
PEELER: Learning to Effectively Predict Flakiness
without Running Tests

Yihao Qin∗, Shangwen Wang∗, Kui Liu†, Bo Lin∗, Hongjun Wu∗, Li Li‡,
Xiaoguang Mao∗, Tegawendé F. Bissyandé§
∗National University of Defense Technology, China,

{yihaoqin, wangshangwen13, linbo19, wuhongjun15, xgmao}@nudt.edu.cn
†Huawei Software Engineering Application Technology Lab, China, brucekuiliu@gmail.com

‡Monash University, Australia, li.li@monash.edu
§University of Luxembourg, Luxembourg, tegawende.bissyande@uni.lu

Abstract—Regression testing is a widely adopted approach to
expose change-induced bugs as well as to verify the correct-
ness/robustness of code in modern software development settings.
Unfortunately, the occurrence of flaky tests leads to a significant
increase in the cost of regression testing and eventually reduces
the productivity of developers (i.e., their ability to find and
fix real problems). State-of-the-art approaches leverage dynamic
test information obtained through expensive re-execution of test
cases to effectively identify flaky tests. Towards accounting for
scalability constraints, some recent approaches have built on
static test case features, but fall short on effectiveness. In this
paper, we introduce PEELER, a new fully static approach for
predicting flaky tests through exploring a representation of test
cases based on the data dependency relations. The predictor is
then trained as a neural network based model, which achieves
at the same time scalability (because it does not require any
test execution), effectiveness (because it exploits relevant test
dependency features), and practicality (because it can be applied
in the wild to find new flaky tests). Experimental validation
on 17,532 test cases from 21 Java projects shows that PEELER
outperforms the state-of-the-art FlakeFlagger by around 20
percentage points: we catch 22% more flaky tests while yielding
51% less false positives. Finally, in a live study with projects
in-the-wild, we reported to developers 21 flakiness cases, among
which 12 have already been confirmed by developers as being
indeed flaky.

Index Terms—Flaky tests, Deep learning, Program dependency

I. INTRODUCTION

Regression testing [1] has been widely adopted in software
maintenance as part of the quality assurance due diligence
when changes are applied to software. When a previously-
passing test case fails, the developer is prompted to check the
code change in order to address the introduced bug. Unfortu-
nately, some tests can pass or fail in a non-deterministic way
(i.e., unrelated to the code change) and are now colloquially
referred to as flaky tests. Their numbers and occurrences in

?Shangwen Wang and Kui Liu are the corresponding authors.
This work is partially supported by the National Natural Science Foundation
of China (Grant No. 61872445, 61672529, 62172214), the National Key R&D
Program of China (No. 2020AAA0107704), the Natural Science Foundation
of Jiangsu Province, China (Grant No. BK20210279), and the Open Project
Program of the State Key Laboratory of Mathematical Engineering and
Advanced Computing (No. 2020A06), as well as the European Research
Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 949014 for project NATURAL).

industrial settings have made them an important concern for
the entire field of software testing.

Software testing professionals at Google have reported that
almost 16% of their 4.2 million tests have some level of
flakiness [2]. A follow-up report in 2019 indicated that flaky
tests have given rise to 84% of conversions from passing
to failing in Google continuous integration (CI) testing [3].
Microsoft deemed flaky tests as one of the most important
reasons that impede software deployment period [4]. Beyond
these industrial cases, flaky tests were also found to appear
among automatically-generated tests by famous tools such as
Randoop [5], Evosuite [6], etc.

Following up on the empirical analysis presented by Luo
et al. [7], software testing researchers have invested sig-
nificant effort into proposing approaches for mitigating the
negative effects of flaky tests [8], [9], [10], [11]. In particular,
detecting flaky tests is a research objective that is gaining
momentum. Till now, several frameworks have been proposed
to detect flaky tests by performing test reruns in various
environments [12], [13], [14], [15], [16], [17]. Other dynamic
approaches have been proposed where flaky tests are detected
by monitoring test coverage [18], instrumenting programs [4]
or varying execution orders [19], [20]. Because such dynamic
approaches are expensive in terms of time and computa-
tional cost, static approaches are also being considered: Pinto
et al. [21] extracted code vocabularies from test code and used
machine learning algorithms to predict flaky tests based on the
assumption that flaky test code follows certain grammatical
patterns. Finally, a recent state of the art, FlakeFlagger [22],
adopts a hybrid approach where a machine learning model is
trained based on a combination of static test code features and
features inferred from run-time testing data.

Despite growing research around flaky tests, flakiness detec-
tion is still at its infancy. On the one hand, dynamic approaches
have shown their limitations since even multiple reruns may
not reveal flakiness. For some programs, even 10K re-runs
could not ensure the absence of flaky tests [22]. On the other
hand, while static and hybrid approaches are relatively less
costly, they achieve limited performance: FlakeFlagger and the
vocabulary-based approach yielded 60% and 11% precision
scores respectively [22]. Concretely, this means that dynamic

approaches may not uncover flaky tests while static/hybrid
approaches will raise false alarms of flakiness in a large
number of test cases.

This paper aims at improving the detection performance
of flakiness while guaranteeing scalability. We thus focus on
proposing a fully static approach (i.e., no test case is run), and
develop a machine learning approach which explores features
that are rich and relevant towards determining flakiness. Our
intuition stems from the observation of a simple phenomenon
in test case assertions: variables involved in such statements
have a dependence relationship to code in the test case or
to the code under test (CUT). We have observed from flaky
tests examples that flakiness can be discussed in terms of these
inner-test (i.e., within the test case) and test-CUT (i.e., between
the test code and code under test) dependencies. So, our main
intuition is that we should leverage such dependencies to
characterize test cases and learn to predict flakiness.

We propose PEELER, a fully static, Program dEpendEncy
based, fLakiness dEtectoR. For the design of PEELER, we
define the concept of the test dependency graph (TDG), which,
given a test case, is capable of capturing data dependency
relations both inner-test (i.e., between statements within a test
case) and test-CUT (i.e., across the test code and the CUT
through function calls). Then, we extract a bag of contextual
paths which can model both the inner-test and test-CUT data
dependency relations for each variable that appears in the
assertion statements of the test case. These paths are then
embedded and fed into a deep learning architecture to build a
flakiness binary predictor.

We assess the effectiveness of PEELER on a large-scale
dataset that was previously used in the evaluation of Flake-
Flagger [22]. On the 17,532 test cases (21 java projects) in
the benchmark, PEELER significantly outperforms the state of
the art: its F-score, which is established at over 80%, is higher
by nearly 30 percentage points than the performance achieved
by FlakeFlagger. While being fully static, PEELER can catch
22% more flaky tests (583 vs. 476) while yielding 50% less
false positives (172 vs. 348) than FlakeFlagger, which is a hy-
brid approach requiring test execution. Finally, using PEELER
predictions, we already helped developers successfully identify
12 flaky tests in 3 open-source projects in the wild.

The main contributions of this paper are:
• We propose to leverage contextual information in the form

of a test dependency graph (TDG) to model the data
dependencies within a test case and between the test case
and code under test.

• We design PEELER, a neural network based approach that
embeds contextual paths extracted from the TDG to build
a representation of test cases and trains a classifier as flaky
test detector. PEELER is open sourced at: https://github.
com/IntHelloWorld/Peeler.

• We perform extensive experiments to assess the performance
of PEELER on 17,532 test cases collected from 21 Java
projects. Experimental results confirm that PEELER outper-
forms the state of the art both in terms of precision (less
false positives) and recall (higher flakiness detection).

1 public void testRequestMetaForSuccessfulRequest()
2 throws Exception {
3
4 String content =
5 fetch("http://example.com/request-meta");
6 RequestMeta requestMeta =
7 RequestMeta.fromJSON(content);
8 requestMeta.getHeaders().remove("Via");
9 requestMeta.getHeaders().remove("Cache-Control");

10 content = requestMeta.toJSON();
11 - corporaAsserter.assertEquals(
12 - content,
13 - "testRequestMetaForSuccessfulRequest");
14 + JSONAssert.assertEquals(
15 + content, false,
16 + corporaAsserter.getCorporaCache().read(
17 + "testRequestMetaForSuccessfulRequest"))
18 }

Listing 1: Example of a fixed flaky test.

II. MOTIVATION

The state-of-the-art in flakiness detection has so far focused
on leveraging code metrics such as the number of lines of
code in a test case (e.g., [22]), or on exploiting information
in code identifiers (e.g., [21]). While these approaches have
achieved some level of effectiveness, many flaky tests are still
challenging to detect with high-level feature engineering. Our
main intuition is that data dependency relations in test code
can be leveraged to improve the detection of flakiness. To
motivate our approach, we present two real-world examples of
test flakiness where dependency with the test case (i.e., Inner-
Test) and dependency between the test case and the code under
test (i.e., Test-CUT) provide hints of flakiness.

Example#1 - Inner-Test Dependency. Listing 1 illus-
trates the case of a flakiness fix for a test case in
the spinn3r project.1 In lines 11-13, we note that the
flaky test uses a corporaAsserter object to assert
whether the fetched content value is equal to the
string "testRequestMetaForSuccessfulRequest".
The content object is declared as String (line 4-5).
However, its value, when the assertion instruction is exe-
cuted, is returned from requestMeta.toJSON() (line
10) that returns a string by converting a character stream,
collecting inputs from the JSON object (cf., line 6-7). The
assert at line 11 may fail since the returned JSON string
of requestMeta.toJSON() may have a character or-
der that is inconsistent, i.e., different from the expected
string "testRequestMetaForSuccessfulRequest"
in some cases. In the fixed code (lines 14-17), the expected
string is first parsed into a JSON string. The assert is then
performed on the adapted JSONAssert which checks the
logical structure and data and can be parameterized (with the
third boolean argument set to false) to forgive reordering
data and extending results, “making tests less brittle”.2

In this example, given only the assert statement (i.e.,
line 11), it is difficult to understand the flakiness of this test,
which should consider the context of the variable content

1https://github.com/spinn3r/noxy/pull/21.
2https://github.com/skyscreamer/JSONassert.

https://github.com/IntHelloWorld/Peeler
https://github.com/IntHelloWorld/Peeler
https://github.com/spinn3r/noxy/pull/21.
https://github.com/skyscreamer/JSONassert.

1 public void giteeSample() throws Exception {
2 // See https://git.mydoc.io/?t=154711
3 Map<String,Object> value =
4 new ObjectMapper().readValue(
5 new ClassPathResource(
6 "pathsamples/gitee.json")
7 .getInputStream(),
8 new TypeReference<Map<String,Object>>(){}
9);

10 this.headers.set(
11 "x-git-oschina-event", "Push Hook");
12 PropertyPathNotification extracted =
13 this.extractor.extract(this.headers, value);
14 assertThat(extracted).isNotNull();
15 assertThat(extracted.getPaths()[0])
16 .isEqualTo("d.txt");
17 }

Listing 2: Example of a flaky test.

(i.e., that it is a JSON string). Fortunately, this context can
be readily inferred from the code from line 4 to line 10, and
be represented as program dependency relations in the test
code (content → fromJSON() → toJSON()). Upon
extracting such dependency relations, it is trivial to determine
the flakiness of this test since the flaky test does not use an
appropriate API to test the JSON string. Nevertheless, existing
approaches do not consider data dependencies within a test
case, and thus cannot be expected to detect such flaky test
cases.

Example#2 - Test-CUT Dependency. Listing 2 illustrates
the case of a flaky test encountered in the project spring-
cloud.3 The flakiness is related to the implementation
of the code under test (CUT). On line 13 of the test
case (giteeSample), a call is made to function
extract(), which is defined in the CUT within the
class BasePropertyPathNotificationExtractor
(cf. Listing 3) . In the original extract() (i.e., before
flakiness is fixed), the paths variable, which is a Set,
is initialized on Line 7 as a HashSet object, which is
later converted to an array (line 15). Unfortunately, the
HashSet data type cannot guarantee the order of entries in
the set. Therefore, the assertion in the test case (line 15-16
in Listing 2) will fail from time to time since it asserts
that the first element in the set must always be "d.txt".
To fix this flakiness issue, developers did not change the
test case but rather the CUT: they replaced the usage of
HashSet with LinkedHashSet. This ensures that the
function extract() called in the test case will return an
array where items are deterministically ordered.

With this example, we observe that the flakiness of a test
could depend on the source code files that have dependency
relations with the test. Therefore, we propose to taking the test-
CUT dependency into consideration for assessing flakiness.

III. APPROACH

Figure 1 overviews the basic steps in our approach. We take
as input a test case method and the source code of the associ-
ated code under test (CUT). A first module, PathExtractor, is

3https://github.com/spring-cloud/spring-cloud-config/pull/1546.

1 public PropertyPathNotification extract(
2 MultiValueMap<String,String> headers,
3 Map<String,Object> request) {
4 if (requestBelongsToGitRepoManager(headers)) {
5 if (request.get("commits")
6 instanceof Collection) {
7 - Set<String> paths = new HashSet<>();
8 + Set<String> paths = new LinkedHashSet<>();
9 Collection<Map<String, Object>> commits =

10 (Collection<Map<String,Object>>) request
11 .get("commits");
12 addPaths(paths, commits);
13 if (!paths.isEmpty()) {
14 return new PropertyPathNotification(
15 paths.toArray(new String[0]));
16 }
17 }
18 }
19 return null;
20 }

Listing 3: A patch of the source code for the flaky test in Listing 2.

designed to construct the test dependency graph (TDG) from
which contextual paths will be extracted (cf. Section III-A).
Then, each extracted path will be embedded with the help
of a pre-trained code2vec model and an attention mechanism
is used to combine these paths into the representation of the
test. Finally, a one-layer neural network will be fed with the
representation of the input test method to identify whether this
test is a flaky one (cf. Section III-B).

A. PathExtractor

Given a test case and its corresponding code under test,
PEELER first generates a test dependency graph (TDG), which
aims to reveal the data dependency relations in a test. As
argued by recent studies [23], [24], such graphs are overloaded
with information that may not all be critical. Informed by our
empirical observations, we propose to focus on the variables
which possess data dependencies with the assertion statements
in a test. Specifically, we aim to extract the contextual paths
for each assertion statement, which connect the variables that
have dependency relation with it in the graph. In this way,
the information from the graph with limited usefulness for
determining the flakiness of a test can be discarded (e.g., lines
4-6 in Listing 1). We next give definitions for TDG and the
contextual path, after which we introduce how we extract these
paths.

Definition 1. Test Dependency Graph (TDG): A TDG is
defined as TDG = (N,E, µ, σ, γ) to represent a test method,
where N is a set of nodes in the graph and E is a set of edges,
N = {n0, n1, ..., nk}, E = {e0, e1, ..., el}, e = (ni, nj).
Function µ assigns nodes with line number positions in their
code text, function σ denotes the relationships between nodes
and edges, and function γ points out whether an edge is related
to the code under test.

Nodes The nodes N are the abstract syntax tree (AST)
entities of code presented in TDG, which are limited on
three kinds of the AST entities (i.e., variables, literals,
and function calls that will return specific values). For a
line of code Tool tool = Tool.load("string",
get(item), array[10]), the nodes are the AST en-

https://github.com/spring-cloud/spring-cloud-config/pull/1546.

PathExtractor Embedding

test

method test dependency

graph (TDG)

code under test

(CUT)

…

contextual

paths

test method

representation

pre-trained

code2vec

Classifier

flaky

non-flaky

or

1-layer neural

network

Fig. 1: Overview of PEELER.

fetch("url")

requestMeta.toJSON()

content <4>

RequestMeta.

fromJSON(content)

requestMeta.toJSON()

RequestMeta.

fromJSON(content)

1: String content = fetch("url");

2: RequestMeta requestMeta =

 RequestMeta.fromJSON(content);

3: content = requestMeta.toJSON();

4: Asserter.assertEquals("testName", content);

(a) Test code

(b) TDG

"testName" <4>

Asserter.assertEquals

("testName", content)

"url" <1>

content <2>

requestMeta <3>

Asserter.assertEquals

("testName", content)

fromJSON

function

declaration

toJSON

function

declaration

fetch

function

declaration

Fig. 2: Example of a test code and the generated TDG.

tities with the code content “tool, "string", item,
get(item), and array”. Function µ : N ← L assigns
each node with the corresponding line number (l ∈ L) in
code text to represent its position. If the literal nodes and
variable declaration nodes are presented for the first time, they
will be labeled with START. In addition, if an AST entity is
extracted from an assert statement, its node will be labeled
with ASSERT.

Edges Edges denote all of the data transfer relations
from node ni to node nj . For the code listed be-
fore, the object tool is initialized through the function
Tool.load(...), edges ("string", tool), (item,
get(item), (get(item), tool), (item, tool),
and (array, tool) can be extracted. Function σ : E ← O
denotes the direct data transfer operation o ∈ O (e.g., the
function call and arithmetic operators) working on an edge
to describe the semantic behavior of the edge. In the previous
code, the function call Tool.load(...) is the data transfer

Algorithm 1: Extracting contextual paths.
Input: TC: the test code.
Input: CUT: the code under test.
Output: CtxtP : A set of contextual paths for the test code.

1 CtxtP = ∅;
2 CtxtP ′ = ∅ ; /* Temporary set of contextual paths. */
3 AST = parse(TC) ; /* Parse test code into AST. */
4 TDG =TDGGenerator(AST) ; /* Generate TDG from AST. */
5 Sort(E) ; /* Sort in descending order by line numbers. */
6 for ei in E do
7 if ei.nj is a ASSERT node then
8 ctxtP = (ni → ei → nj);
9 if ei.o is from CUT AND γ(ei) is null then

10 /* Labeling ei is related to CUT. */
11 γ: ei ← p;

12 CtxtP ′.add(ctxtP);
13 while CtxtP ′ is not null do
14 for ctxtP ′ in CtxtP ′ do
15 CtxtP ′.remove(ctxtP ′);
16 /* Find edges connected to the path ctxtP ′. */
17 E′ = findConnectedEdges(ctxtP ′, E, ei);
18 if E′ is null then
19 CtxtP .add(ctxtP ′);
20 continue;

21 for e′ = (n′
l, n

′
r) in E′ do

22 ctxtP ′ = ctxtP ′;
23 ctxtP ′.concatenate(n′

l, e
′);

24 if e′.o is from CUT AND γ(e′) is null then
25 γ: e′ ← p;

26 CtxtP ′.add(ctxtP ′);

27 Return CtxtP

operation of those edges. Note that, the functions called in test
code could be defined in the code under test. To distinguish
such function calls from others, the function γ : E ← P is to
point out that the function call is defined in the code under
test for the related edge. Note that we only consider the calls
made directly from the CUT.

Definition 2. Contextual Path: A contextual path ctxtP is
a sub-path in TDG that denotes the complete path between
two connectable nodes, ctxtP = (n1 → e1 → n2 → e2 →
· · · → nl−1 → el−1 → nl), where {n1, · · · , nl} ⊆ N , n1
is a START node, nl is an ASSERT node, {e1, · · · , el−1} ⊆
E, ei = (ni, ni+1), i ∈ [1, l − 1].

Workflow of the PathExtractor. PathExtractor first con-
structs the test dependency graph (TDG) for the test code,
which is used to construct contextual paths by concatenating
node sequences in the graph. Algorithm 1 illustrates the
details.

Taking as input the test code (TC), PathExtractor applies
JavaParser [25] to parse the code into abstract syntax tree
(AST) (line 3), and visits AST nodes in terms of the depth-
first search to generate the TDG (line 4), where the nodes
and edges are identified according to the previous definitions.
Once TDG is generated, the edge set E is then sorted in
descending order by line position of the second node ny of
each edge e = (nx, ny) ∈ E (line 5), to optimize the process
of constructing contextual paths. For each edge ei = (ni, nj)
in E, if the node nj was signed with the label ASSERT, a single
contextual path ctxtP linking ni and nj through ei will be
constructed (lines 7-8), and the edge ei will be assigned with
the function declaration code p if the function call of ei is
defined in the code under test (lines 9-11). To deal with the
polymorphism, the parameter information is taken into account
in this step. After such a path is constructed, we search for all
edges E′ that are connected with the path through the node
ni (line 17). To optimize the search space, the searching starts
from the next edge of ei since each ei will not be connected
by the path before ctxtP ′. If E′ is empty, the construction of
the contextual path ctxtP ′ is finished (lines 18-20). Otherwise,
each edge in E′ will be used to construct a new contextual path
by concatenating the node n′l and the edge e′ with the path
ctxtP ′ (lines 21-26). All of the newly constructed contextual
paths CtxtP ′ will be further used to continuously concatenate
the corresponding nodes and edges. It should be noted that
each contextual path extracted from such a procedure starts
with a START node.

Figure 2 illustrates the test dependency graph with an
example of a code fragment (Figure 2(a)) excerpted from
Listing 1. PathExtractor traces variable content to generate
the TDG shown in Figure 2(b). In the TDG generated for the
code fragment, the nodes are illustrated with grey rectangles,
that are assigned with line numbers and START/ASSERT. The
edges are presented through solid arrows, which are labeled
with function calls. We use dotted arrows to assign function
declarations from the code under test to the corresponding
edges. Once a TDG is constructed, PathExtractor will then fol-
low its workflow to extracted contextual paths from the TDG.
The longest path (marked with red dotted-line framework in
Figure 2(b)) in TDG will be generated as the contextual path
for the assert statement in line 4 of the test code snippet.

B. Test Embedding Model

Considering the diversity of the contextual paths, it is non-
trivial to manually summarize heuristics for identifying test
flakiness based on the contextual paths. Instead, we decide
to use a neural network (shown in Figure 3) to represent the
semantics of the tests and thus predict the flakiness.

Path embedding. Suppose the extracted contextual paths set
for a specific test is CtxtP = {ctxtP1, . . . , ctxtPy}. In order
to embed a contextual path ctxtPj with a continuous vector,
we first need to embed its elements (i.e., nodes and edges). To
this end, we employ a pre-trained code2vec [26] model that
was proposed to extract semantic features from the AST paths

of code functions and was trained on a large corpus containing
+12M methods.

For each contextual path ctxtPj = (n1 → e1 → n2 →
e2 → · · · → nl−1 → el−1 → nl), we first convert it
into a sequence of tuples {(n

1
, e

1
), (n

2
, e

2
), · · · , (n

l
, PAD)},

where PAD is the padding token. Each node ni is also split
into several tokens by the characters in the string of the node
(e.g., “.” and “(”). And each token is divided into sub-tokens
based on camel case and under score naming conventions. All
sub-tokens are embedded into representing vectors by utilizing
the pre-trained embedding matrix from code2vec. Finally, the
vectors of all sub-tokens from the node ni are averaged to
represent the embedded node vni ∈ Rd.

As for the edge e
i
, if e

i
cannot map with any code under

test, the edge is embedded using the same way as embedding
nodes with the assigned function call or arithmetic operator.
Otherwise, the code under test will be fed into the pre-
trained code2vec model and the output vector of this method
is considered as the representation of the edge ve

i
∈ Rh.

Eventually, the two embeddings of node ni and edge ei are
concatenated to a single vector: v

i
= [vn

i
; ve

i
] ∈ Rd+h that

represents the ith tuple in ctxtPj .
To represent the contextual path ctxtPj , the tuples t =
{v1, v2, . . . , vl} are first conveyed through a fully connected
layer for extracting more features:

v′i = tanh(LN(W × vi))

where v′i is the resulting vector computed for each tuple vector
v
i
, W is a learned matrix, LN denotes the layer normalization

for stabilizing the layer input, and tanh is the hyperbolic
tangent function, which is commonly used as the activation
function for increasing the ability of model expression [27].

We recall that each contextual path has its beginning node
(which is labelled as START) and its end node (which is
labelled as ASSERT) and the data is transferred in order
in the path. Therefore, to capture such sequential features,
the obtained vectors (v′1, . . ., v′l) are sent into a 2-layer
unidirectional LSTM model:

cj = LSTM(v′1, . . . , v
′
l)

The final hidden state of the second layer of the LSTM model
is used to represent the path ctxtPj , which is denoted as cj .
We apply an LSTM of 2 layers by following the previous code
embedding study [28]. We decide to adopt the unidirectional
setting as the data dependency is transferred unidirectionally
in the contextual path.

Path attention mechanism. After obtaining the representa-
tion of each path ctxtPi, we need to combine them to represent
the whole test method. Inspired by previous studies [28], [29],
we choose to adopt a path attention mechanism since different
paths may contribute unequally to the semantic of the test
method. This process can be described as:

β
i
=

exp(cTi ⊗ a)∑n
j=1 exp(c

T
j ⊗ a)

z =

n∑
i=1

β
i
· ci

…
subtokens

CUT code2vec

…

fully
connected

…

… …

2-layer
lstm

path embedding

…

embedded
tuples

embedded
path

attention

other
embedded

paths

…

contextual
path

node

edge

combined
vectors

elements
embedding

embedded
test method

…

contextual
paths for a test

…

Fig. 3: Neural network architecture for embedding a test case.

where a is a randomly initialized attention parameter vector
which is learned with the network, ⊗ is the normalized inner
product, and z is the output vector of the attention layer which
is a numerical representation of a single test method.

C. Flakiness Classifier

The resulting vector z from the previous step is further sent
into a fully connected layer: z′ = W1 × z where W1 is a
learned matrix for feature reshape. After that, z′ is sent into
another fully connected layer for dimension reduction: o =
W2×z′. Finally, we use the softmax function for predicting the
final results: vout = softmax(o). Since our task is a binary
classification problem, the dimension of the final output of
the model is 2. We adopt the cross-entropy criterion [30] as
our loss function for training the networks. The loss can be
calculated as:

loss = − 1

N

N∑
i=1

log

(
exp(xi[labeli])

exp(xi[0]) + exp(xi[1])

)
where x = [x1 , x2 , . . . , xN

] ∈ R2×N is the output of the model
correspond to a batch of test methods, N is the batch size,
labeli denotes the oracle classification of the test xi, which
equals to 1 if the test method is a flaky test and 0 otherwise;
xi[0] and xi[1] denote the predicted probability of the test xi
to be non-flaky and flaky, respectively.

IV. EVALUATION DESIGN

A. Research Questions

• RQ1: Is PEELER effective in detecting flaky tests in
real-world Java projects? This RQ aims to build a new
effectiveness baseline for researchers working on detecting
flaky tests statically.

• RQ2: To what extent do the inner-test and test-CUT
contextual dependency relations affect the performance
of PEELER? This RQ could help understand the individual
contribution from the two types of dependency information,
and thus facilitate future studies.

• RQ3: Can PEELER detect flaky tests in the wild? This RQ
helps potential users of PEELER understand how to apply it
in practice and further how useful it could be in practice.

B. Dataset

In order to train our model, we require a dataset includ-
ing both flaky tests and non-flaky tests. Such a dataset has
fortunately been proposed recently by Alshammari et al. [22].
The authors considered 21,734 tests from 23 open-source Java
projects and extensively re-ran each test 10K times to decide
on flakiness (each execution is independently performed).
Overall, they identified 808 test cases as flaky, among which 96
test cases have been already addressed by the developers. We
chose to use this dataset because (1) it is an authentic dataset
containing a large number of flaky tests in the community,
and (2) it has been leveraged by two recent state-of-the-art
approaches (i.e., FlakeFlagger [22] and the vocabulary-based
approach [21], which we will compare against), to support
their experimental evaluations. Note that, due to the limitation
of PathExtractor, we failed to extract any contextual paths
from some tests, hence, we had to discard them from our
experiments (we will discuss this situation later). The final
dataset contains 17,532 tests from 21 projects, of which 689
are flaky.

C. Training and Testing

We randomly split the benchmark into 10 same-size folds
(i.e., with identical numbers of flaky and non-flaky tests in
each fold). We thus have 620/15 159 (69/1 684) flaky/non-flaky
tests in the training (test) set of each fold. We then applied
10-fold cross validation to evaluate our model, following
the experimental setup by Alshammari et al. [22]. The final
performance of PEELER is summed up over the 10 rounds of
each training and testing process. Note that our benchmark is
imbalanced (the number of non-flaky tests is much larger than
that of flaky ones), we thus utilized the re-sampling method
[31] by sampling the identical number of flaky and non-flaky
tests, and combined them into each batch during training. The
model was trained on Ubuntu18.04 system with 256G RAM,
AMD-3970x CPU, and GeForce RTX3090 graphics card.

TABLE I: The hyper-parameters we use for training our network.

parameter epoch batch max path max path learning
size size length count rate

value 20 64 20 100 0.01

As for the hyper-parameters of our model, two critical ones
are the maximum number of paths from each test and the
maximum length of each path. To avoid the input information
being too large, we set the max path count to 100 and the
max path length to 20 for each test method. This decision is
based on our statistics that on average, the test in our dataset
contains 36 contextual paths and the length of each path is
16. Other hyper-parameters about the network were set based
on values in previous works [26], [28]. The parameters we
ultimately used in our model are shown in Table I.

D. Metrics

Following prior studies [22], [21], we assess PEELER’s
effectiveness based on precision, recall, and F-score metrics.
Given the following:
True Positive (TP): # of flaky tests identified as flaky;
False Positive (FP): # of non-flaky tests identified as flaky;
False Negative (FN): # of flaky tests identified as non-flaky;
True Negative (TN): # of non-flaky test identified as
non-flaky.

The proposed metrics are computed as:

Precision = TP/(TP + FP) Recall = TP/(TP + FN)

F − score = 2× Precision×Recall/(Precision+Recall)

V. EXPERIMENTAL RESULTS

A. RQ1: Detection Performance

Performance results of PEELER on the flaky tests dataset
are shown in Table II. Overall, PEELER achieves reasonable
performance: it can detect 85% of all flaky tests in the dataset
with a relatively high precision (i.e., 77%). The trade-off
between precision and recall leads to an overall F-score value
that exceeds 80%.

To investigate how it performs against state of the art,
we select two flaky test classifiers FlakeFlagger [22] and
Pinto et al.’s approach [21] based on code vocabulary as our
baselines since: (0) they are recent in the literature (ICSE 2021
and MSR 2020); (1) we use the same dataset as them for the
evaluation; and (2) both approaches target scalability (i.e., not
requiring to re-run tests many times to decide on flakiness).
Recall that we have introduced how these baselines work
in Section I, and that our scalability constraints are higher:
PEELER does not even need to run any tests.

The comparison results between PEELER and the baselines
are presented in Table II. Note that the performances of
baselines are provided by Alshammari et al. [22]. Overall,
PEELER presents a better performance of detecting flaky
tests than the two state-of-the-art baseline approaches (i.e.,
FlakeFlagger/the vocabulary-based one) with higher scores
of precision, recall and F-score, respectively. For instance,
PEELER correctly detects 583 flaky tests out of 689 ones while
the baselines detect 476 and 416 respectively, leading to an

increase with 22%/40% of them. As for the false positives,
PEELER false positively identifies 172 non-flaky tests as flaky,
which is a decrease with 51%/95% false positives of the two
baselines.

According to the hypothesis proposed by Alshammari
et al. [22], supposing that a developer is using the detection
results from PEELER, she only needs to re-run 755 tests to
expose the flakiness and she can find 583 flaky ones. If she
uses FlakeFlagger or the vocabulary-based one, she can only
identify 476 or 416 by re-running 824 or 3,569 tests which
will consume much more time for her than PEELER. From
this perspective, PEELER is more user-friendly with respect to
time consumption.

Peeler FlakeFlagger

Vocabulary-Based Approach

49 151

303
80 9

24

13

Fig. 4: Overlaps of detected flaky
tests by different approaches.

We also investigated the
distributions of the flaky
tests detected by differ-
ent approaches and the re-
sults are shown in Fig-
ure 4. The figure illus-
trates the complementar-
ity of PEELER with ex-
isting approaches on de-
tecting different flaky tests.
Specifically, 49 flaky tests
can be uniquely detected
by PEELER while the numbers for FlakeFlagger and the
vocabulary-based approach are 13 and 24 respectively.

When it comes to the individual project, we find the
performance of PEELER varies among different projects. On
some projects such as alluxio, all three approaches achieve
good performances (e.g., the F-scores of them all exceed
90%). However, on some projects with limited known flaky
tests (e.g., assertj-core and handlebars.java), all of the three
approaches fail to detect any of the flaky tests, which leads
to the F1-score being 0. As revealed by Alshammari et al.,
the lack of the flaky test data is the main reason for this
phenomenon [22]. Nonetheless, this problem is alleviated
for PEELER since it achieves satisfactory results on other
projects where the number of flaky tests is also limited (e.g.,
elastic-job-lite). In general, PEELER does not require extensive
training data to yield reasonable performance. We refer the
reader to more detailed discussions in Section VI.

ý PEELER can effectively detect the flaky tests in the
dataset, of which results at precision, recall and F-score
metrics outperform the state-of-the-art approaches with
higher values by detecting more flaky tests with fewer false
positives and false negatives.

B. RQ2: Ablation Study

For this research question, we investigate the contributions
from inner-test and test-CUT contextual dependency relations
to PEELER. Therefore, we separately removed the inner-test
and test-CUT contextual dependency information from the
contextual paths for PEELER. For the former case, we only
kept the edges that are assigned with code under test and the

TABLE II: Results of detecting flaky tests with PEELER, FlakeFlagger, and the vocabulary-based approach.

Project # Tests # Flaky
Tests

PEELER FlakeFlagger [22] Vocabulary-based [21]
TP FN FP TN TP FN FP TN TP FN FP TN

alluxio 187 116 116 0 0 71 116 0 0 71 108 8 6 65
hbase 351 114 106 8 4 233 100 14 21 216 53 61 118 119
okhttp 766 100 94 6 47 619 43 57 145 521 73 27 360 306
spring-boot 1582 82 69 13 23 1477 61 21 11 1489 48 34 484 1016
ambari 316 46 43 3 1 269 40 6 3 267 25 21 72 198
hector 130 33 28 5 3 94 30 3 11 86 7 26 14 83
java-websocket 145 23 20 3 5 117 19 4 1 121 22 1 67 55
httpcore 712 22 19 3 17 673 13 9 24 666 12 10 292 398
wildfly 848 23 19 4 11 814 12 11 22 803 20 3 362 463
http-request 161 18 17 1 0 143 12 6 5 138 15 3 62 81
activiti 2010 32 15 17 13 1965 10 22 45 1933 10 22 344 1634
wro4j 1089 16 9 7 16 1057 4 12 2 1071 2 14 96 977
incubator-dubbo 1443 19 10 9 6 1418 8 11 24 1400 8 11 415 1009
logback 787 22 8 14 5 760 2 20 11 754 6 16 213 552
orbit 82 7 3 4 4 71 1 6 11 64 5 2 22 53
undertow 151 5 3 2 11 135 3 2 6 140 1 4 39 107
elastic-job-lite 534 3 2 1 0 531 0 3 0 531 0 3 29 502
achilles 732 4 2 2 1 727 2 2 0 728 0 4 0 728
zxing 260 2 2 2 2 256 0 2 2 256 1 1 84 174
assertj-core 4939 1 0 1 3 4935 0 1 2 4936 0 1 6 4932
handlebars.java 307 1 0 1 0 306 0 1 2 304 0 1 68 238
Total 17532 689 583 106 172 16671 476 213 348 16495 416 273 3153 13690
Precision 77% 58% 12%
Recall 85% 69% 60%
F-score 81% 63% 20%
∗TP: True Positives, FN: False Negatives, FP: False Positives, and TN: True Negatives.

TABLE III: Ablation study results on the importance of contextual
dependency information in PEELER.

Models Precision Recall F-score
PEELER 77% 85% 81%
PEELER w/o Inner-Test context 41% 71% 52%
PEELER w/o Test-CUT context 73% 84% 78%

nodes that are connected by such edges. Other nodes and edges
in the original contextual paths were padded with zero. While
for the latter case, we ignored if the edges could be linked
with any code under test and treated them sorely as tokens.

The performances of the variants of PEELER are shown
in Table III. We note that when the inner-test contextual
dependency information is discarded, the efficacy of PEELER
decreases sharply; while when the test-CUT dependency in-
formation is excluded, the performances of PEELER only drop
slightly. Specifically, the F-score is decreased from 81% to
52% when the inner-test dependency is neglected; while the
F-score only drops from 81% to 78%, when the test-CUT
dependency is overlooked.

To deeply understand the reasons for such phenomenon,
we further defined two concepts which are elements per path
(EPP) denoting the average number of elements (including the
nodes and edges) in a contextual path, and test-CUT elements
per path (IFEPP) denoting the average number of elements
related to the code under test (including edges assigned with
code under test and the nodes connected by them) in a
contextual path. After calculation on the whole dataset, the
values of EPP and IFEPP are 16.22 and 8.55 respectively.
This indicates that if PEELER only focuses on the test-CUT
dependency information, around half of the elements in a
contextual path will be discarded, leading to a significant

performance decrease. On the contrary, if PEELER discards
the test-CUT dependency relation, the amount of the elements
in a contextual path is not affected. Moreover, PEELER still
can capture the semantic information of the code under test
with the method names that are involved in the tokens of the
edges and can reflect the aggregated behavior of the method
body [32], [33], [34].

We further investigate the proportion of tests whose flaki-
ness is related to test-CUT dependencies. For the flaky tests
in our dataset, 96 of them have their patches confirmed by
the developers, but only 6 of them are fixed by making
code changes in its code under test (i.e., test-CUT contexts).
Such a low proportion indicates that the flaky tests caused
by their test-CUT contexts are not as pervasive as those
whose flakiness can be addressed in the test code themselves.
Therefore, we obtain a slight decrease when excluding test-
CUT dependency relation for PEELER.

ý Both the inner-test and test-CUT dependencies are useful
in ensuring the effectiveness of PEELER. Inner-Test depen-
dencies however appear to be significantly more rewarding.

C. RQ3: Live Study

We investigate whether PEELER can actually help devel-
opers identify previously-unknown flaky tests in real-world
projects. To that end, we conduct a live study on open-source
projects. We use the model trained in RQ1 (i.e., the one with
the best performance in the 10-fold training and testing) and
apply it to 3 open-source projects which are not included in
the dataset of RQ1. We then report the predicted flaky tests to
the development teams for confirmation.

TABLE IV: Results of the live study.
Project Tests Predicted Reported Confirmed Refuted P
Google/Guava4 947 32 11 11 0 0
DataflowTemplates5 624 29 9 1 0 8
Alibaba/fastjson6 264 4 1 0 0 1
Total 1835 65 21 12 0 9

Predicted: the number of flaky tests predicted by PEELER.
Reported: the number of predicted flaky tests reported to their developers.
Confirmed: the number of reported flaky tests confirmed by their developers.
Refuted: the number of reported flaky tests refuted by their developers.
P: the number of reported flaky tests are still pending.

As presented in Table IV, PEELER predicts 65 out of 1,835
test cases as flaky (i.e., probability threshold at 0.5). Given
that we cannot leave a heavy burden for developers with tens
of issues that may or may not be accurate, we chose to first
report tests with high prediction probabilities of being flaky,
according to the returned results of PEELER. Specifically, we
selected the 21 test cases with flakiness probability scores
≥ 0.7. We took further steps to assess through dynamic tests
that these tests are indeed probably flaky: we executed each
predicted flaky test 100 times and reported test results to their
developers. At the time of submission of this paper, 12 out
of 21 test cases had already been confirmed as flaky by the
projects’ development teams. 9 cases of flakiness reports were
still pending: developers did not yet reply to us. None of the
submitted flakiness report were refuted so far. In addition, for
the Guava project, developers discuss with us concurrency
properties of the program which might explain some of the
flakiness. They admitted that they may not have time to dig
into all these test cases, but they welcome our support in fixing
them as well. This suggests that automatic fixing of flaky
tests would be a relevant research avenue towards addressing
flakiness in a systematic manner. Our live study also helps us
understand the application scenario of PEELER: once trained,
it could be applicable to other software systems.

ý PEELER can help detect silent flaky tests in the wild
which have not been uncovered by the developers.

VI. DISCUSSION

A. PEELER as a Code Representation Technique

PEELER can generally be considered as a code represen-
tation technique that relies on the dependency relation. To
better illustrate the rationale of the approach design, we
also compared PEELER with another state-of-the-art code
representation technique, code2seq [28]. Specifically, in the
encoding part of code2seq, we generated a vector represen-
tation for a single test method with the attention mechanism,
after which we used a fully-connected layer to predict the
flakiness. We also performed 10-fold cross validation on the
evaluation dataset for this model, and results show that the
values of the precision, recall, and F-score are 69%, 43%,
and 53%, respectively, which are lower than those of PEELER
systematically. Such results show that our customized TDG

4https://github.com/google/guava
5https://github.com/GoogleCloudPlatform/DataflowTemplates
6https://github.com/alibaba/fastjson

1 public void
2 oldSpringModulesAreNotTransitiveDependencies()
3 throws IOException {
4 runBuildForTask("checkSpring");
5 }
6

7 private void runBuildForTask(String task) {
8 try {
9 project.newBuild().forTasks(task)

10 .withArguments(this.buildArguments)
11 .run();
12 } catch (BuildException ex) {
13 Throwable root = ex;
14 while (root.getCause() != null) {
15 root = root.getCause();
16 }
17 fail(root.getMessage());
18 }
19 }

Listing 4: Example of a flaky test on which PEELER didn’t work.

TABLE V: The results of FlakeFlagger and vocabulary-based ap-
proach on tests where PEELER does not work.

All TP FN FP TN Pr R F
FlakeFlagger 4202 116 3 14 4069 89% 98% 94%
Vocabulary-Based 4202 101 18 693 3390 13% 86% 22%

can better capture the features for flakiness prediction than
existing code representation techniques.

B. Efficiency

PEELER is fully static: it does not collect any runtime
execution information. Instead, its overhead is in the extraction
of test dependency graphs, the training of the model, and the
prediction. For all 17,532 tests that are assessed in the 10-
fold cross-validation process, PEELER took 80 minutes for
path extraction, 163 minutes for training, and 430 seconds for
prediction. Therefore, PEELER takes 0.86 second on average
for a single test case. We foresee this as being an affordable
time cost in practice. Unfortunately, the compared baselines
approaches [22], [21] did not report their overhead. Neverthe-
less, given that they do perform some runtime executions, we
can conclude that they would require more overhead, and thus
are certainly less scalable.

C. Limitations

As introduced in Section IV-B, we discarded 4,202 tests
where we failed to extract any contextual paths. The reason
is related to the working mechanism of the PathExtractor.
As presented in Section III-A, PathExtractor can only extract
contextual paths when there are START nodes and ASSERT
nodes in the corresponding TDG. These nodes are used to
denote the beginning and ending of a contextual path. If such
conditions are not satisfied, the contextual paths cannot be
extracted from the TDG. In Listing 4, we give a concrete
example where the PathExtractor failed. In this test method,
there is only one statement calling another method and all the
tested behaviors are defined in the callee. There is no assert
statement in the test and thus PathExtractor is not able to
extract any contextual paths.

For the tests on which PEELER does not work, we respec-
tively investigate the performance of FlakeFlagger and of the

https://github.com/google/guava
https://github.com/GoogleCloudPlatform/DataflowTemplates
https://github.com/alibaba/fastjson

vocabulary-based approach. The results are shown in Table V.
We note that the performance of FlakeFlagger is substantially
higher than that on the overall dataset (cf. Table II). By
investigating the features of these 4,202 tests, we summarized
the flakiness reasons as follows. First, a large proportion of the
flaky tests (92/119) present test smells7 “Indirect Testing: the
test interacts with the object under test via an intermediary”
and “Fire and Forget: the test launches background threads or
tasks”. Listing 4 shows such an example. On the one hand,
it calls another method and defines all the test behavior in
the callee; on the other hand, its callee launches a task in
the background during execution. Therefore, this test presents
both test smells. Second, all non-flaky tests do not suffer from
the aforementioned two test smells, which may be a feature of
the dataset. Since the uncovered test smells are captured and
used by FlakeFlagger as features, it can perform well on these
test cases. In contrast, the vocabulary-based approach, which
only focuses on the code tokens, achieves similar performance
as for the rest of the dataset (cf. Table II). Overall, although
PEELER outperforms the state of the art in general, the state
of the art can complement PEELER, and vice versa.

D. Threats to Validity

An external threat in our experiment lies in the reliability
of the ground truth data that we used. It was collected from
a recent study, where they run the test cases to decide on
flakiness. Unfortunately, flakiness is inherently difficult to
reproduce: a test which has been considered as non-flaky by
developers but may actually be a flaky one. Nevertheless, this
threat is mitigated by the fact that the dataset was created after
each test 10K times [22].

A second threat to validity is related to our implementa-
tion of PEELER, which was targeted at the Java language.
While our design is generic and does not present specific
programming-language constraints, our implementation was
guided by the availability of artefacts (e.g., program parser)
and benchmarks for evaluation.

VII. RELATED WORK

A. Flaky Test Studies

Flaky tests were firstly comprehensively investigated by Luo
et al. [7]. They dissected the most common reasons for the
presence of flaky tests. Eck et al. [11] deepened this knowledge
by surveying the developers about the root cause of flaky
tests. Strandberg et al. [35] analyzed the typical cause of flaky
tests in the embedded systems. Considering that test flakiness
brings negative impacts on software testing practice such as
mutation testing [36] and program repair [37], a number of
approaches have been proposed to automatically detect flaky
tests. An intuitive way to detect flaky test is to rerun the
test for many times: if the test results are not consistent at
all the times (i.e., both passing and failing are witnessed),
the flakiness is exposed [18], [19], [4]. However, it is widely
known that executing tests is rather time-consuming [38] and

7A “Test smell” denotes some bad practices during writing test code [22].

thus this way is impractical. Based on the assumption that
some specific identifiers may have more occurrences in the
flaky tests, Pinto et al. [21] introduced an approach to predict
flaky tests statically. They transferred the test code into token
sequence and then each split token is considered as a feature
and the overall sequence is sent to machine learning classifiers
(e.g., the Random Forest) to determine the flakiness of the test.
However, as shown in our evaluation, sorely based on the test
tokens is not effective enough. A potential reason proposed by
Alshammari et al. [22] is that many tokens occur frequently
in both flaky and non-flaky tests. As a static approach, our
PEELER is far more effective with the help of dependency
information. FlakeFlagger [22] is another state-of-the-art flaky
test detector. However, our PEELER significantly outperforms
it in our evaluation. Moreover, PEELER can be more efficient
than it since some of the features utilized by this approach are
dynamic ones (i.e., need to be extracted by running the tests).

Upon detecting flaky tests, researchers also propose to au-
tomatically fix them. iFixFlakies [39] aims at fixing flakiness
caused by test-order dependencies. It searches for tests from
the same test suite that can make the order-dependent tests
pass and reuses their code to generate the patch. DexFix [40]
targets at unordered collections (e.g., HashMap and HashSet)
and adopts a number of simple heuristics to fix these cases.
FLEX [41] resolves the problems caused by the algorithmic
randomness in ML algorithms. It identifies the acceptable
bound and updates the bound used in the test.

B. Dependencies in Software Engineering

From results in other works reported by software engineer-
ing community, taking program dependency into consideration
can always help make the approach more solid. Wang et al.
[32] involve the information from callers/callees of a method
for recommending its name. Geng et al. [42] utilize data/con-
trol flow from the intermediate representation of programs to
perform cross-language code search. PDG [43] as well as its
variant [24] have been utilized to represent code semantics and
further detect semantic code clones. Moreover, PDG has also
been applied to bug/vulnerability detection for programs [29],
[23], [44]. These works motivate us to focus on the program
dependency relations for flaky test detection.

VIII. CONCLUSION

In this paper, we advance the state-of-the-art in flaky tests
detection by introducing PEELER, a fully static approach
that relies on data dependency in a Test Dependency Graph.
PEELER captures test flakiness by modeling how the values of
the variables involved in assertion statements are transferred
as reflected in the embedded contextual paths. Our experi-
ment results show that PEELER outperforms prior works by
about 20 percentage points in terms of Precision and F-score.
Nevertheless, while it achieves overall higher recall (by 15
percentage points), PEELER can be used complementarily to
FlakeFlagger. During a live study, PEELER has already helped
developers identify 12 flaky test cases in real-world project
test suites.

REFERENCES

[1] H. Leung and L. White, “Insights into regression testing (software
testing),” in Proceedings. Conference on Software Maintenance - 1989,
1989, pp. 60–69.

[2] J. Micco, “The state of continuous integration testing at google,” 2017,
https://bit.ly/2OohAip.

[3] “The state of continuous integration testing,” 2020, https:
//static.googleusercontent.com/media/research.google.com/en//pubs/
archive/45880.pdf.

[4] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta,
“Root causing flaky tests in a large-scale industrial setting,” in Proceed-
ings of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2019. New York, NY, USA:
Association for Computing Machinery, 2019, p. 101–111.

[5] S. Paydar and A. Azamnouri, “An experimental study on flakiness
and fragility of randoop regression test suites,” in Fundamentals of
Software Engineering, H. Hojjat and M. Massink, Eds. Cham: Springer
International Publishing, 2019, pp. 111–126.

[6] Z. Fan, “A systematic evaluation of problematic tests generated by
evosuite,” in Proceedings of the 41st International Conference on
Software Engineering: Companion Proceedings, ser. ICSE ’19. IEEE
Press, 2019, p. 165–167. [Online]. Available: https://doi.org/10.1109/
ICSE-Companion.2019.00068

[7] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
643–653.

[8] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” in 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 09 2018, pp. 534–538.

[9] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study
on the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1471–1482. [Online]. Available: https://doi.org/10.1145/3377811.
3381749

[10] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and
high failure tests on the number of crash reports associated with
firefox builds,” in Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 857–862.

[11] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2019. New York, NY, USA: Association for
Computing Machinery, 2019, p. 830–840. [Online]. Available: https:
//doi.org/10.1145/3338906.3338945

[12] “Circleci: continuous integration and delivery,” https://circleci.com/,
2021.

[13] “Flakytest,” https://developer.android.com/reference/androidx/test/filters/
FlakyTest, 2021.

[14] “Flaky test handler plugin - jenkins - jenkins wiki,” https://wiki.jenkins.
io/display/JENKINS/Flaky+Test+Handler+Plugin, 2021.

[15] “Maven surefire plugin – rerun failing tests,” https://maven.apache.org/
surefire/maven-surefireplugin/examples/rerun-failing-tests.html, 2021.

[16] “pytest: helps you write better programs,” https://docs.pytest.org/en/
latest/, 2021.

[17] “Selenium and testng,” https://testng.org/doc/selenium.html, 2021.
[18] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,

“Deflaker: Automatically detecting flaky tests,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), 2018, pp.
433–444.

[19] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “idflakies: A framework
for detecting and partially classifying flaky tests,” in 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST),
2019, pp. 312–322.

[20] Z. Dong, A. Tiwari, X. L. Yu, and A. Roychoudhury, “Flaky test
detection in android via event order exploration,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2021. New York, NY, USA: Association for
Computing Machinery, 2021, p. 367–378. [Online]. Available: https:
//doi.org/10.1145/3468264.3468584

[21] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude, and
A. Bertolino, “What is the vocabulary of flaky tests?” in Proceedings of
the 17th International Conference on Mining Software Repositories, ser.
MSR ’20. New York, NY, USA: Association for Computing Machinery,
2020, p. 492–502.

[22] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “Flakeflagger:
Predicting flakiness without rerunning tests,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1572–1584.

[23] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and
X. Mao, “Peculiar: Smart contract vulnerability detection based on
crucial data flow graph and pre-training techniques,” in 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2021.

[24] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[25] “Javaparser : The most popular parser for the java language,”
https://javaparser.org/, 2021.

[26] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 40:1–40:29, 2019.

[27] B. Karlik and A. Vehbi, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” Inter-
national Journal of Artificial Intelligence and Expert Systems (IJAE),
vol. 1, no. 4, pp. 111–122, 2011.

[28] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in Proceedings of
the 7th International Conference on Learning Representations. Open-
Review.net, 2019.

[29] Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving bug
detection via context-based code representation learning and attention-
based neural networks,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–30, 2019.

[30] R. Rubinstein, “The cross-entropy method for combinatorial and contin-
uous optimization.” Methodology & Computing in Applied Probability,
vol. 1, no. 2, pp. 127 – 190, 1999.

[31] N. Japkowicz and S. Stephen, “The class imbalance problem: A system-
atic study,” Intell. Data Anal., vol. 6, no. 5, p. 429–449, Oct. 2002.

[32] S. Wang, M. Wen, B. Lin, and X. Mao, “Lightweight global and local
contexts guided method name recommendation with prior knowledge,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2021.

[33] E. W. Høst and B. M. Østvold, “Debugging method names,” in Proceed-
ings of the 23rd European Conference on Object-Oriented Programming
(ECOOP), 2009, p. 294–317.

[34] L. Jiang, H. Liu, and H. Jiang, “Machine learning based recommendation
of method names: How far are we,” in 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), 2019, pp.
602–614.

[35] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal, and D. Sund-
mark, “Intermittently failing tests in the embedded systems domain,” in
Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 337–348.

[36] A. Shi, J. Bell, and D. Marinov, “Mitigating the effects of flaky
tests on mutation testing,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2019, pp.
112–122.

[37] Y. Qin, S. Wang, K. Liu, X. Mao, and T. F. Bissyandé, “On the impact
of flaky tests in automated program repair,” in Proceedings of the 28th
IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2021, pp. 295–306.

[38] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and
H. Jin, “Automated patch correctness assessment: How far are we?”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2020.

https://bit.ly/2OohAip
https://static.googleusercontent.com/media/research.google.com/en//pubs/ archive/45880.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/ archive/45880.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/ archive/45880.pdf
https://doi.org/10.1109/ICSE-Companion.2019.00068
https://doi.org/10.1109/ICSE-Companion.2019.00068
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945
https://circleci.com/
https://developer.android.com/reference/androidx/test/filters/FlakyTest
https://developer.android.com/reference/androidx/test/filters/FlakyTest
https://wiki.jenkins.io/display/JENKINS/Flaky+Test+Handler+Plugin
https://wiki.jenkins.io/display/JENKINS/Flaky+Test+Handler+Plugin
https://maven.apache.org/surefire/maven-surefireplugin/examples/rerun-failing-tests.html
https://maven.apache.org/surefire/maven-surefireplugin/examples/rerun-failing-tests.html
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://testng.org/doc/selenium.html
https://doi.org/10.1145/3468264.3468584
https://doi.org/10.1145/3468264.3468584

[39] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “Ifixflakies: A
framework for automatically fixing order-dependent flaky tests,” in
ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Association for Computing
Machinery, Inc, Aug. 2019, pp. 545–555.

[40] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi,
“Domain-specific fixes for flaky tests with wrong assumptions on
underdetermined specifications,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 2021, pp. 50–61.

[41] S. Dutta, A. Shi, and S. Misailovic, “Flex: Fixing flaky tests in
machine learning projects by updating assertion bounds,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2021.

[42] M. Geng, S. Wang, D. Dong, S. Gu, W. Ruan, X. Mao, and X. Liao,
“Intermediate representation-based semantic graph for cross-language
code search,” in 2022 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2022.

[43] Y. Zou, B. Ban, Y. Xue, and Y. Xu, “Ccgraph: a pdg-based code clone
detector with approximate graph matching,” in 2020 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2020, pp. 931–942.

[44] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network.” in IJCAI, 2020, pp.
3283–3290.

