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Abstract—Smart contracts with natural economic attributes
have been widely and rapidly developed in various fields. How-
ever, the bugs and vulnerabilities in smart contracts have brought
huge economic losses, which has strengthened people’s attention
to the security issues of smart contracts. The immutability of
smart contracts makes people more willing to conduct security
checks before deploying smart contracts. Nonetheless, existing
smart contract vulnerability detection techniques are far away
from enough: static analysis approaches rely heavily on manually
crafted heuristics which is difficult to reuse across different
types of vulnerabilities while deep learning based approaches
also have unique limitations. In this study, we propose a novel
approach, Peculiar, which uses Pre-training technique for
detection of smart contract vulnerabilities based on crucial data
flow graph. Compared against the traditional data flow graph
which is already utilized in existing approach, crucial data flow
graph is less complex and does not bring an unnecessarily deep
hierarchy, which makes the model easy to focus on the critical
features. Moreover, we also involve pre-training technique in our
model due to the dramatic improvements it has achieved on a
variety of NLP tasks. Our empirical results show that Peculiar
can achieve 91.80% precision and 92.40% recall in detecting
reentrancy vulnerability, one of the most severe and common
smart contract vulnerabilities, on 40,932 smart contract files,
which is significantly better than the state-of-the-art methods
(e.g., Smartcheck achieves 79.37% precision and 70.50% recall).
Meanwhile, another experiment shows that Peculiar is more
discerning to reentrancy vulnerability than existing approaches.
The ablation experiment reveals that both crucial data flow
graph and pre-trained model contribute significantly to the
performances of Peculiar.

Index Terms—Blockchain, Smart Contract, Vulnerability De-
tection, Data Flow Graph, Pre-training Techniques

I. INTRODUCTION

Blockchain technology is developing rapidly, having entered
a new era dominated by platforms such as Ethereum. The
widespread use of smart contract, which is a computerized
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transaction protocol, is one of the major symbols of blockchain
now. By April 2020, millions of smart contracts have been
used in different fields [1], [2], [3], [4]. Since smart contracts
in the blockchains always involve cryptocurrencies worthy of
millions of USD, bugs within smart contracts often lead to
huge amounts of financial losses. For instance, a vulnerability
in the Parity Wallet library contract of the standard multi-sig
contract has been found to freeze hundreds of millions of
dollars [5]. Moreover, hackers have great interests in finding
vulnerable smart contracts to attack (e.g., 3.6 Million Ether, the
Cryptocurrency of Ethereum, was stolen in the DAO incident
in 2016 [6]). The immutability of smart contracts makes them
extremely difficult to change after they are deployed to the
blockchain. As a result, it is critical to detect vulnerabilities
among the smart contracts before they are deployed.

So far, developers have developed many effective vulner-
ability detection tools for smart contracts, such as program
analysis based techniques (e.g., SmartCheck [7] and Slither
[8]), formal verification based techniques (e.g., ZEUS [9]
and Securify [10]), fuzzy testing based techniques (e.g., Con-
tractFuzzer [11]) and symbolic execution based techniques
(e.g., Oyente [12], Osiris [13], Mythril [14] and Manticore
[15]), etc. Although they are generally effective in detecting
smart contract vulnerabilities, they are all based on expert
knowledge. That is to say, before applying these approaches,
the rules and patterns for detecting the defects must be
manually summarized in advance. However, since the number
of smart contracts is increasing rapidly, it is impossible to
comprehensively enumerate defect patterns existing in all the
vulnerable contracts. As a result, the application scenarios of
the aforementioned techniques are restricted.

To address this limitation, researchers have proposed various
methods to automatically learn the characteristics of smart
contract’s defects by utilizing the power of big data. SmartEm-
bed [16] is such an approach, which uses a deep-learning
model to determine whether the detected contract is vulnerable
by calculating the similarity with the contracts in a bug



database. However, its bug database is in limited scale, with
only 52 known buggy smart contracts. Moreover, it performs
bug detection at the statement level of granularity, without
taking full advantage of the code structure and semantic
information in smart contracts. Zhuang et al. [17] construct
a contract graph to represent both syntactic and semantic
features of a smart contract function and using graph neural
networks (GNNs) for smart contracts. However, we observe
that the graph it uses is intricate for representing the program.
It not only considers three types of nodes but also involves
complex edge information. As we will show in Section II-E,
such a complexity makes the model fail to generalize well
across different contracts.

In this paper, to address the aforementioned challenges, we
propose a novel approach, Peculiar, which customizes a
Pre-trained model for automatic detection of smart contract
vulnerabilities based on crucial data flow graph. In general,
Peculiar is a learning based technique which does not
require manually-defined templates. It, however, mainly em-
bodies two key novelties. First, unlike Zhuang et al. [17]
representing program by explicitly detailed graph information,
Peculiar only captures crucial data flow information which
preserves enough features of a program and at the same time
enables the model to generalize well across different contracts.
Second, to better represent our extracted graph, we embed a
pre-trained model in this approach. The intuition is that pre-
trained models in natural language processing (NLP) have
promoted the development of diverse software engineering
tasks [18], [19], [20]. We are thus motivated to utilize potential
benefits from pre-trained graph model for smart contract
vulnerability detection.

We have conducted extensive experiments on over 200k
real-world smart contracts in the SmartBugs Wild Dataset
[21], which is a recently-released and large-scale dataset for
smart contract vulnerabilities. The results show that our ap-
proach significantly and consistently outperforms state-of-the-
art methods in detecting reentrancy vulnerability which is one
of the most severe and common smart contract vulnerabilities
[22], [23], where the precision and recall reached 91.80% and
92.40% respectively, which are 5.26% and 11.82% higher than
the highest values among the existing methods, leading to an
overall F1 value of 92.10%.

In summary, the main contributions of this paper are:

• We propose a new approach for smart contract representa-
tion which is based on crucial data flow information. Such
an approach can capture the key features of a contract
while avoid being overfitting to detailed information.

• We implement our approach as Peculiar and apply it
on the smart contract vulnerability detection task. To our
best knowledge, Peculiar is the first to leverage the
pre-training technique on this task.

• We perform extensive experiments and demonstrate that
Peculiar can achieve significantly better performance
than the state-of-the-art approaches on detecting reen-
trancy vulnerability.

II. BACKGROUND AND MOTIVATION

A. Smart Contract Vulnerability Classification

Attention is increasingly being focused on the security
of smart contracts. The existing researches, however, have
not proposed a unified classification for smart contract vul-
nerabilities. The detection tools have different classifications
of vulnerabilities depending on the understandings of their
authors. For example, ContractFuzzer [11] can detect 7 types
of vulnerablities, Gasless Send, Exception Disorder, Reen-
trancy, Timestamp Dependency, Block Number Dependency,
Dangerous DelegateCall and Freezing Ether. SmartCheck
[7] has a comprehensive code issue classification for smart
contracts in terms of security issues, functional issues, and
development issues. The security issues include eight cat-
egories of Balance equality, Unchecked external call, DoS
by external contract, send instead of transfer, Reentrancy,
Malicious libraries, Using tx.origin, Transfer forwards all gas.
In addition, SmartBugs [21] evaluated 9 detection tools on
over 47k smart contracts and categorized the vulnerabilities
into 10 types, which are Access Control, Bad Randomness,
Arithmetic, Denial of Service, Front Running, Reentrancy,
Short addresses, Time Manipulation, Unchecked Low Level
Calls and Unknown Unknowns.

Meanwhile, some literature reviews study a systematic clas-
sification of the vulnerabilities of smart contracts. For instance,
Zhang et al. [24] collect smart contract bugs from multiple
sources and divide these bugs into 9 categories by extending
the IEEE Standard Classification for Software Anomalies,
namely
• Data: Bugs in data definition, initialization, mapping,

access, or use, as found in a model, specification, or
implementation.

• Description: Bugs in the description of the software or
its use, installation, or operation.

• Environment: Bugs due to errors in the supporting
software.

• Interaction: Bugs that cause by interaction with other
Ethereum addresses.

• Interface: Bugs in specification or implementation of an
interface.

• Logic. Bugs in decision logic, branching, sequencing, or
a computational algorithm, as found in natural language
specifications or implementation language.

• Performance: Bugs that cause increased gas consump-
tion.

• Security: Bugs that threaten contract security, such as
authentication, privacy/confidentiality, property.

• Standard: Nonconformity with a defined standard by
taking into account the cause of each bug, the most
common form of bugs, and the potential false positives
and negatives generated by various detection tools.

Among the above vulnerabilities, Reentrancy vulnerability
is a well-known vulnerability that caused the infamous DAO
[6] attack. We search through over 47k smart contract files and
found around 1600 contracts contain more than one call.value



keyword, which indicates that it may be overlooked by devel-
opers but potential to be exploited by hackers. Therefore, we
focus on detecting reentrancy vulnerability in this study. Such
study subjects are also widely targeted by literature approaches
[7], [8], [11], [12], [17], [22], [25]. We will give a concrete
examples of our study subject in the following subsection.

B. Vulnerability Example

Reentrancy vulnerability is one of the most dangerous smart
contract bugs, which can cause the contract balance (ether)
to be stolen by attackers. It happens if the payment function
call (i.e., call.value(), deposit.value(), transfer() and so on)
in a contract is used to call other contracts while the callee
also calls the caller and thus enter the caller again, which
will eventually withdraw the entire amount of the caller
contract account while the record in the block is only the
first withdrawal. For example, in the Listing 1, the attacker
calls the attack function (line 23) in contract Attack, it will
execute withdraw function in contract Reentrance by line 24.
When the contract Reentrance executes the withdraw function
(line 3), it will use a call-statement to send ether to the
contract Attack (line 6). In solidity language, however, when
an external account or other contract sends ether to a contract
address, the fallback function of the callee contract will be
executed. Therefore, at this time, the contract Attack responds
to the transfer using the Attack.fallback function (line 27).
The Attack.fallback function calls the Reentrance.withdraw
function to withdraw the ether again (line 29). Therefore,
contract Attack will keep withdrawing the the ether from
contract Reentrance until the gas runs out and statement
(deduct-statement) deducting the number of tokens held by
the contract Attack will only be executed once.
1 contract Reentrance{
2 mapping(address=>uint) public balance;
3 function withdraw(uint _amount){
4 if(balance[msg.sender] >= _amount) {
5 //reentrancy vulnerability
6 msg.sender.call.value(_amount)();
7

8 //deduct statement
9 balance[msg.sender] -= _amount;

10 }
11 }
12 function() public payable{}
13 }
14

15 ---------------------------------------------------
16 ---------------------------------------------------
17

18 contract Attack{
19 Reentrance public entrance;
20 constructor(address _target) public{
21 entrance = Reentrance(_target);
22 }
23 function attack() payable{
24 entrance.withdraw(0.5 ether);
25 }
26 //unname function is the fallback function
27 function() public payable{
28 // re-enter the Reentrance contract
29 entrance.withdraw(0.5 ether);
30 }
31 }

Listing 1: A Reentrancy Vulnerability Example.

C. Data Flow Graph

Data flow graph (DFG) is a widely used tool for program
analysis [26], [27], [28], in which nodes denote program
variables and edges denote the dependency relations among
these variables. Unlike AST, data flow is same under different
abstract grammars for the same source code. Such code
structure provides crucial code semantic information for code
understanding. Taking result = max value - min value as
an example, programmers do not always follow the naming
conventions so that it is hard to understand the semantic of
the variable (result). Data flow provides a new perspective to
understand the semantic of the variable result, i.e., the value
of result comes from max value and min value.

Moreover, in order to help the model learn more general
characteristics of vulnerabilities, in this work, we propose
the concept of crucial data flow graph (CDFG), a subgraph
of DFG, which contains critical information that may trigger
vulnerabilities. For instance, call.value is the critical informa-
tion for reentrancy vulnerability. We define crucial nodes as
variables which are at the same line with critical information
and which have a direct data flow relation to another crucial
node. Crucail nodes constitute the nodes of the CDFG, and
the data flow relationship between them constitutes the edges
of the graph.

D. Pre-trained model

Pre-trained models are first pre-trained on a large un-
supervised text corpus, and then fine-tuned on downstream
tasks. Pre-trained models such as ELMo [29], GPT [30] and
BERT [31] have led to strong improvement on numerous
natural language processing (NLP) tasks. The success of pre-
trained models in NLP also promotes the development of
pre-trained models for programming language. Existing works
[32], [33], [34], [35], [36] regard a source code as a sequence
of tokens and pre-train models on source code to support
code-related tasks such as code search, code completion, code
summarization, etc. GraphCodeBERT is a pre-trained model
for programming language that considers the inherent structure
of code, data flow graph (DFG), instead of taking syntactic-
level structure of code like abstract syntax tree (AST). It is
trained on the CodeSearchNet dataset [37], which includes
2.3M functions of six programming languages paired with
natural language documents. It shows better capability and
performance compared to other pre-trained models on four
downstream tasks: natural language code search, clone detec-
tion, code translation, and code refinement.

Therefore, we use GraphCodeBERT [26] as the model
backbone and modify it to be able to perform defect detection
tasks. To the best of our knowledge, we are the first to apply
pre-training techniques to defect detection in smart contracts.
The details will be presented in Section III.

E. Motivation

In this section, we use a real-world bug example to show
the limitations of using DFG and also the potential benefits
that we can obtain via using CDFG. The top left of Figure 1
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1 contract Private_accumulation_fund

2 {

3         mapping (address => uint) public balances;

4         uint public MinDeposit = 1 ether;

5         Log TransferLog;

6         function Private_accumulation_fund(address _log)

7         public 

8         {

9              TransferLog = Log(_log);

10        }

11        function Deposit()

12        public payable

13        {

14              if(msg.value > MinDeposit)

15              {

16                     balances[msg.sender]+=msg.value;

17                     TransferLog.AddMessage(

18                                   msg.sender,msg.value,"Deposit");

19               }

20         }

21         function CashOut(uint _am)

22         public payable

23         {

24                if(_am<=balances[msg.sender])

25                {

26    if(msg.sender.call.value(_am)())

27               {

28                         balances[msg.sender]-=_am;

29                         TransferLog.AddMessage(

30                                            msg.sender,_am,"CashOut");

31                }

32                 }

33           }

34          function() public payable{}    

35 }
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1 contract Private_accumulation_fund

2 {

3        mapping (address => uint) public balances;

4        uint public MinDeposit = 1 ether;

5        Log TransferLog;

6        function Private_accumulation_fund(address _log)

7        public 

8        {

9               TransferLog = Log(_log);

10        }

11        function Deposit()

12        public payable

13        {

14               if(msg.value > MinDeposit)

15              {

16                     balances[msg.sender]+=msg.value;

17                     TransferLog.AddMessage(

18                                   msg.sender,msg.value,"Deposit");

19               }

20         }

21         function CashOut(uint _am)

22         public payable

23         {

24                if(_am<=balances[msg.sender])

25                {

26    if(msg.sender.call.value(_am)())

27               {

28                         balances[msg.sender]-=_am;

29                         TransferLog.AddMessage(

30                                            msg.sender,_am,  "CashOut");

31                }

32                 }

33           }

34          function() public payable{}    

35 }
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Fig. 1: The procedure of extracting crucial data flow given a source code.

shows a real smart contract deployed on Etherium, which
has a reentrancy vulnerability located in line 26-28. In our
evaluation (cf. Section IV), our approach successfully detects
this vulnerability while the existing approach [17] fails. The
DFG and CDFG of this example are shown in the bottom
of Figure 1. Here, we argue that in a smart contract, a
vulnerability exists in several critical statements, not in all
of the contract. Therefore, we can use only the critical infor-
mation to determine whether a contract is vulnerable or not.
In other words, we need to reduce the interference of useless
information during vulnerabilities detection.

As mentioned in II-B, the reason why reentrancy vulner-
ability exists is that the atomic transfer operation becomes
non-atomic by transferring money first and then deducting the
balance, which gives the hacker the opportunity to reentry so

that multiple transfers actually occur but only one deduction
of the balance is recorded. Hence, a basic idea to detect reen-
trancy vulnerability is to check whether there is an operation
on the balance of the corresponding account after the external
call (i.e., call.value()).

Consider the example given in Figure 1. The reentrancy
vulnerability exists because in function CashOut balance op-
eration (in line 28) is after practice transfer (in line 26) with
external call call.value(). Other functions such as function Pri-
vate accumulation fund and function Deposit neither contain
payment function call nor have any data interaction with the
function CashOut. As a result, they are of limited usefulness
to help detect the reentrancy vulnerability. Therefore, taking
into consideration the whole DFG in Figure 1, which con-
tains the data flow information for all functions including



Private accumulation fund and Deposit, will include some
unnecessary information and thus make the graph far more
complex comparing with the corresponding concise CDFG.
Specifically, DFG contains totally 33 nodes and 28 edges while
the number of CDFG are only 12 and 10, with 63.7% and
64.3% reduction respectively.

Moreover, even in the vulnerability related function
CashOut, the data flow associated with variable TransferLog
does not affect the occurrence of the reentrancy vulnerability
either. So we further eliminates the irrelevant data flow in-
formation, e.g., TransferLog related data flow, to only retain
the crucial information related to the vulnerabilities by using
CDFG rather than DFG.

The more complex the involved information is, the more
difficult it is for the model to train [26], [38]. By reducing the
data flow relationships with functions that are not correlated
with vulnerabilities in contracts as well as variables that are not
correlated with vulnerabilities in related functions, the CDFG
helps the model to learn the detection patterns better than
DFG. In summary, we decided to use CDFG, which is less
complex and does not bring an unnecessarily deep hierarchy,
instead of DFG, as the input of out model.

III. OUR APPROACH

Approach overview. The workflow of our approach consists
of two phases: (1) a graph generation phase, which extracts
the DFG and CDFG from the AST converted from source
code, and (2) vulnerability detection phase, which performs
smart contract vulnerability detection based on the pre-trained
model. Next, we will introduce the two phases, respectively.

A. Graph Generation

Existing work [27] has shown that programs can be trans-
formed into graph representations that preserve the semantic
relationships between program elements. Zhuang et al. [17]
customize smart contracts as contract graphs and set three
categories of nodes depending on the importance of program
elements in the function. It is desirable to exploit the informa-
tion of graphs. However, the complex information structure is
not conducive to model learning [26].

Our first insight is that key graph information helps the
model focus on vulnerabilities more accurately. Therefore, we
first parse the source code into an AST, then extract data
flow relationships from the AST, and finally transform them
into crucial data flow graph (CDFG) according to critical
information, i.e., call.value. Fig. 1 shows the procedure of
extracting crucial data flow given a source code.
Parse into AST. Given a source code C = {c1, c2, ..., cn},
we parse the code into AST by a standard compiler tool: tree-
sitter [39]. Since tree-sitter does not officially support the So-
lidity [40] language, which is the most common language used
to write smart contracts, we follow JoranHonig’s grammar [41]
for solidity, and then modify it to facilitate data flow graph
(DFG) generation. The AST includes syntax information of
the code and terminals (leaves) are used to identify the variable
sequence, denoted as V = {v1, v2, ..., vk}.

Algorithm 1: algorithm DFG2CDFG
Input: input V, E, key info, Code
Output: output V’, E’

1 V’ = ∅;
2 E’ = ∅;
3 for v in V do
4 if v is in the same line with key info then
5 add v into V’;

6 while V’ becomes larger do
7 for v in V do
8 for v’ in V’ do
9 if 〈v, v′〉 in E or 〈v′, v〉 in E then

10 add v into V’;

11 for ε = 〈vi, vj〉 in E do
12 if vi in V’ or vj in V’ then
13 add ε in to E’

14 for vs in V’ do
15 if none of the edges in E’ pass through the vs then
16 remove vs from V’

17 Return V’, E’

In Fig. 1, for instance, the variable MinDeposit in line 4 is
ranked 17th in the sequence of variables while in the line 14,
the variable MinDeposit is the 51st in the variable sequence.
They have the same name MinDeposit in a data flow but are
different variables.
Generate DFG. We take each variable as a node of the
graph and a direct edge ε = 〈vi, vj〉 from vi to vj indicates
that the value of j-th variable comes from or is computed
from i-th variable. Taking x = expr as an example, edges
from all variables in expr to x are added into the graph and
labeled as “computed from”. Meanwhile, edges like from 17th
MinDeposit to 51th MinDeposit are also added into the graph
and labeled as “comes from”. We denote the set of directed
edges as E = {ε1, ε2, ..., εl} and the graph G(C) = (V,E)
is data flow used to represent dependency relation between
variables of the source code C.
Convert to CDFG. CDFG is the subgraph of DFG, which con-
tains key information that may trigger vulnerabilities. Based
on the generated DFG, We retain the data flow associated with
critical information by convert DFG to CDFG.

As Algorithm 1 shows, we define crucial nodes as variables
V ′ = {v′1, v′2, ..., v′m} which are at the same line with critical
information and which have a direct data flow relation to a
crucial node, where payment function call (i.e., call.value())
is the critical information for reentrancy vulnerability. We
take each variable in V ′ as a node of the CDFG and a
direct edge ε′ =

〈
v′i, v

′
j

〉
from v′i to v′j which exists if there

also exists a same edge in DFG. Moreover, We remove the
discrete points in V ′ through which none of the edges pass.
We denote the set of directed edges as E′ = {ε′1, ε′2, ..., ε′n}
and the graph CG(C) = (V ′, E′) is crucial data flow used to



contract Private_accumulation_fund
{

mapping (address => uint) public balances;
uint public MinDeposit = 1 ether;
Log TransferLog;
function Private_accumulation_fund(address _log)
public 
{

TransferLog = Log(_log);
}
function Deposit()
public payable
{

if(msg.value > MinDeposit)
{

balances[msg.sender]+=msg.value;
TransferLog.AddMessage(

msg.sender,msg.value,"Deposit");
}

}
function CashOut(uint _am)
public payable
{

if(_am<=balances[msg.sender])
{

if(msg.sender.call.value(_am)())
{

balances[msg.sender]-=_am;
TransferLog.AddMessage(

msg.sender,_am,"CashOut");
}

}
}
function() public payable{}    

}

_am

_am

msg msg _am

balances msg sender

_am

msg sender _am

...,msg, ,value, ,MinDeposit,),... msg ,msg ,_am ,...,msg ,sender ,_am
...,47,48,49,[MASK],51,52,... ...,95->103,...,121->131,...

Fig. 2: Peculiar’s Architecture.

represent crucial dependency relation between crucial nodes
of the source code C.

For example, msg103, send105 and am111 are the crucial
node in Figure 1, and then the variables on the data flow
path through the existing crucial node are also expanded as
crucial nodes. When the number of crucial node is no longer
increasing, CDFG is successfully built.

B. Our Model

Our second insight is that the potential of pre-trained model
may offer a new perspective probably benefiting vulnerability
detection in smart contract. So we customize a graph-based
pre-trained model for vulnerability detection. In this section,
we describe Peculiar, a detection model based on Graph-
CodeBert [26], which is a graph-based pre-trained model. We
introduce model architecture, graph-guided masked attention
and training tasks in the following.
Model Architecture. We can see the architecture of our model
in Fig. 2. We follow GraphCodeBERT [26], which is based
on Transformer neural architecture [38] for programming
language, and use a Linear layer to output the result.

Unlike GraphCodeBERT where the input contains data flow
graph (DFG), we convert the DFG to crucial data flow graph
(CDFG) and take it as the input for our model. Specifically,
from the source code SC = {sc1, sc2, ..., scn} we first
obtain the corresponding CDFG (as discussed in Section III-A)
CG(SC) = (V ar,Edge), where V ar = {v1, v2, ..., vk} is
a variable set, Edge = {ε1, ε2, ..., εl} is a directed edge
set indicating where the value of each variable comes from.
We then concatenate the source code and variable set into a

sequence I = {[CLS], SC, [SEP ], V ar} to be input into the
model, where [CLS] is a special token in front of the two sets
and [SEP ] is a special notation to split the source code SC
and the variable set V ar.

After being put into Peculiar, the sequence I is trans-
formed into the input vector X0. Specifically, for each token in
I , we not only embed itself but also generate embedding for its
position and add these two embeddings to represent this token;
for all variables in I , we use special position embeddings (i.e.,
95→ 103 as shown in the CDFG of Fig. 2) to show the data
flow relationships.

The input vector X0 goes through N=12 transformer layers
in Peculiar to generate contextual representations, Xn =
transformern(X

n−1), n ∈ [1, N ], where each transformer
layer contains a structurally equivalent transformer and the
vector Xn−1 will first generate the vector Hn after a multi-
headed self-attentive operation [38], and then output the vector
Xn after a feed-forward layer.

Hn = LN(MHSA(Xn−1) +Xn−1) (1)

Xn = LN(FFN(Hn) +Hn) (2)

where MHSA is a multi-headed self-attention mechanism, FFN
is a two layers feed forward network, and LN represents a
layer normalization operation. For the n-th transformer layer,
the output X̂n of a multi-headed self-attention is computed
as:

Qi = Xn−1Wi
Q,Ki = Xn−1Wi

K , Vi = Xn−1Wi
V (3)



headi = softmax(
QiKi

T

√
dk

+M)Vi (4)

X̂n = [head1; ...;headm]Wn
O (5)

where the previous layer’s output Xn−1 ∈ R|I|×dh is linearly
projected onto a triplet consisting of queries, keys, and values
using model parameters Wi

Q,Wi
K ,Wi

V ∈ Rdh×dk , respec-
tively. m is the number of heads, dk is the dimension of a head,
and Wn

Q ∈ Rdh×dh is the model parameters. M ∈ R|I|×|I|
is a mask matrix, where Mij is 0 if i-th token is allowed to
attend j-th token otherwise -∞.

At the end of the model, we add a linear classifier and use
the Sigmoid function to output the predicted probabilities ŷ

ŷ = Sigmoid(X̂n) (6)

Graph Masked Attention. In order to introduce graph
structure into Transformer and represent dependency relation
between variables, we use graph-guided masked attention
function to model token relations, following the GraphCode-
BERT [26].

We use mask matrix M to demonstrate graph-guided
masked attention in the equation 7:

Mij =


0 if queryi ∈ {[CLS], [SEP ]}

or queryi, keyj ∈ SC
or 〈queryi, keyj〉 ∈ Edge ∪ Edge′

−∞ otherwise

(7)

where queryvari means query of node vari, keyvari is the
node-key of node vari. Edge′ is a set to represent the relation
between source code tokens and nodes of the data flow, where
〈vari, codej〉 / 〈codej , vari〉 ∈ Edge′ if the variable vari is
identified from the source code token codej .

If there is a direct edge between node vari and node varj
(i.e., 〈vari, varj〉 ∈ Edge) or they are the same node (i.e., i =
j), then the node query queryvarj is allowed to pay attention
to a node-key keyvari . Otherwise, the attention is masked,
adding the attention score to an infinitely large negative value.
By adding an infinite negative value to the attention score
queryj

T keyi, the attention weight becomes zero after using
the softmax function (i.e., in equation 4). Then the attention
masking function could avoid querying the key keyi attended
by the query queryj .

In addition, we allow the node queryvari and code keycodej
attend each other if and only if 〈vari, codej〉 / 〈codej , vari〉 ∈
Edge′.

C. Training Tasks

We next describe two training tasks, namely the pre-training
task, which contains three subtasks, and the detection task.
Pre-training tasks. The first pre-training task is masked
language modeling [31], which aims to learn representation
from the source code. The second pre-training task is data
flow edge prediction for learning representation from data flow.
The last pre-training task is variable-alignment across source

code and data fl ow, which is used to align the representation
between source code and data flow and to predicts where a
variable is identified from. All these pre-training tasks follow
those from GraphCodeBERT [26].
Detection task. This task aims to find out potential vulnerabil-
ities exist in smart contracts by fine-tuning the model. During
training, networks are fed with a large number of smart con-
tract source code and corresponding CDFG, together with their
ground truth labels. Then, the trained models are employed
to absorb a pair with source code and CDFG and yield a
vulnerability detection label. It is also important to mention
that we have developed automation tools for converting source
code to CDFG, so that the whole process is fully automated.

IV. EXPERIMENTS

To evaluate our approach, we design experiments to answer
the following research questions:
• RQ1: How effective is Peculiar at detecting vul-

nerabilities in smart contracts? We first aim to under-
stand how well Peculiar performs on smart contract
vulnerabilities detection compared to other state-of-the-
art approaches. Specifically, we concentrate on Recall,
Precision and F1 when detecting reentrancy vulnerability.

• RQ2: Does Peculiar detect reentrancy vulnerability
only based on keywords that are related with reentrancy
vulnerability? We note that most reentrancy vulnerability
come up with the keywords about external function.
However, it should be noted that not all contracts with
these keywords are vulnerable. Likely, not all reentrancy
vulnerabilities contain these keywords. Therefore, it is
worthy to investigate whether our Peculiar is overfit-
ting to these keywords. We are thus motivated to perform
this experiment where we evaluate the performance of
Peculiar only on contracts with these keywords.

• RQ3: How the different modules contribute to the
Peculiar? We try to investigate how the different
modules contribute to the Peculiar, including CDFG
and pre-trained model. We design ablation experiments
to investigate this research question.

A. Dataset and Experimental Settings

Dataset. For RQ1 and RQ3, we use the SmartBugs Wild
Dataset [21], which is a recently-released, large-scale, and
Solidity language based dataset for smart contract vulnera-
bilities, as our benchmark. We call this dataset as dataset-
wild, which contains 47,398 real and unique sol files with
roughly 203,716 contracts in total (One .sol file contains one
or more contracts). We manually labeled each of these smart
contract for model learning. The first two authors labeled them
individually and they finally reached the consensus after a
discussion. The labeled dataset has been open sourced in our
online repository. For RQ2, we select all contracts containing
the external call’s keywords declared in section II-B which
may cause reentrancy vulnerability from the dataset-wild as
the dataset-vul, which contains 1,197 vulnerable contracts and
471 non-vulnerable contracts.



TABLE I: Performance comparison of the involved ap-
proaches in terms of Recall, Precision and F1 score on the
dataset-wild.

Method Reentrancy
Recall(%) Precision(%) F1(%)

Honeybadger 50.54 87.21 50.92
Manticore 49.99 49.70 49.85

Mythril 51.69 50.24 49.74
Osiris 53.82 59.01 55.33
Oyente 54.11 65.63 56.44
Securify 54.81 52.63 53.36
Slither 65.41 51.97 52.60

Smartcheck 70.50 79.37 74.14
DR-GCN 80.89 72.36 76.39

TMP 82.63 74.06 78.11
Peculiar 92.40 91.80 92.10

Experimental settings. For RQ1, We compare our approach
with a total of ten state-of-the-art approaches on dataset-
wild, namely Honeybadger [42], Manticore [15], Mythril
[14], Osiris [13], Oyente [12], Securify [10], Slither [8],
SmartCheck [7] and two approaches based machine learn-
ing (DR-GCN [17] and TMP [17]). The involved baseline
approaches are representatives of a wide range of detection
tool categories (e.g., deep learning based and program anal-
ysis based). For RQ2, We use Peculiar to compare with
eight aforementioned approaches excluding DR-GCN [17] and
TMP [17] on the dataset-vul. The authors do not provide
source code or detailed result for each individual contract
so that we can neither calculate the performances of these
two tools nor reproduce their experiments. For RQ3, first we
respectively use CDFG and DFG as input for Peculiar and
conducted ablation experiments on dataset-wild to analyze the
contribution of CDFG. Then, we normalize the parameters
of the pre-trained model and retrain it with the input of
CDFG to investigate the contribution of pre-trianed model. The
experimental environment is set up with Ubuntu18.04 system,
64G RAM, i7-9700 CPU and NVIDIA 1080ti graphics card.

As for the evaluation metrics, we adopt the widely used
Precision, Recall, and F1-score [7], [17]. We choose the macro
way to perform the evaluation which will calculate values with
respect to the three metrics for contracts with and without
vulnerabilities, respectively, and then take the average value as
the final result. Such a way can reflect the general performance
of our approach.

For each research question, we randomly pick 20% contracts
as the training set, and the left part is served as the test set,
following Zhuang et al. [17].

B. Experimental Results

We now demonstrate the experimental results to answer the
proposed research questions in this paper.

1) RQ1: [Effectiveness of Detecting Vulnerabilities]: We
compare our Peculiar with the state-of-the-art smart con-
tract vulnerability detection tools, namely Honeybadger [42],
Manticore [15], Mythril [14], Osiris [13], Oyente [12], slither
[8], Smartcheck [7], Securify [10], DR-GCN [17] and TMP

TABLE II: Discernment comparison of different tools to
reentrancy vulnerability in terms of Recall, Precision and F1
score on the dataset-vul.

Method Reentrancy
Recall*(%) Precision*(%) F1*(%)

Honeybadger 50.54 64.70 23.79
Manticore 49.85 14.55 22.53

Mythril 44.07 37.43 26.38
Osiris 46.30 41.51 27.62
Oyente 47.28 43.70 28.40

Securify 52.09 55.06 32.17
Slither 60.95 60.99 50.30

Smartcheck 54.17 53.63 48.28
Peculiar 82.61 84.09 83.29

[17] on the dataset-wild. The performances of different ap-
proaches are presented in the Table I.

From the quantitative results of Table I, we have the
following observations. First, we found that the existing tools
have not yet achieved satisfactory precision in reentrancy
vulnerability detection, e.g., among baseline approaches, the
highest precision is 87.21% while the average precision is only
64.22%. Second, Peculiar outperforms existing approaches
to a large extent. More specifically, Peculiar achieves a
precision of 91.80%, improving the state-of-the-art by 5.3%.
With respect to the recall, it outperforms the state-of-the-
art by 11.8%. In addition, the F1 score of Peculiar is
17.91% higher than the maximum of the existing techniques,
showing that Peculiar achieves a significant improvement
with respect to the overall performance.

RQ-1 + Peculiar outperforms the existing approaches
in detecting smart contracts vulnerabilities. For instance,
its F1 score is 17.91% higher than that from the state-of-
the-art.

2) RQ2: [Discernment to Reentrancy vulnerability]: Mean-
while, to better observe the discernment of different tools
to reentrancy vulnerability, we compare the performances of
different approaches on the dataset-vul dataset. The results
are shown in Table II where the metrics recall, precision and
F1 score are marked by *. We also plot the performance of
the different tools for the three metrics on the two datasets
(i.e., dataset-wild and dataset-vul) in Figure 3 to visualize the
change.

According to the results shown in Table I, Table II and
Figure 3, we find that there is a large space for improvement
for the discrimination ability of existing approaches on reen-
trancy vulnerability. For instance, Manticore [15] achieves a
precision of only 14.55% on dataset-vul while the F1 score of
Smartcheck [7] drops by 34.88%, from 74.14% on dataset-
wild to 48.28% on dataset-vul. The mean values of these
baseline approaches in terms of precision, recall and F1 score
are 46.45%, 50.66% and 32.43%, respectively. In comparison,
Peculiar performs well in the identification of reentrancy
vulnerability, with precision of 84.09%, recall of 82.61% and
F1 of 83.29% on the dataset-vul.



(a) (b) (c)
* implies that the evaluation on dataset-vul.
Fig. 3: Results of the comparison of three metrics for Peculiar and other approaches on dataset-wild and dataset-vul.

TABLE III: Results of the ablation study.

Metrics Reentrancy
Peculiar Peculiar-WOS

Rcall(%) 92.40 68.26
Precision(%) 91.80 88.16

F1(%) 92.10 74.66
RQ-2 + Peculiar has higher discernment to reentrancy
vulnerability. Specifically, its precision, recall and F1 score
are 29.96%, 35.53% and 65.58% higher than the maxi-
mums of the existing approaches respectively.

3) RQ3: [Contribution of CDFG and pre-trained model]:
By default, Peculiar adopts the crucial data flow graph
to highlight the crucial information in the graph. It is thus
interesting to see the contribution of CDFG in our model, in
other words, what is the effect of using DFG instead of CDFG.
We removed the Purification operations from Peculiar and
compared the result with that of the default Peculiar. The
variant is denoted as Peculiar-WOS where WOS is short for
without streamlining. Quantitative results are summarized in
Table III where we can see that without the streamlining step,
the performance of Peculiar decreases significantly. For
example, the Peculiar witnesses a 35.36% and 23.35%
decrease in terms of Recall and F1 score, respectively.

Moreover, in order to see the contribution of the pre-
training technique we utilized, we normalize the parameters
of the pre-trained model and retrain it with the input of
CDFG. During the training process, the loss rate of the model
decreased insignificantly and the model did not converge. We
then experimented with the model on dataset-wild after a
period of training and found that the model did not find any
vulnerable contract, which is in contrast to the pre-trained
model. This result illustrates that pre-training technique plays
an irreplaceable role in vulnerabilities detection by improving
the generality as well as reducing the learning efforts of the
model.

RQ-3 + CDFG combines better than DFG with our
pre-trained model, and the pre-trained model plays an
irreplaceable role in Peculiar.

V. DISCUSSION

A. Data Flow Graph in this Study

From the perspective of program analysis, a valid data flow
graph needs to be generated by examining control flow graph

(CFG) and calculating the gen and kill sets. However, in our
paper, we focus more on representing the data dependency
relations among variables through data dependency graph (a
variant of data flow graph [43]), and obtaining the dataflow
facts of the program through the worklist algorithm is not our
focus. Therefore, we choose to generate data flow graphs based
on ASTs via following the existing study [17].

B. Threats to Validity
The threats to validity of this study mainly come from two

aspects. First, the ground truth in our dataset (i.e., whether
a contract is vulnerable or not) is manually labelled. Such a
process may suffer from human subjectivity [44], [45] and
studies where the ground truth is manually defined [46], [47],
[48] are widely affected by this factor. Nevertheless, this
threat is mitigated considering that two authors independently
labelled the dataset and an agreement was finally achieved
when the initial result is controversial. Moreover, the dataset
is open sourced for further reviews.

Second, Peculiar currently has only been evaluated
on detecting reentrancy vulnerability. The reason for this
limitation is from the off-the-shelf dataset. So far, there is
no recognized large-scale publicly-available dataset on smart
contract vulnerabilities. Therefore, we manually labelled the
reentrancy vulnerability to support our research. Evaluating
the performances of Peculiar on other vulnerability types
requires another large-scale manual labelling process which is
rather time-consuming and thus is left as our future work.
This threat is also mitigated considering that reentrancy
vulnerability is one of the most severe and common smart
contract vulnerabilities (cf. Section II) and existing studies also
explicitly focus on this type of vulnerability (e.g., [22]).

VI. RELATED WORK

A. Smart contract vulnerability detection
Program Analysis. Program analysis is a general computer
technology that aims at obtaining program characteristics and
properties by automating the analysis process of programs.
Representative tools or frameworks for smart contracts include
SmartCheck [7], SASC [49], Slither [8], etc.
Formal Validation. Formal verification techniques are ef-
fective ways for verifying that a program conforms to the
expected design properties and security specifications. Rep-
resentative tools or frameworks for smart contracts are ZEUS
[9], Securify [10], VerX [50], etc.



Fuzzy Test. Fuzzy testing is a powerful software analysis
technique. The core idea is to provide a large number of
test cases for a program to monitor its abnormal behavior
during execution in order to find program vulnerabilities.
Representative tools or frameworks for smart contracts are
Echidna [51], ContractFuzzer [11], ILF [52], Harvey [53], etc.
Machine Learning. SmartEmbed [16] determines the pres-
ence of vulnerabilities by calculating the similarity to smart
contracts with known bugs based on deep learning model. S-
gram [54] uses Oyente [12] to obtain ground truth and com-
bines N-gram language model and lightweight static semantic
tagging to predict potential vulnerabilities. Tann et al. [55]
use MAIAN to label security issues and leverage LSTM to
predict potential flaws. Huang et al. [56] first convert bytecode
to RGB colors and then use convolutional neural networks to
train models and predict security issues based on manually
labeled datasets. Zhuang et al. [17] use graph neural networks
for defect detection in smart contracts, which can detect
reentrancy vulnerability, timestamp dependence vulnerability,
and infinite loop vulnerability.
Symbolic Execution. Symbolic execution is a traditional
automated vulnerability mining technique, which is now also
widely used for smart contract vulnerability mining. Represen-
tative tools or frameworks for smart contracts include Oyente
[12], Osiris [13], Mythril [14], Manticore [15], etc.
Taint Analysis. Taint analysis is a special kind of program
analysis technique that enables accurate program analysis by
marking critical data of interest and tracking its flow during
program execution. The most representative tool for smart
contracts is Sereum [57]. Furthermore, some aforementioned
approaches also utilize the results of taint analysis in their
workflows such as Oyente [12] and Mythril [14].

In addition, there is a recent work [22] detecting practical
reentrancy vulnerabilities. It proposed Clairvoyance, a cross-
function and cross-contract static analysis approach to detect
reentrancy vulnerabilities in real world, using five major path
protective techniques (PPTs) to support fast yet precise path
feasibility checking. Clairvoyance has achieved pretty good
performance in resolving false negatives and false positives.

B. Deep Learning in Software Engineering

Pre-Trained Models for Programming Languages. Inspired
by the big success of pre-training techniques in NLP [31], [58],
[59], [60], pre-trained models for programming languages
also promote the development of software engineering tasks
[32], [34], [33], [35], [36], [32]. Feng et al. [34] propose
CodeBERT, a bimodal pre-trained model for programming and
natural languages by masked language modeling and replaced
token detection to support text-code tasks such as code search.
Karampatsis and Sutton [33] pre-train contextual embeddings
on a JavaScript corpus using the ELMo framework for pro-
gram repair task. Svyatkovskiy et al. [35] propose GPT-C,
which is a variant of the GPT-2 trained from scratch on source
code data to support generative tasks like code completion. Bu-
ratti et al. [36] present C-BERT, a transformer-based language
model pre-trained on a collection of repositories written in C

language, and achieve high accuracy in the abstract syntax tree
(AST) tagging task. Guo et al. [26] propose GraphCodeBERT,
the first pre-trained model that leverages code structure to learn
code representation to improve code understanding.
Program Analysis Techniques Based on Program Struc-
ture. Zhang et al. [61] propose an AST-based Neural Network
for source code representation and apply it to two common
program comprehension tasks: source code classification and
code clone detection. DeepBugs [62] represents code via
word2vec for detecting name-based bugs. ADF-GA [63], All-
uses Data Flow criterion based test case generation using
Genetic Algorithm, is a novel test case generation approach
for dynamic testing of smart contract programs. Allamanis
et al. [27] performs Gated Graph Neural Networks on program
graphs which track the dependencies of the same variables and
functions to predict variable names.
Other Deep Learning Based Techniques in Software En-
gineering. In recent years, there are also many emerging
deep learning applications in the software engineering fields.
CNN-FL [64] uses Convolutional Neural Networks to help
localizing faults; Li et al. [65] propose DeepFL which has
good performance on fault localization based on deep learning;
Zhang et al. [66] introduce the effectiveness of deep learning
in locating real faults; DeepAPI [67] uses a sequence-to-
sequence (seq2seq) neural network to learn representations of
natural language queries and predict relevant API sequences;
Cognac [68] leverages a seq2seq model optimized by the prior
knowledge which is summarized from a large-scale dataset
to recommend high quality method names; Lam et al. [69]
combines deep neural network with information retrieval (IR)
technique to recommend potential buggy files; and a joint
embedding model is used in code search to map source code
and natural language descriptions into a unified vector space
for evaluating semantics similarity [70].

VII. CONCLUSION

In this paper, we propose an automated approach
Peculiar to detect reentrancy vulnerability in smart con-
tracts. To the best of our knowledge, Peculiar is the
first smart contract vulnerability detection approach that is
based on pre-training techniques and the crucial data flow
graph of smart contracts. Compared to existing approaches,
the extracted crucial data flow graphs in contracts not only
consider value dependencies between program variables and
functions but also focus on the critical information related to
vulnerabilities. In addition, we also explore the feasibility of
using pre-trained models for vulnerability detection. Extensive
experiments show that our approach significantly outperforms
the state-of-the-art approaches and other neural networks. Our
work is an important step in revealing the potentiality of
pre-trained model approaches for smart contract vulnerability
detection tasks.
All source code and data in this study are publicly available
now at:

https://github.com/wuhongjun15/Peculiar.

https://github.com/wuhongjun15/Peculiar
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