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Abstract—Research on the characteristics of error 
propagation can guide fault localization more efficiently. 
Spectrum-based fault localization (SFL) and slice-based fault 
localization are effective fault localization techniques. The former 
produces a list of statements in descending order of suspicious 
values, and the latter generates statements that affect failure 
statements. We propose a new dynamic slicing and spectrum-
based fault localization (DSFL) method, which combines the list 
of suspicious statements generated by SFL with dynamic slicing, 
and take the characteristics of error propagation into account. 
To the best of our knowledge, DSFL has not yet been 
implemented in automated repair tools. In this study, we use the 
dynamic slicing tool Javaslicer to determine the error 
propagation chain of faulty programs and the statements related 
to failure execution. We implement the DSFL algorithm in the 
automated repair tool Nopol and conduct repair experiments on   
dataset Defects4j to compare the effects of SFL and DSFL on the 
efficiency of automated repair. Preliminary results indicate that 
the scope of error propagation for most programs is a single class, 
and the DSFL makes automated repair more efficient. 

Keywords—Automated program repair, dynamic slicing, 
spectrum-based fault localization, error propagation 

I. INTRODUCTION  
Automated program repair is the process of automatically 

repairing programs. Research on automated program repair has 
attracted considerable attention in the field of software 
maintenance, and many tools have been proposed [4], [5], [6], 
[7], [8].Test-suite based repair is currently the main method 
used for automated program repair, which includes three 
phases: fault localization, patch generation and patch validation. 
Fault localization is the first step in the process of automated 
program repair. Spectrum-based fault localization (SFL)  
techniques are the main fault localization techniques used by 
automated program repair tools [9], [10]. Slice-based fault 
localization techniques have also been widely investigated in 
the field of fault localization [11].The accuracy of fault 
localization will directly affect the efficiency of patch 
generation. 

*Corresponding Author 

In SFL techniques, the suspicious values of the statements 
are calculated by comparing the coverage information of 
program elements, such as statements, branches, and basic 
blocks in failed and successful executions. The main idea is 
that if a program element is covered with many failed 
executions, but rarely covered with successful executions, then 
this program element may contain faults [10]. The advantage is 
the provision of suspicious values of the statement and the low 
complexity. Slice-based fault localization techniques have also 
shown several advantages: such as describing the context that 
causes the failure and requiring only the failure test case. 
Program slicing includes static slicing and dynamic slicing. 
Studies have shown that dynamic slicing works better than 
static slicing for fault localization [11]. However, program 
slicing cannot provide a description of the suspiciousness of 
the statement. Recently, researchers have proposed combining 
the advantages of program slicing and program spectrum to 
improve the efficiency of fault localization [12]. 

 Although the dynamic slicing and spectrum-based fault 
localization(DSFL) technology has been proposed recently[12], 
to the best of our knowledge, no automated program repair tool 
has used this fault localization method. In addition, unlike the 
previously proposed DSFL, we also take the characteristics of 
error propagation into account to form a new DSFL method. 
Thus, an empirical study on automated program repair should 
be conducted using this technology to explore its effectiveness.  

In recent work, we manually analyzed the patches 
generated by programmers and bug reports of 197 program 
versions in three real-world large projects, i.e. JfreeChart, 
Commons Lang and Commons Math. We call the patches 
generated by the programmers as manual patches. We found 
that in 84.3% of the program versions: the modified statement 
of the manual patch and the failure statement reported in the 
bug reports are in the same classes. We also determined that 
the error is spread in a single class by analyzing the error 
propagation chain (EPC). Therefore, we consider the 
statements in  both  the failure class reported in the bug report 
and the program slicing as the final program slicing result. In 
this manner, the range of suspicious statements is further 
reduced. 
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In the present study, we compare the efficiency of SFL and 
DSFL using two metrics: the number of candidate patches 
(NCP) generated before a valid patch is identified [14] and the 
repair time. We select Javaslicer, a dynamic slicing tool [15],  
and Nopol, a tool for Java program repair [8], as our 
experimental tools, and perform experiments on eight buggy 
programs from Defects4J, which is a bug dataset extensively 
used for evaluating Java program repair systems [16]. 

In summary, this study presents the following contributions: 

• We manually analyze the manual patches and bug 
reports of 197 program versions, and use Javaslicer to 
obtain the EPC of 10 versions.  

• We conduct an empirical study on the usage of program 
dynamic slicing in automated program repair, and a 
new DSFL method is implemented in Nopol, an SFL-
based repair tool, to compare the efficiency of the 
DSFL and SFL methods. We also use the two repair 
tools to perform  repair on the Defects4j programs. 

• Experimental results suggest that (1) The error 
propagation of most faulty programs is  in a single class, 
and (2) the DSFL makes automated program repair 
more efficient than that of the SFL. 

The remainder of this paper is organized as follows. 
Section II describes related works on error propagation and 
fault localization techniques. Section III presents our 
experimental design in detail. Section IV discusses our results. 
Section V provides the conclusion and future work. 

II. RELATED WORK 
Fault localization aims to determine the location of defect 

in the program, and repair aims to fix the exposed program 
error to avoid failure. Defects are activated under certain 
conditions, thereby causing errors in the program operation. 
The error propagation eventually leads to failure. Therefore, 
the characteristics of error propagation before conducting fault 
localization should be examined [17]. The error propagation 
chain (EPC) is a sequence of statements between program 
defect and program failure statement. 

SFL techniques are currently the most widely used 
techniques. In SFL, the program is represented as a program 
spectrum. Each bit of program spectrum corresponds to a 
statement in the program. The suspiciousness of each statement 
can be calculated according to the collected program operation 
data. The program statements are sorted by their suspiciousness. 
Dynamic slicing analyzes the program execution path for a 
given input and identifies the set of statements that can affect 
the given program statements. The DSFL considers the 
program slicing information and the characteristics of error 
propagation based on the SFL to improve the efficiency of 
fault localization.  

For example, in a faulty program P, we assume that, in 
execution of test case t2, the bug report shows that Statement15  
is the failure statement, but the failure is actually caused by 
Statement9. In addition, Statement13 is not in the failure class 
reported in  the bug report. A sequence of statements generated 
by the SFL techniques for a faulty program is as follows: 

{(Statement18, 0.9), (Statement1, 0.8), (Statement13, 0.8), 
(Statement9, 0.7), (Statement15, 0.6), …}. (Statement9, 0.7) 
indicates that the suspicious value of Statement9 is 0.7. The 
statement set obtained by dynamic slicing on Statement15 is 
{Statement15, Statement13, Statement10, Statement9, 
Statement2}. After removing Statement13, the final slicing 
result is {Statement15, Statement10, Statement9, Statement2}. 
Thus, the statement sequence generated by the DSFL is 
{(Statement9, 0.7), (Statement15, 0.6)}. Evidently, the DSFL 
identifies the faulty statement Statement9  earlier than that of 
the SFL. 

To study the characteristics of error propagation, we 
manually analyze 197 program versions of manual patches and 
bug reports. Afterward, we select 10 of these program versions 
and obtain their EPCs. We implement the DSFL in Nopol 
which originally uses the SFL, and design experiments to 
compare the efficiency of DSFL-based Nopol and SFL-based 
Nopol. The experimental results indicate the characteristics of 
error propagation and the differences between DSFL and SFL, 
and provide a reference for future research on fault localization 
techniques in automated program repair. 

III. EXPERIMENT DESIGN 

A. Tools and dataset 
We select Javaslicer [1], [15], a dynamic slicing tool, to 

obtain the EPC and statements related to failure. The two 
reasons for selecting Javaslicer are as follows: firstly, dynamic 
slicing is better than static slicing for fault localization. 
Secondly, unlike other dynamic slicing tools, Javaslicer is open 
source and widely used [18], [19].We analyze the manual 
patches and bug reports of faulty programs, and assume that 
the modified statement (r) in the manual patch is the root cause 
of the failure, and the statement reported in the bug report is 
the failure statement (o). The EPC is obtained  by using 
Javaslicer, as described in Algorithm 1. Firstly, the test case 
that causes the failure is run, and the execution statements are 
collected. Subsequently, the dynamic slicing DS (r) and DS (o) 
of r and o are obtained respectively. The EPC is the 
intersection of DS (r) and DS (o). 

Algorithm 1: EPC Algorithm 
1: Input: root cause r, failure statement o,  

program P, failed testcase ti 
2: Output: EPC(r, stm1, stm2, … , stmn, o) 
3: ES = GetFailedExecutedStatements(P, ti) 
4: DS(r) = GetDynamicSlice(r) 
5: DS(o) = GetDynamicSlice(o) 
6: EPC = DS(r)  DS(o) 

 After analyzing the characteristics of error propagation, we 
implement DSFL in Nopol [2], as shown in Algorithm 2, to 
compare the DSFL with the SFL. Given a set of test cases and 
a faulty program P, Nopol uses the SFL to obtain a list of 
suspicious statements. Failure classes and failure statements 
are obtained from the bug report generated by executing the 
failed test case ti. Javaslicer is utilized to identify the program 
slices affecting failure statements. According to the 
characteristics of error propagation, we only select the state- 
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Algorithm 2: DSFL Algorithm 
1: Input: Testcases {t1,t2…tn}, Faulty program P 
2: Output:  

DSFLList {(stm1,susp1),(stm2,susp2)…(stmn,suspn)} 
3: RankList = GetSFLList (Testcases, P) 
4: For all  ti Testcases do  
5: if TestResult(ti) = failure then 
6:        FC[i] = GetFailureClass (report) 
7:        FS[i] = GetFailureStm (report) 
8:        AllSlice = AllSlice GetDSlice (ti, FC[i], FS[i]) 
9:     end if 
10: end for 
11:        Slice = AllSlice StmOfFC 
12: For all  stmi RankList do 
13:     if  stmi Slice then 
14:        DSFLList = DSFLList {(stmi,suspi)} 
15:     end if 
16: end for 
ments that are both in the program slicing and failure class as 
the final program slicing result. Afterwards, we combine the 
RankList obtained by the SFL with the program slicing results 
and finally generate the list of suspicious statements produced 
by the DSFL. Patch generation and patch verification are also 
performed on the basis of the list of suspicious statements 
generated by the DSFL. 

 Additionally, we select Defects4J [3] a large, peer-
reviewed dataset of real-world Java bugs, as our experimental 
benchmark. Defects4J contains 357 real bugs from five real-
world open source programs to enable reproducible studies in 
software testing research [16]. Recently, Defects4j is widely 
used in automated repair to compare the effectiveness of 
various repair tools and fault localization techniques [20].To 
date, we have performed experiment on eight faulty programs: 
Chart_5, Chart_9, Chart_13, Chart_17, Math_40, Lang_44, 
Lang_51, and Lang_58. We will conduct experiments on more 
programs from Defects4j in the future. 

B. Evaluation Metrics 
In this study, we use two evaluation metrics to assess the 

effect of program dynamic slicing on repair efficiency. 
• NCP: The number of candidate patches  generated 

before a valid patch is identified. This metric has been 
used to evaluate the repair effectiveness of automated 
repair tools [3], [14].The smaller the value of NCP is, 
the better effectiveness of fault localization algorithm is. 
The lists of suspicious statements generated by the two 
algorithms are different, which results in different NCP 
during the repair phase. 

• Repair Time: Repair time starts from the localization 
process until  a valid patch is identified or until time is 
out. The repair time consists of localization time, 
candidate patch generation time, and patch verification 
time. The time spent by the SFL and DSFL in 
generating the list of suspicious statements is different 
and different lists of suspicious statements are produced 
by the two algorithms. Therefore, these algorithms will 
lead to different repair times. Moreover, previous 

studies have used this metric to evaluate the 
effectiveness of automated program repair tools [21]. 

C. Implementation of  the Experiment 
 In the SFL techniques, many suspiciousness calculation 
formulas have been proposed. To study the effect of dynamic 
slicing on program repair under different SFL techniques, we 
implement two formulas, including Tarantula and Jaccard [13],  
in Nopol. Given the faulty program, the SFL techniques collect 
the execution trace of the positive and negative test cases, and 
use the calculation formula to compute the suspiciousness of 
each statement. The two formulas are shown in Table I.  

We also apply the DSFL to the previously implemented 
suspiciousness-first algorithm (SFA)-based Nopol and rank-
first algorithm (RFA)-based Nopol [22], which originally use 
the SFL, to assess the influence of SFL and DSFL on program 
repair under different statement selection strategies. The RFA 
selects the top-ranked statement as the target statement. In the 
SFA, the probability that each statement will be selected for 
modification depends on its suspiciousness value. 

TABLE I.  CALCULATION FORMULAS 

Formula Name Algebraic Form

Tarantula 
ef

ef nf

ef ep

ef nf ep np

a

a a
a a

a a a a

+

+
+ +  

Jaccard
ef

ef nf ep

a

a a a+ +
aef is the number of failed tests executing the statement. 
anf is the number of failed tests that do not execute the statement. 
aep is the number of passed tests executing the statement. 
anp is the number of passed tests that do not execute the statement. 

 We implement these two suspiciousness calculation 
formulas in the Nopol version based on the RFA and SFA. The 
DSFL algorithm is also implemented in the four versions of the 
Nopol. In this way, we finally obtain 8 Nopol versions. To 
ensure the accuracy of the experimental results, we use these 8 
versions of Nopol to perform 100 repeated repairs for each 
faulty program. The evaluation metrics for the repair results are 
presented in boxplots, and analyzed by the Wilcoxon signed-
rank test. Finally, the effect of dynamic slicing on the 
efficiency of automated repair can be summarized according to 
these data. 

IV. RESULTS AND ANALYSIS 

A. Experimental results 
 We analyzed 197 versions of 3 programs in Defects4j. As 
shown in Table II, in 166 versions, the root cause of  program 
failure and the failure statement reported in the bug report are 
in the same class. With the use of a sampling method, we 
extract 10 of the 166 programs and implemented algorithm 1 to 
obtain their EPC.  
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TABLE II.  RATE OF ERROR PROPAGATION IN SINGLE CLASS 

Program Rate 

Chart 25/26 

Lang 62/65 

Math 79/106 

Total 166/197

 

Fig. 1. Boxplot of NCP. S1 and S2 represent the SFL-based Nopol, which 
uses SFA, with the implementation of the Jaccard and Tarantula formulas, R1 
and R2 represent the SFL-based Nopol, which use RFA, with the 
implementation of Jaccard and Tarantula formulas. DS1, DS2, DR1 and DR2 
represent the DSFL-based Nopol implementing the Jaccard and Tarantula 
formulas, which use SFA and RFA, respectively. 

TABLE III.  MEAN NCP OF 8 NOPOL VERSIONS 

 P-Value 

S1&DS1 

P-Value

S2&DS2 

P-Value 

R1&DR1 

P-Value

R2&DR2 

Chart_5 0.0004 0.0000 0.0000 0.0000

Chart_9 0.0012 0.0000 1.0000 1.0000

Chart_13 0.0000 0.0000 0.0000 0.0000

Chart_17 0.0000 0.0000 1.0000 1.0000

Lang_44 0.0047 0.0000 0.0000 0.0000

Lang_51 0.0000 0.0000 0.0000 0.0000

Lang_58 0.0001 0.0000 0.0000 0.0000

Math_40 0.0000 0.0074 0.0000 0.0000

At Significance level of 5%.

 

Fig. 2. Boxplot of Repair Time. 

Figure 1 shows the distribution of NCP obtained by 100 
repeated repairs for each faulty program on 8 Nopol versions.  

TABLE IV.  MEAN REPAIR TIME OF 8 NOPOL VERSIONS 

P-Value

S1&DS1 

P-Value 

S2&DS2 

P-Value

R1&DR1 

P-Value

R2&DR2 

Chart_5 0.0000 0.0000 0.0000 0.0000

Chart_9 0.0000 0.0000 0.0000 0.0000

Chart_13 0.1136 0.0006 0.0000 0.0000

Chart_17 0.0000 0.1361 0.0000 0.0000

Lang_44 0.0008 0.0536 0.0000 0.0000

Lang_51 0.0143 0.0152 0.0019 0.0005

Lang_58 0.0533 0.5252 0.0000 0.0000

Math_40 0.0000 0.0000 0.0000 0.0000

At Significance level of 5%.

The boxplot shows the differences between SFL-based Nopol 
and DSFL-based Nopol on NCP.  To further evaluate the 
effectiveness of the two algorithms, we perform the Wilcoxon 
signed-rank test to calculate the p-values of NCP generated by 
the SFL and DSFL algorithms, as shown in Table III. 

Figure 2 depicts the repair time of each faulty program 
for eight Nopol versions. The distribution of repair time in 
Figure 2 is similar to that in the boxplots of NCP in Figure 1. 
We also calculate the p-values of repair time to further analyze 
the effectiveness of the SFL and DSFL algorithm, as displayed 
in Table IV.  

B. Analysis 

a) The error propagation of most faulty programs is in 
a single class: As shown in Table II,  the failure and root 
statement that cause the failure are in the same class, and they 
account for 84% of the 197 faulty programs. When the EPCs 
of the 10 extracted sample programs are obtained, the errors of 
all 10 progams are only propagated in single class. This class 
is the failure class reported in the bug report. Thus, we can 
conclude that the majority of faulty programs spread the error 
in a single class, such that we can consider only the failure 
class reported in the bug report when performing debugging or 
fault localization. 

b) The DSFL makes automated program repair more 
efficient than that of the SFL: As shown in Figure 1,  the mean 
and minimum NCP of  DSFL-based Nopol are smaller than or 
equal to the mean and minimum NCP of SFL-based Nopol for 
the same faulty program, regardless of any suspiciousness 
calculation formulas and statement selection rule. This finding 
indicates that the DSFL-based Nopol modifies fewer 
suspicious statements before generating a valid patch. Table 
III further confirms that the repair efficiency of DSFL-based 
Nopol is significantly improved under the NCP metric. The 
DSFL considers the dynamic slicing information, the list of 
suspicious statements produced by the SFL, and the error 
propagation characteristics, thereby resulting in a new list of 
suspicious statements. Consequently, the search space for 
statement selection during candidate patch generation is 
reduced.  
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On the basis of the results of repair time, we determine 
that in most cases, the time required by the DSFL-based 
Nopol to repair the same faulty program is less than that of the 
SFL-based Nopol. On the contrary, in a few cases, the time 
required by SFL-based Nopol to repair faulty program is less. 
The DSFL reduces the search space for the candidate patch 
generation and patch verification phases, such that fewer 
statements are considered and less time is spent before 
producing a valid patch. However, the DSFL also needs to 
collect dynamic slicing information for the faulty programs. 
Furthermore, longer time may be needed to collect dynamic 
slicing information than that for patch generation and patch 
verification on the statements removed by DSFL from the list 
generated by SFL. Thus, in a few cases, the DSFL-based 
Nopol may take more repair time than that of the SFL-based 
Nopol. Wilcoxon test results show that significant difference 
exists between SFL and DSFL in terms of repair time of 8 
Nopol versions at a significance level of 5%. In summary, the 
DSFL-based Nopol is more efficient at repairing the same 
faulty program than that of the SFL-based Nopol when the 
metric is repair time. 

Analysis on NCP and repair time demonstrates that 
DSFL exhibits a significant improvement in the efficiency of 
automated program repair compared with that of SFL. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we analyzed the manual patches and bug 

reports of 197 faulty programs and use the dynamic slicing tool 
Javaslicer to obtain the EPC of 10 programs. On the basis of 
the EPC and analysis results, we can conclude that the error 
propagation of most faulty programs is in a single class. 
Accordingly, we should only consider the statements in the 
failure class reported in the bug report when performing fault 
localization. 

Moreover, we implement a new DSFL algorithm in RFA-
based Nopol and SFA-based Nopol [22] with two suspicious-
ness calculation formulas, which originally use SFL. 
Afterwards, we use these 8 versions of Nopol to perform 100 
repeated repair experiments on 8 faulty programs from 
Defects4j. The effects of DSFL and SFL on automated repair 
efficiency are evaluated under our evaluation metrics, namely, 
NCP and repair time. The preliminary experimental results 
show that DSFL-based Nopol is more efficient than SFL-based 
Nopol in repairing the same faulty program under the metric of 
NCP and repair time. Therefore, we can conclude that dynamic 
slicing makes fault localization and automated program repair 
more efficient. 

In future work, we plan to obtain the EPC for a large 
number of faulty programs and provide basis to further 
improve the accuracy of fault localization and the correctness 
of automated repair by analyzing the characteristics of error 
propagation. We also intend to conduct more repair 
experiments on more faulty programs in Defects4j with more 
automated program repair tools to confirm our findings. 
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