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Abstract. Open source resources are playing a more and more important role in 
software engineering for reuse. However, the dramatically increasing scale of 
these resources brings great challenges for their management and location. In 
this study, we propose a hybrid approach for automatic tag hierarchy construc-
tion, which combines the tag co-occurrence relations and domain knowledge to 
build and optimize the hierarchy. We firstly calculate the generality of each tag 
in accordance with the co-occurrence relationship with others, and construct the 
hierarchy based on the generality. Then we leverage the domain knowledge of 
existing hierarchical categories to perform an optimization and promote the fi-
nal hierarchy. We select 8064 projects in Openhub community and 10703 posts 
in StackOverflow community as the original data and use the information of the 
SourceForge community as the domain knowledge. We conduct extensive ex-
periments and evaluate our approach by utilizing Wordnet and F-measure 
method. The results show that our approach exhibits better performance than 
others with accuracy rate and recall that exceed 90%.  

Keywords: Open Source Community; Tag Hierarchy Construction; Domain 
Knowledge; Optimization 

1 Introduction  

Open source software is a computer program of freely available source code and 
has been favored by the majority of developers since its release. The rise in the num-
ber of open source software brings together the creativity and wisdom of the entire 
society to promote software updates and bug fixes, thereby providing much attention 
to software development and increasing the types of producers participating in the 
development. Different types of producers come together to form two different open 
source communities: collaborative development community and knowledge sharing 
community. They show the information in the process of software development and 
use from different angles and stages. The continuous development of open source 
community in recent years has introduced the software reuse [1] technology, which 
brings great convenience to developers. 

However, the increasing number of open source software has brought difficulty for 
traditional methods in organizing and managing large amounts of software resources. 



Organizing and locating open source software effectively and improving the efficien-
cy of software reuse have become major challenges. Begelman et al. [2] proposed a 
method to automate the construction of taxonomy by using a tagging mechanism. 
Since then, this approach has been extensively studied. In 2012, Wang et al. [3] in-
ferred term taxonomy by leveraging collaborative tagging. At the same time, an ap-
proach that can automatically derive a domain-dependent taxonomy from a set of 
keyword phrases was proposed by Liu [4]. These ideas are all novel, but the results of 
these methods are insufficiently convincing. 

This study presents a new method for automatically constructing a tag hierarchy 
and optimizing it with domain knowledge to solve the shortcomings of the current 
technology. First, we calculate the generality of each tag on the basis of the co-
occurrence relationships between tags. We then construct hierarchy in accordance 
with the generalities by selecting the most suitable father node for each tag except the 
one with largest generality. For each tag p, its father node q must satisfy two condi-
tions: 1) q possesses a larger generality than p; 2) among the tags of generality larger 
than p, q possesses the largest degree of correlation with p.  

Domain knowledge refers to some existing human-created hierarchies. In the last 
step, we take the construction of the tag hierarchy into the domain knowledge for 
testing. The proposed algorithm uses the “reverse” idea. In particular, the hierarchy 
construction of manual construction is compared with the result of previously auto-
mated construction, the incorrect side of the automatic construction result is corrected, 
and the relationship that exists in the domain knowledge but does not exist in the au-
tomated hierarchy construction is added to the results. After these steps, we finally 
obtain our results. 

Our experimental dataset is taken from two open source communities, namely, 
StackOverflow and Openhub, to avoid the error caused by a single data source. After 
calculating tag generalities, we choose 342 tags to build hierarchy, and all the tag 
generalities are greater than 1,000. SourceForge open source community hosts more 
than 600,000 projects and has established a software taxonomy hierarchy by hand. 
Thus, its classification is plausible. In our experiment, we use the taxonomy hierarchy 
in SourceForge as the domain knowledge for optimization. Experimental results show 
that our method can construct tag hierarchy efficiently and accurately, and the opti-
mized hierarchical structure accuracy can reach more than 90%, which surpasses that 
of the previous methods. The main contributions of this study are described as fol-
lows: 
• We take advantage of the co-occurrence relationship between tags, calculate the 

software tag generalities by digging the inherent relationship between them, and 
build tag hierarchy in an unsupervised mode. 

• We propose an optimization algorithm based on domain knowledge to optimize the 
results of automated building by using the manually established taxonomic hierar-
chies in some communities. We obtain improved taxonomy results by merging the 
information from two different hierarchies. 

• We conduct extensive experiments. We select 342 tags at the top of the generality 
ranking, all of which possess a generality greater than 1,000. We conduct various 
types of experiments to prove the superiority of our approach.  



The rest of the paper is organized as follows. Section 2 introduces some works re-
lated to tag hierarchy construction. We describe our method in detail in Section 3. We 
introduce the design of our experiments in Section 4 and provide results and discus-
sions in Section 5. Section 6 elaborates the conclusions and comes up with a plan for 
our future work. 

2 Related Work 

Taxonomies constructed with general tags have been widely investigated. A key 
step in the existing methods of taxonomy construction is to calculate the generality for 
each tag. This step can be achieved by two types of technology as follows. 

One is to use set theory techniques. Among these works, each resource is consid-
ered a distinct data item with their textual contents ignored, and each tag presents the 
collection of items it annotates. For example, Heymann et al. [5] came up with a sim-
ple but effective way to learn a tag taxonomy. Heymann modeled each tag as m-d 
vector with m documents it annotates and used the cosine similarities between tag 
vectors to generate the tag similarity graph. He then demonstrated that the social net-
work notion of graph centrality seems to be a valid way to calculate generality. Sand-
erson and Croft [6] compared the size of image collection in which two tags occur to 
determine the affiliation relation between them. Schmitz [7] developed Heymann’s 
model to control highly idiosyncratic vocabulary frequency limits to improve the 
quality of the results. Liu et al. [8] used association rule mining. This method takes 
each tagged resource as a transaction and tags as items. The method is governed by 
the following rule: “for a specific unknown resource X, if tag A appears, then tag B 
will probably appear,” that is, “tag B subsumes tag A.” The natural possibility of in-
clusion is naturally modeled on the confidence and support of the corresponding rules. 
On the basis of the inclusion probabilities between each pair of tags, they calculated 
the overall general rating of each tag by using a random walk. Finally, they built tax-
onomies in a top-down fashion. The two methods exhibit a common flaw, that is, they 
only distinguish one resource from another but do not exploit tagged web documents. 

Another way is based on LDA (Latent Dirichlet Allocation) model [9]. Tang et 
al. [10] designed a tag–topic model based on this classic model. They assumed each 
tag possesses multiple submeanings, which are also called topics. Tags with similar 
high distributions on multiple topics indicate a high probability that the tag is a nor-
mal tag, whereas a tag with a high distribution on only one specific topic indicates 
that the tag may possess a specific meaning. Wang [11] suggested that a document 
annotated by the same tag can be considered the interpretation of this tag. He said we 
can combine these documents into a new document, learn the subject distribution of 
standard LDA models from the basic corpus, and measure the generality on the basis 
of “surprise” theory [12] plus an intuitive law that, “given an anticipated tag A, the 
appearance of a document on a more general tag B will cause less ‘surprise’ than if A 
and B are switched.” This theory is a slight modification of LDA.  

Hierarchy construction can be done in several ways. Liu et al. [4] argued that 
building taxonomy on the basis of keywords is difficult. They obtained knowledge 



using short context conceptualization and a general-purpose knowledge base called 
Probase to distinguish the relation between tags. They retrieved the excerpts by sub-
mitting the query to a commercial search engine and then calculated the generality by 
combining knowledge and context to obtain the context. Wang et al. [3] measured 
similarity on the basis of open source community labeling system by combining doc-
ument collection and text similarity. Brooks and Montanez [17] avoided computing 
tag generality. They adopted a method that only relies on the similarity or distance 
between two tags in building a hierarchy. However, their obtained hierarchy lacks 
supertype–subtype relationships. Li et al. [13] referred to this model, proposed an 
approach based on agglomerative hierarchical clustering by skipping the error prone 
step of calculating each tag generality, and called this model AHCTC (Agglomerative 
Hierarchical Clustering for Taxonomy Construction). 

Gu et al. [14] suggested utilizing domain knowledge for optimization. In this 
method, they introduced the construction into domain knowledge for testing. This 
work is similar to ours but presents two weak points. First, the above-mentioned au-
thors did not add the tags contained in the domain knowledge but not contained in the 
construction to be optimized to the final results. Second, they considered the tags 
contained in the construction to be optimized but not contained in the domain 
knowledge as incorrect relations and deleted them, thereby possibly affecting the 
diversity of tags. Fahad et al. [19] suggested another idea for optimization. They or-
dered tags in descending order by generality and then added them into the hierarchy 
by choosing the tag of the most co-occurrence frequency and the tag already in the 
hierarchy to be its father node. They then checked the correctness of the direction of 
this edge. This method is limited because it simply checks the edge relation rather 
than finding another suitable father node. 

Construction of taxonomy generally has two types: tree and DAG (Directed Acy-
clic Graph). The author in [15] proposed a tree-based label hierarchy research meth-
od, used the Jaccard coefficient to measure the label similarity, and proposed the label 
hierarchy algorithm of the maximum spanning tree. Marszalek et al. [16] found 
through observation that finding a suitable segmentation of feature space increasingly 
becomes difficult with the increase in the number of categories. Therefore, they pro-
posed the idea that the unspecified classification can be extended to classification 
when the classification boundaries are clear. Accordingly, assigning of each son node 
can be postponed, thereby resulting in a DAG chart. Finally, a relaxed classification 
level can be obtained. 

3 Hybrid Hierarchy Construction Method 

In this section, we introduce our approach from two aspects. We provide an over-
view of the framework first and then describe each part in detail.  

Our goal is to build a reasonable hierarchy for tags which means we need to con-
sider the relationship between tags and the scope of tag to be used. We define two 
terms as follows: 



Definition 1. Co-occurrence frequency: For a tag pair (p, q), its co-occurrence 
frequency is the sum of times it occurs in the tag list of a project. 

Definition 2. Tag generality: Tag generality is an indicator to measure the limited 
scope of the tag to be used. Tags of large generality generally possess a large scope to 
be used. 

3.1 Overview of Our Approach 

Co-occurrence frequency shows the relevance of two tags and generality reflects 
the degree of acceptance of the tag. These two characteristics have good use of value 
for our goal and thus are utilized. Some errors may be contained in the construction 
for a defect may exist in our approach. We choose to optimize the construction with 
the guidance from domain knowledge in that it possesses high reliability. 

Our approach to build tag hierarchy consists of two parts, namely, unsupervised hi-
erarchy building and hierarchy optimization. The framework of our method is shown 
in Figure 1. 

 
Figure 1 Framework of our method 

The figure shows our approach is a two-phase hybrid model. It combines unsuper-
vised hierarchy building through tag co-occurrence relation information from open 
source communities with optimization utilizing domain knowledge. These two main 
phases are as follows: 

Unsupervised hierarchy building: The first phase involves four steps, most of 
which are related to mathematical calculation. First, we extract data from several open 
source communities and pre-process the original data. Second, we calculate co-
occurrence frequency for tag pairs. Third, we calculate generality for each tag. Fourth, 
we can build this construction using the data calculated from the previous steps. All 
these steps except the first one are automatically completed. 

Hierarchy optimization: In the second phase, we introduce domain knowledge. 
We combine it with the construction we have built into an algorithm for optimization. 



The algorithm checks whether the construction possesses incorrect edges by compar-
ing with domain knowledge and fixing the errors if any exists. 

After the above-mentioned phases, we finally achieve a reasonable and compre-
hensive tag hierarchy. 

3.2 Unsupervised Hierarchy Building  

In our opinion of an ideal hierarchy, one tag can only be connected with the tag 
that is most relevant to it, and tags with large generalities should be at the upper lev-
els. Thus, we should calculate co-occurrence frequency for tag pairs and generality 
for each tag before building. We design our approach for unsupervised hierarchy 
building on the basis of this idea. Our approach involves the following steps. 

Pre-process data: The information we need to construct the hierarchy are the pro-
ject number and the tags it contains. We obtain a great deal of unpractical information 
in the detail page from the open source communities. We pre-process them in the 
database and retain only two columns, namely, project id and tags, to minimize the 
size of the data space and ensure efficient data query. 

Calculate co-occurrence frequency: In a collaborative development community, 
each project is tagged with multiple tags that are related to its content as a basis of 
recommendation to developers. Similarly, in a knowledge sharing community, each 
post is associated with multiple tags. Co-occurrence between two tags indicates that 
both tags appear in the tag list of the same project. We define a helper function P(t1, 
t2) to judge whether the two tags, namely, t1 and t2, are in the tag list of project P.  

P 𝑡#, 𝑡% = 	
1		𝑖𝑓	𝑡#	𝑎𝑛𝑑	𝑡%	𝑎𝑟𝑒	𝑏𝑜𝑡ℎ	𝑡𝑎𝑔𝑠	𝑜𝑓	𝑃
0			𝑖𝑓	𝑡#	𝑜𝑟	𝑡%	𝑖𝑠	𝑛𝑜𝑡	𝑡ℎ𝑒	𝑡𝑎𝑔	𝑜𝑓	𝑃

											(1)	 

In Equation (1), t1 and t2 denote two specific tags. We calculate the co-occurrence 
frequency of two tags by Equation (2) as follows: 

Co 𝑡;, 𝑡< = 	 𝑃= 𝑡;, 𝑡< .
?

=@#

																						(2) 

In Equation (2), ti and tj denote the tags we are calculating. P denotes a project in 
the project set. We obtain the co-occurrence frequency of each of the two tags by 
applying the equation to every tag pair. 

Calculate generality: The generality of a tag is not only related to the number of 
tag it co-occurrences. The co-occurrence frequency of this tag to the other tags is 
important as well. We define Equation (3) to calculate tag generality as follows: 

G t = 	 𝐶𝑜 𝑡, 𝑡; .
?

;@#

																														(3) 

In Equation (3), t denotes the tag we are calculating, and ti denotes another tag in 
the tag set. We calculate tag generality through this circulation.  

Build hierarchy: The generality of tag reflects the commonality of this tag. On 
this basis, we consider that a tag with a large generality should be located at a high 
place in the hierarchy construction. We introduce our method to build tag hierarchy in 
Algorithm 1. 



Algorithm 1 Tag Hierarchy Construction 
Input: T: Set of tags 
           G: Set of generality for each tag 
           Co-occurrence: Set of co-occurrence frequency for each two tags 
Output: R: Tag hierarchy construction 
 
1: for tag t in T do 
2:  set tmp ← 0 
3:  for tag e in T-{t} do 
4:   if G(e) > G(t) then 
5:     if Co-occurrence (e, t) > tmp then 
6:     update tmp ← Co-occurrence(e, t) 
7:                                                 record this key-value (tmp, e) 
8:    end if 
9:   end if 
10:  end for 
11:  get tag f which is correspond to current tmp 
12: add edge relation f → t to R 
13: end for 
We construct the hierarchy in accordance with the generalities by selecting a most 

suitable father node for each tag except the one with largest generality. For each tag p, 
its father node q must satisfy two conditions: 1) q possesses a larger generality than p; 
2) among the tags of generality larger than p, q possesses the largest degree of corre-
lation with p. 

We first traverse the tags on line 1. Line 2 defines a variable tmp to record the larg-
est co-occurrence frequency between t and one of the other tags. We then traverse the 
other tags and compare the generality of the selected tag e with t on line 4. If its gen-
erality is larger than that of t, we then check if the co-occurrence frequency between e 
and t is larger than tmp. If this condition is satisfied, we then regard e as a candidate 
father node for tag t. We modify the value of tmp and record this candidate tag similar 
to lines 6–7. When the inner loop is finished, we obtain tag f that corresponds to cur-
rent tmp in accordance with our records in line 11. For the tag pair (f, t), we add direc-
tion from f to t. Finally, we obtain the full hierarchy after the outer loop is completed. 

3.3 Hierarchy Optimization  

Our construction algorithm presents the following defect. For two tags of great rel-
evance, the one with large generality can be the father node of the other during our 
building procedure, but they should be on the same level in terms of their semantics 
(e.g., dvd → cd). As a result, fixing incorrect edges is important. Domain knowledge 
refers to some existing hierarchy, its artificially built character gives it high reliability. 
We can use it to trim some unreasonable edges and add some reasonable edges. We 
obtain these data from open source community and utilize them for optimization. 



We design an optimization algorithm based on the “reverse” thinking, that is, the 
domain knowledge is introduced into the hierarchy construction to be optimized for 
testing. In accordance with different test results, we conduct different operations on 
the construction to achieve optimization. 

For each tag pair in the domain knowledge, we consider the following conditions:  
1) If the domain knowledge contains tags that do not appear in the construction to 

be optimized, we then add this relation to the result directly. 
2) If both tags are already in the construction, we then place this tag pair into the 

construction for checking. 
We use function isfather to conduct this check. Its parameters are two tags, name-

ly, p and q, and it returns a Boolean value. It uses a recursive method to search if a 
structure such as p → … → q exists in the construction to be optimized. There are 
two conditions when the returned value is true: One is tag pair (p, q) is included in the 
construction to be optimized. Another is the construction to be optimized contains 
structure like: p → … → t → … → q. The results are described in two conditions: 

1) If the result returns true, then this relation is correct. We do nothing under this 
condition. 

2) If the result returns false, then the construction possesses a fault. Thus, tag q 
must be optimized. We change q’s father node to p and record q into a set 
named Changed. In other words, this tag has changed its father node. 

Finally, we traverse the construction to be optimized. For each child node in the tag 
pairs, we check if it has been recorded. 

1) If it has not been recorded, then this tap pair possesses a right relation. We 
then place this relation into the final results. 

2) If it has been recorded, then this tag’s father node has been changed. Thus, we 
do not need to do any operation here.  

The pseudocodes of our algorithm are shown in Algorithm 2. 

4 Experiment Design 

In this section, we describe the research questions, experiment setting, and evalua-
tion metrics in detail. 

4.1 Research Questions 

In order to check the performance of our optimization algorithm as well as to make 
a comprehensive evaluation for our approach, we focus on the following research 
questions: 

• RQ1: Does domain knowledge promote the tag hierarchy?  
• RQ2: Does our approach work more accurately than others’? 

For RQ1, we compare the hierarchies before and after optimization to observe the 
differences and make evaluation. For RQ2, we reproduce others’ work and make 
comparison with ours to evaluate the performance. 



Algorithm 2 Optimizing Tag Hierarchy 
Input: Tagpair1: tag pairs in the domain knowledge 
           Tagpair2: tag pairs in the construction to be optimized 
           Tags: all tags that are in the construction to be optimized 
Output: R: hierarchy construction after optimizing 
 
1: Initialize set Changed ← Φ 
2: for tag pair (p, q) in Tagpair1 do 
3:  if p not in Tags ∨ q not in Tags then 
4:      add edge relation p → q to R 
5:  else   
6:      if p and q satisfy function isfather (p, q) then 
7:          continue 
8:      else 
9:          add edge relation p → q to R 
10:          add q to Changed 
11:     end if 
12:  end if 
13: end for 
14: for tag pair (m, n) in Tagpair2 do 
15:  if n ∈ Changed then 
16:     continue 
17: else  
18:     add edge relation m → n to R 
19: end if 
20: end for 

4.2 Experimental Setting 

Data and storage: We collect 8,064 projects from Openhub and 10,703 posts from 
StackOverflow. The sum of the tags they include is over 40,000. After pre-processing, 
we only retain two columns of information, namely, id and tags.  

Procedure: We use the information previously extracted from open source com-
munities to conduct our experiment. We calculate co-occurrence frequency for tag 
pairs first and then calculate tag generality. Next, we select 342 tags of generalities 
larger than 1,000 to build hierarchy and thus constrain the time consumption of our 
experiment. We select out some tags that are commonly used in the open source 
communities and display their generality values in Table 1. 

SourceForge open source community hosts more than 600,000 projects and has es-
tablished a software taxonomy hierarchy by hand. Thus, its taxonomy presents a high 
reliability. In our experiment, we choose hierarchy information from SourceForge 
community as our domain knowledge for optimization. We obtain the final results by 
conducting optimization operations. 
 



Table 1 Some Important Tags and Their Generality Values 

Tags Generality value 

html 9,469 

javascript 26,059 

mysql 17,876 

python 42,914 

linux 35,700 

Experimental environment: All our experiments are conducted under Window7 
operation system, with Eclipse programming environment and mysql database for 
data storage.  

4.3 Evaluation Metrics 

For the proposed research questions, we use two methodologies for evaluation. 
One is to use the WordNet [18] tool. This tool has been widely considered as a 

gold standard for testing hyponym/hypernym relations between tags. We can find 
synonyms, vocabularies in the sub-categories, and vocabularies in the higher level for 
a specific tag. We use this tool to check each edge relation in our hierarchy and record 
the total number of edges in the hierarchy(t), the number of edges found in Word-
Net(f), and the number of correct edges checked by WordNet(c). The two evaluation 
factors, Edge coverage and Agreement with WordNet, equal to f divided by t and c 
divided by f, respectively. 

Another is to apply F-measure, which was introduced by Mario et al. [20], to 
compare accuracy and recall. The formulas are as follows: 

𝑃𝑅𝐶; = 	
𝑇𝑃;

𝑇𝑃; + 	𝐹𝑃;
	 ; 		𝑅𝐸𝐶; = 	

𝑇𝑃;
𝑇𝑃; + 	𝐹𝑁;

	; 			𝐹; = 	
2 ∗ 𝑃𝑅𝐶; ∗ 𝑅𝐸𝐶;
𝑃𝑅𝐶; + 	𝑅𝐸𝐶;

									(4)		 

For a specific subtree, TPi is the number of true positives (edge relations that are 
correct), FPi is the number of false positives (edge relations that are incorrect), and 
FNi is the number of false negatives (edge relations that do not belong to this tree but 
should have belonged). Implementing this method to all the subtrees in hierarchy 
construction will result in Formula (5) as follows: 

PRC = 	
𝑇𝑃;;

𝑇𝑃; + 𝐹𝑃;;
	 ; 			𝑅𝐸𝐶 = 	

𝑇𝑃;;

𝑇𝑃; + 𝐹𝑁;;
	 ; 			𝐹 = 	

2 ∗ 𝑃𝑅𝐶 ∗ 𝑅𝐸𝐶
𝑃𝑅𝐶 + 𝑅𝐸𝐶

						(5) 

where PRC represents the average precision; REC represents recall; and F, which is a 
harmonic mean of PRC and REC, provides a way to combine precision and recall in a 
unique metric. 

We use this theory to calculate the value of F-measure for each hierarchy to check 
its performance. 



5 Results and Discussions 

In this section, we present the experimental results for the research questions we 
have proposed. We also use a case study to show the superiority of our approach and 
discuss the threats to validity in detail. 

5.1 RQ1: Does domain knowledge promote the tag hierarchy? 

Hierarchies before and after optimization have 317 and 429 edges respectively, in-
dicating that the content in the hierarchy after optimization is much richer than before. 
Some errors are corrected and some new tags are added. We choose the subtree of 
web as a case to evaluate this question in detail. Subtrees of web before and after op-
timization are shown in Figures 2 and 3, respectively. 

  
Figure 2 Subtree of web before optimization Figure 3 Subtree of web after optimization 

 



Qualitative analysis: The subtree of web before optimization possesses four incor-
rect relation edges, namely, http → ftp, web → statistics, web → publishing (we con-
sider that the father node of publishing should be tomcat), and web → templating (we 
consider that the father node of templating should be a programming language, such 
as jquery). Web is a tag about some terms and technologies about net. Four nodes 
should appear in this subtree: html, xhtml, ssh, and dns. 

During the optimization, we modify the incorrect edge http → ftp, add tags dns and 
ssh into the hierarchy construction, and enlarge the number of the nodes in the tree, 
which can be construed as enriching the contents of the tree. 

Quantitative analysis: We check each edge in the constructions with the help of 
Wordnet, and the results are illustrated in Table 2. 

Table 2 Edges evaluation against WordNet 

 
Number of 

edges found in 
WordNet 

Edge coverage 
(%) 

Agreement with 
WordNet (%) 

Before optimization 317 92.96 82.20 

After optimization 429 95.76 91.93 

The results show that we obtain a large number of edges in the hierarchy after op-
timization, indicating that optimization enriches the content of hierarchy. The per-
centages of edge cover and agreement with WordNet are increased. We then calculate 
the values of F-measure for the two hierarchies, and the results are illustrated in Ta-
ble 3. 

Table 3 Values of F-measure for hierarchies before and after optimization 

 PRC REC F-measure 

Before optimization 87.10% 79.41% 83.08% 

After optimization 95.90% 98.08% 96.98% 

The results show that accuracy and recall rate significantly differ before and after 
optimization. Our optimization improves the accuracy and recall rate for domain 
knowledge brings new information to this hierarchy, thereby increasing the value of 
F-measure to a large extent. 

The above-mentioned analysis shows that the optimization based on domain 
knowledge exerts a satisfactory effect. Domain knowledge not only enriches the con-
tent of the tag hierarchy but also improves the accuracy. It promotes the tag hierarchy 
to a large extent. 

5.2 RQ2: Does our approach work more accurately than others’? 

In this section, we choose Fahad’s work [19] and Gu’s work [14] for comparison 
with ours in that both of them have an optimization step as we have mentioned in 
Section 2. Using our dataset, we reproduce their works. For Fahad’s method, we set 
the values of occurrence to 1,000, generality to 2,000, and min_sim to 10. For Gu’s 



method, we select tags of generality greater than 5,000 to build construction and use 
information from SourceForge to optimize. The subtrees containing tag “xml” built 
by their methods are shown in Figure 4. 

  
Figure 4a “xml” in Fahad’s Figure 4b “xml” in Gu’s 

We check each edge in the hierarchies by Wordnet for comparison with ours. The 
results are listed in Table 4. 

Table 4 Edge comparison results against Wordnet 

 
Number of 

edges found in 
WordNet 

Edge coverage 
(%) 

Agreement 
with WordNet 

(%) 

Fahad’s 55 93.22 83.64 

Gu’s 40 86.96 90.00 

Ours 429 95.76 91.93 

The results show that our hierarchy possesses far more information than others. 
Our hierarchy possesses more than 400 edges found in Wordnet whereas others pos-
sess around 50. In addition, our edge coverage and agreement with Wordnet are both 
the highest. We calculate F-measure values for the three hierarchies to further verify 
our conclusion, and the results are shown in Table 5. 

Table 5 Results of applying F-measure to three methods 

 PRC REC F-measure 

Fahad’s method 79.60% 71.43% 74.06% 

Gu’s method 83.33% 66.67% 74.07% 

Ours 95.90% 98.08% 96.98% 

The results prove the superiority of our approach with accuracy and recall rate 
reaching approximately 95% whereas others reach only around 80%. As mentioned in 
Section 2, Gu’s optimization reduces many tags from the original construction, and its 
recall is low as a result. Fahad’s optimization plays a little role in finding a suitable 
parent node for tags. Thus, this method presents a low accuracy rate. Our method 
presents no apparent flaw, and our F-measure is thus far larger than that of others. 



This experiment proves the validity and rationality of our method. Widely used 
tool and theoretical calculation show that our approach exhibits better performance 
than others in terms of accuracy. 

5.3 Case Study 

In this section, we provide a case study to show the superiority of our approach. 
Multimedia is widely used in tag hierarchy as a classification symbol and subtree of 
multimedia in our approach is shown in Figure 5.  

 
Figure 5 A case study: subtree of multimedia 

The subtree contains 52 edges in total, which is a large number, and the paths in 
this hierarchy contain 5 layers at most. Graphics, video, and audio are all commonly 
used sub-category under multimedia, proving that our classification is reasonable. 
Terminologies widely used under graphics (e.g., capture, 3d_rendering, and draw-
ing), video (e.g., movie, display, and youtube), and audio (e.g., players, speech, and 
synthesis) are all in this construction, indicating that our approach provides a high 
recall rate with abundant content of tags. 

Some errors are noted in this construction (e.g., dvd → cd, mp3 → mp4). These er-
rors may be caused by the defect of our algorithm. For two tags of great relevance, the 
one with large generality can be the father node of the other during our building pro-
cedure, but they should be on the same level in terms of their semantics. We check 
our domain knowledge dataset and find that those tags in the incorrect edge are ex-
cluded in it. Accordingly, we cannot fix them during optimization. 

We reach the conclusion that our approach can build a reasonable and comprehen-
sive hierarchy. We can fix all the errors if we obtain a domain knowledge containing 
sufficient information. 

5.4 Threats to Validity 

Some threats to the validity of our experiment may affect the results.  



First, we only choose tags of generality larger than 1,000 to build hierarchy to limit 
the time consumption of our experiment. As a result, some key tags may be dropped, 
thereby influencing our result. 

Second, we assume domain knowledge is absolutely right in the optimization pro-
cedure. Although domain knowledge is artificially established, it may still possess 
some defects. Thus, the process of enriching the contents of our hierarchy may intro-
duce some errors. 

6 Conclusion and Future Work 

The increasing amount of information in the open source community has intro-
duced the need for effective information management. In this study, we put forward a 
new approach to build tag hierarchy. First, we extract data from StackOverflow and 
the Openhub community, define concepts and computational methods for tag co-
occurrence frequency and tag generalization, and propose an unsupervised hierar-
chical building algorithm based on tag generalization. Next, we design a new set of 
reverse complementation optimization algorithms that takes the existing taxonomic 
levels in SourceForge as domain knowledge into the established hierarchy and tests it 
to arrive at an optimized, accurate hierarchy. We conduct extensive experiments. We 
compare the hierarchy constructions before and after optimization to show that our 
optimization exerts great effect. We also compare our work with others to verify its 
superior performance by utilizing the Wordnet tool and F-measures method. 

However, some limitations exist. First, we do not have operations for synonyms. In 
the subtree of multimedia, movie and movies are son nodes of video, but they have the 
same meaning in semantic. We can merge the two tags into one. The study for plurals 
and stems has been going on for a long time and several achievements have been 
realized. If we introduce some relative methods into our approach, we will obtain an 
accurate result. Second, we simply compare our approach with two state-of-the-art 
methods to verify the superior performance of our approach. There are many other 
ways to resolve this problem as this topic has been studied for a long time. In the 
future, we plan to make a comprehensive comparison with other methods to further 
verify the performance of our approach. 

Acknowledgement. Our approach is publicly-available to support further research 
on tag hierarchy construction and provide convenience for others to reproduce our 
experiment: https://github.com/Kaka727/Tag_Hierarchy_Construction_WSW. 

Reference 

1. Tao W, Huaimin W, Gang Y I N, et al. Hierarchical Categorization of Open Source Soft-
ware by Online Profiles[J]. IEICE TRANSACTIONS on Information and Systems, 2014, 
97(9): 2386-2397. 

2. Begelman, G.; Keller, P. & Smadja, F. (2006), Automated Tag Clustering: Improving 
search and exploration in the tag space, in 'Collaborative Web Tagging Workshop at 
WWW2006, Edinburgh, Scotland'. 



3. Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. Inferring semantically related soft-
ware terms and their taxonomy by leveraging collaborative tagging. In Proceedings of the 
2012 IEEE International Conference on Software Maintenance (ICSM) (ICSM '12). IEEE 
Computer Society, Washington, DC, USA, 604-607. 

4. Xueqing Liu, Yangqiu Song, Shixia Liu, and Haixun Wang. Automatic taxonomy con-
struction from keywords. In Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining (KDD'12). ACM, 2012: 1433-1441. 

5. Heymann, P., Garcia-Molina, H.: Collaborative creation of communal hierarchical taxon-
omies in social tagging systems. Technical report, Computer Science Department, Stand-
ford University (April 2006). 

6. Sanderson M, Croft B. Deriving concept hierarchies from text[C]//Proceedings of the 22nd 
annual international ACM SIGIR conference on Research and development in information 
retrieval. ACM, 1999: 206-213. 

7. Schmitz P. Inducing ontology from flickr tags[C]//Collaborative Web Tagging Workshop 
at WWW2006, Edinburgh, Scotland. 2006, 50. 

8. Liu, K., Fang, B., Zhang, W.: Ontology emergence from folksonomies. In Huang, J., Kou-
das, N., Jones, G.J.F., Wu, X., Collins-Thompson, K., An, A., eds.: CIKM, ACM (2010) 
1109–1118. 

9. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learn-
ing Research 3 (2003) 993–1022. 

10. J. Tang, H. fung Leung, Q. Luo, D. Chen, and J. Gong, Towards ontology learning from 
folksonomies. in IJCAI, C. Boutilier, Ed., 2009: 2089–2094. 

11. W. Wang, P. M. Barnaghi, and A. Bargiela, Probabilistic topic models for learning termi-
nological ontologies. IEEE Trans. Knowl. Data Eng., vol. 22, no. 7, pp. 1028–1040, 2010. 

12. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. In: NIPS. (2005) 
13. Li, X.; Wang, H.; Yin, G.; Wang, T.; Yang, C.; Yu, Y. & Tang, D. Inducing Taxonomy 

from Tags: An Agglomerative Hierarchical Clustering Framework., in Shuigeng Zhou; 
Songmao Zhang & George Karypis, ed., 'ADMA' , Springer: 64-77. 

14. Chongming Gu, Gang Yin, Tao Wang, Cheng Yang, Huaimin Wang. A supervised ap-
proach for tag hierarchy construction in open source communities. Asia-pacific Symposi-
um on Internetware, 2015 :148-152. 

15. P. De Meo, G. Quattrone, and D. Ursino. Exploitation of semantic relationships and hier-
archical data structures to support a user in his annotation and browsing activities in folk-
sonomies. Inf. Syst., 34(6):511–535, 2009. 

16. Marszałek M, Schmid C. Constructing category hierarchies for visual recogni-
tion[M]//Computer Vision–ECCV 2008. Springer Berlin Heidelberg, 2008:479-491. 

17. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via auto-tagging and 
hierarchical clustering. In Carr, L., Roure, D.D., Iyengar, A., Goble, C.A., Dahlin, M., 
eds.: WWW, ACM (2006) 625–632. 

18. Miller, G.: WordNet: a lexical database for English. Communications of the ACM 38(11), 
39-41 (1995). 

19. Fahad Almoqhim, David E. Millard, Nigel Shadbolt: Improving on Popularity as a Proxy 
for Generality When Building Tag Hierarchies from Folksonomies. International Confer-
ence on Social Informatics , 2014, 8851:95-111. 

20. Mario Linares-Vásquez, Collin McMillan, Denys Poshyvanyk, Mark Grechanik: On Using 
Machine Learning to Automatically Classify Software Applications into Domain Catego-
ries. 《Empirical Software Engineering》 , 2014 , 19 (3) :582-618 


