESULTS

A. RQ1: The Effectiveness of DCCimagerec

Table I presents the performance of DCCimagerec and

baselines, results presented are averaged from a 10-fold

cross validation setup. Among the three traditional classifiers,

Random Forest (RF) gains the best performance of 0.653

Precision, 0.593 Recall, and 0.582 F1. However, we find that

deep-learning based approaches (i.e., TextCNN and Bi-LSTM)

usually obtain better performance than traditional algorithms

(i.e., SVM, RF, and XGBoost). This observation makes sense

because traditional algorithms mainly rely on the shallow se-

mantic tokens of dockerfile function code, while deep learning-

based baseline approaches can capture the important non-

linear relationship between dockerfile function code and base

image. E.g., the package information in a dockerfile can be

captured by the Max-Pooling and sliding window of TextCNN

or the memory cell unit in LSTM.

We also find that traditional algorithms with Bert perform

better than with Doc2vec. The pre-training corpus of Doc2vec

comes from our dataset while Bert’s corpus comes from

Google. Doc2vec maybe not suitable for parsing dockerfile

code since most dockerfiles contain fewer lines of code than

traditional code. As seen, DCCimagerec achieves the highest

performance among baselines, the improvement of Precision is

7.5%-67.5%, Recall is 6.2%-106.6%, and F1 is 7.5%-150.2%.
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B. RQ2: The Impact of Components

To measure the contribution of the component, we perform

an ablation study, i.e., comparing DCCimagerec with six

alternative designs based on a 10-folder cross validation:

• Use Text-based encoder: We take dockerfile as plain texts,

so function code is seen as word token sequence;

• Use Weakened AST encoder: We uniformly refer to those

unusual commands or parameters as UNKNOWN.

• No sequence encoder: We remove the non-terminal nodes

and only using the first and last terminal nodes in the AST

path to represent the code snippet;

• No terminal-token encoder: We remove the terminal nodes

in the AST path, only using the non-terminal nodes;

• No terminal-token splitting encoder: For each node, we did

not split it into sub-terminal tokens;

• No code attention: We remove the code attention mechanism

in the code encoder. The representation vectors of each path

are averaged directly without attention weights.

As shown in Table II, DCCimagerec’s F1 drops from 0.813

to 0.741 when the model only takes lexical tokens as input.

Thus, the contribution of the structural information from

non-terminal nodes makes up 9.7%, which demonstrates the

importance of the AST-based path encoder for base image

recommendation. When using weakened AST encoder, the F1

drops 0.081. It indicates that omitting the detailed information

of some commands or parameters will lose a lot of semantic

information, which is not conducive to the encoding perfor-

mance. Furthermore, the experiment results demonstrate the

decrement on metrics as the alternative design changes. No

terminal-token encoder results in a decrease of F1 (from 0.813

to 0.614). And the performance degradation is greater than

no sequence encoder and no terminal-token splitting encoder.

This indicates that terminal nodes have better representation

performance of dockerfile syntax features than non-terminal

nodes. Not using attention mechanism reduces F1 by 7.5%. It

shows that not all the paths in a code snippet are useful, and an

attentive weighted average can help filter meaningless paths.

This result confirms that all the model components positively

contribute to the DCCimagerec’s performance.

VI. CONCLUSION

In this paper, we propose a novel approach DCCimagerec,

which effectively recommends potential proper base images

for docker containers. DCCimagerec uses AST and path-

attention neural network to leverage the syntactic structure

and semantic features of dockerfile function code. To evaluate

the performance of DCCimagerec, we compare DCCimagerec

with eight state-of-the-art baselines. Our experimental results

show that DCCimagerec outperforms multiple baselines. We

also perform ablation studies and demonstrate that all model

components in DCCimagerec can boost the performance.

would like to improve the performance of DCCimagerec by

In future work, we have three research extensions. First, we

will extend the evaluation by investigating the impact of query

length on DCCimagerec’s performance, and qualitatively an-

alyzing the failed recommendation instances. Secondly, we

TABLE II: Performance of different component designs
Model Design Precision Recall F1 Δ
DCCimagerec 0.819 0.808 0.813
- use text-based encoder 0.742 0.756 0.741 -0.072
- use weakened AST encoder 0.781 0.715 0.732 -0.081

- no sequence encoder 0.776 0.755 0.765 -0.048
- no terminal-token encoder 0.693 0.573 0.614 -0.199
- no terminal-token splitting encoder 0.800 0.776 0.783 -0.030
- no code attention 0.779 0.744 0.752 -0.061

considering more structural and semantic information (e.g.,

docker image’s size and description). Finally, we plan to

design and integrate dedicated bots in Dockerfile configuration

tools that help developers find suitable base images efficiently.
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