

An Empirical Study on the Effect of Dynamic Slicing
on Automated Program Repair Efficiency

Anbang Guo, Xiaoguang Mao*, Deheng Yang, and Shangwen Wang
National University of Defense Technology

Changsha, China
{guoanbang12, xgmao}@nudt.edu.cn, {deheng_yang, shang_wen_wang}@163.com

Abstract—Research on the characteristics of error
propagation can guide fault localization more efficiently.
Spectrum-based fault localization (SFL) and slice-based fault
localization are effective fault localization techniques. The former
produces a list of statements in descending order of suspicious
values, and the latter generates statements that affect failure
statements. We propose a new dynamic slicing and spectrum-
based fault localization (DSFL) method, which combines the list
of suspicious statements generated by SFL with dynamic slicing,
and take the characteristics of error propagation into account.
To the best of our knowledge, DSFL has not yet been
implemented in automated repair tools. In this study, we use the
dynamic slicing tool Javaslicer to determine the error
propagation chain of faulty programs and the statements related
to failure execution. We implement the DSFL algorithm in the
automated repair tool Nopol and conduct repair experiments on
dataset Defects4j to compare the effects of SFL and DSFL on the
efficiency of automated repair. Preliminary results indicate that
the scope of error propagation for most programs is a single class,
and the DSFL makes automated repair more efficient.

Keywords—Automated program repair, dynamic slicing,
spectrum-based fault localization, error propagation

I. INTRODUCTION
Automated program repair is the process of automatically

repairing programs. Research on automated program repair has
attracted considerable attention in the field of software
maintenance, and many tools have been proposed [4], [5], [6],
[7], [8].Test-suite based repair is currently the main method
used for automated program repair, which includes three
phases: fault localization, patch generation and patch validation.
Fault localization is the first step in the process of automated
program repair. Spectrum-based fault localization (SFL)
techniques are the main fault localization techniques used by
automated program repair tools [9], [10]. Slice-based fault
localization techniques have also been widely investigated in
the field of fault localization [11].The accuracy of fault
localization will directly affect the efficiency of patch
generation.

*Corresponding Author

In SFL techniques, the suspicious values of the statements
are calculated by comparing the coverage information of
program elements, such as statements, branches, and basic
blocks in failed and successful executions. The main idea is
that if a program element is covered with many failed
executions, but rarely covered with successful executions, then
this program element may contain faults [10]. The advantage is
the provision of suspicious values of the statement and the low
complexity. Slice-based fault localization techniques have also
shown several advantages: such as describing the context that
causes the failure and requiring only the failure test case.
Program slicing includes static slicing and dynamic slicing.
Studies have shown that dynamic slicing works better than
static slicing for fault localization [11]. However, program
slicing cannot provide a description of the suspiciousness of
the statement. Recently, researchers have proposed combining
the advantages of program slicing and program spectrum to
improve the efficiency of fault localization [12].

 Although the dynamic slicing and spectrum-based fault
localization(DSFL) technology has been proposed recently[12],
to the best of our knowledge, no automated program repair tool
has used this fault localization method. In addition, unlike the
previously proposed DSFL, we also take the characteristics of
error propagation into account to form a new DSFL method.
Thus, an empirical study on automated program repair should
be conducted using this technology to explore its effectiveness.

In recent work, we manually analyzed the patches
generated by programmers and bug reports of 197 program
versions in three real-world large projects, i.e. JfreeChart,
Commons Lang and Commons Math. We call the patches
generated by the programmers as manual patches. We found
that in 84.3% of the program versions: the modified statement
of the manual patch and the failure statement reported in the
bug reports are in the same classes. We also determined that
the error is spread in a single class by analyzing the error
propagation chain (EPC). Therefore, we consider the
statements in both the failure class reported in the bug report
and the program slicing as the final program slicing result. In
this manner, the range of suspicious statements is further
reduced.

580

2018 IEEE International Conference on Software Maintenance and Evolution

2576-3148/18/$31.00 ©2018 IEEE
DOI 10.1109/ICSME.2018.00066

In the present study, we compare the efficiency of SFL and
DSFL using two metrics: the number of candidate patches
(NCP) generated before a valid patch is identified [14] and the
repair time. We select Javaslicer, a dynamic slicing tool [15],
and Nopol, a tool for Java program repair [8], as our
experimental tools, and perform experiments on eight buggy
programs from Defects4J, which is a bug dataset extensively
used for evaluating Java program repair systems [16].

In summary, this study presents the following contributions:

• We manually analyze the manual patches and bug
reports of 197 program versions, and use Javaslicer to
obtain the EPC of 10 versions.

• We conduct an empirical study on the usage of program
dynamic slicing in automated program repair, and a
new DSFL method is implemented in Nopol, an SFL-
based repair tool, to compare the efficiency of the
DSFL and SFL methods. We also use the two repair
tools to perform repair on the Defects4j programs.

• Experimental results suggest that (1) The error
propagation of most faulty programs is in a single class,
and (2) the DSFL makes automated program repair
more efficient than that of the SFL.

The remainder of this paper is organized as follows.
Section II describes related works on error propagation and
fault localization techniques. Section III presents our
experimental design in detail. Section IV discusses our results.
Section V provides the conclusion and future work.

II. RELATED WORK
Fault localization aims to determine the location of defect

in the program, and repair aims to fix the exposed program
error to avoid failure. Defects are activated under certain
conditions, thereby causing errors in the program operation.
The error propagation eventually leads to failure. Therefore,
the characteristics of error propagation before conducting fault
localization should be examined [17]. The error propagation
chain (EPC) is a sequence of statements between program
defect and program failure statement.

SFL techniques are currently the most widely used
techniques. In SFL, the program is represented as a program
spectrum. Each bit of program spectrum corresponds to a
statement in the program. The suspiciousness of each statement
can be calculated according to the collected program operation
data. The program statements are sorted by their suspiciousness.
Dynamic slicing analyzes the program execution path for a
given input and identifies the set of statements that can affect
the given program statements. The DSFL considers the
program slicing information and the characteristics of error
propagation based on the SFL to improve the efficiency of
fault localization.

For example, in a faulty program P, we assume that, in
execution of test case t2, the bug report shows that Statement15
is the failure statement, but the failure is actually caused by
Statement9. In addition, Statement13 is not in the failure class
reported in the bug report. A sequence of statements generated
by the SFL techniques for a faulty program is as follows:

{(Statement18, 0.9), (Statement1, 0.8), (Statement13, 0.8),
(Statement9, 0.7), (Statement15, 0.6), …}. (Statement9, 0.7)
indicates that the suspicious value of Statement9 is 0.7. The
statement set obtained by dynamic slicing on Statement15 is
{Statement15, Statement13, Statement10, Statement9,
Statement2}. After removing Statement13, the final slicing
result is {Statement15, Statement10, Statement9, Statement2}.
Thus, the statement sequence generated by the DSFL is
{(Statement9, 0.7), (Statement15, 0.6)}. Evidently, the DSFL
identifies the faulty statement Statement9 earlier than that of
the SFL.

To study the characteristics of error propagation, we
manually analyze 197 program versions of manual patches and
bug reports. Afterward, we select 10 of these program versions
and obtain their EPCs. We implement the DSFL in Nopol
which originally uses the SFL, and design experiments to
compare the efficiency of DSFL-based Nopol and SFL-based
Nopol. The experimental results indicate the characteristics of
error propagation and the differences between DSFL and SFL,
and provide a reference for future research on fault localization
techniques in automated program repair.

III. EXPERIMENT DESIGN

A. Tools and dataset
We select Javaslicer [1], [15], a dynamic slicing tool, to

obtain the EPC and statements related to failure. The two
reasons for selecting Javaslicer are as follows: firstly, dynamic
slicing is better than static slicing for fault localization.
Secondly, unlike other dynamic slicing tools, Javaslicer is open
source and widely used [18], [19].We analyze the manual
patches and bug reports of faulty programs, and assume that
the modified statement (r) in the manual patch is the root cause
of the failure, and the statement reported in the bug report is
the failure statement (o). The EPC is obtained by using
Javaslicer, as described in Algorithm 1. Firstly, the test case
that causes the failure is run, and the execution statements are
collected. Subsequently, the dynamic slicing DS (r) and DS (o)
of r and o are obtained respectively. The EPC is the
intersection of DS (r) and DS (o).

Algorithm 1: EPC Algorithm
1: Input: root cause r, failure statement o,

program P, failed testcase ti
2: Output: EPC(r, stm1, stm2, … , stmn, o)
3: ES = GetFailedExecutedStatements(P, ti)
4: DS(r) = GetDynamicSlice(r)
5: DS(o) = GetDynamicSlice(o)
6: EPC = DS(r) DS(o)

 After analyzing the characteristics of error propagation, we
implement DSFL in Nopol [2], as shown in Algorithm 2, to
compare the DSFL with the SFL. Given a set of test cases and
a faulty program P, Nopol uses the SFL to obtain a list of
suspicious statements. Failure classes and failure statements
are obtained from the bug report generated by executing the
failed test case ti. Javaslicer is utilized to identify the program
slices affecting failure statements. According to the
characteristics of error propagation, we only select the state-

581

Algorithm 2: DSFL Algorithm
1: Input: Testcases {t1,t2…tn}, Faulty program P
2: Output:

DSFLList {(stm1,susp1),(stm2,susp2)…(stmn,suspn)}
3: RankList = GetSFLList (Testcases, P)
4: For all ti Testcases do
5: if TestResult(ti) = failure then
6: FC[i] = GetFailureClass (report)
7: FS[i] = GetFailureStm (report)
8: AllSlice = AllSlice GetDSlice (ti, FC[i], FS[i])
9: end if
10: end for
11: Slice = AllSlice StmOfFC
12: For all stmi RankList do
13: if stmi Slice then
14: DSFLList = DSFLList {(stmi,suspi)}
15: end if
16: end for
ments that are both in the program slicing and failure class as
the final program slicing result. Afterwards, we combine the
RankList obtained by the SFL with the program slicing results
and finally generate the list of suspicious statements produced
by the DSFL. Patch generation and patch verification are also
performed on the basis of the list of suspicious statements
generated by the DSFL.

 Additionally, we select Defects4J [3] a large, peer-
reviewed dataset of real-world Java bugs, as our experimental
benchmark. Defects4J contains 357 real bugs from five real-
world open source programs to enable reproducible studies in
software testing research [16]. Recently, Defects4j is widely
used in automated repair to compare the effectiveness of
various repair tools and fault localization techniques [20].To
date, we have performed experiment on eight faulty programs:
Chart_5, Chart_9, Chart_13, Chart_17, Math_40, Lang_44,
Lang_51, and Lang_58. We will conduct experiments on more
programs from Defects4j in the future.

B. Evaluation Metrics
In this study, we use two evaluation metrics to assess the

effect of program dynamic slicing on repair efficiency.
• NCP: The number of candidate patches generated

before a valid patch is identified. This metric has been
used to evaluate the repair effectiveness of automated
repair tools [3], [14].The smaller the value of NCP is,
the better effectiveness of fault localization algorithm is.
The lists of suspicious statements generated by the two
algorithms are different, which results in different NCP
during the repair phase.

• Repair Time: Repair time starts from the localization
process until a valid patch is identified or until time is
out. The repair time consists of localization time,
candidate patch generation time, and patch verification
time. The time spent by the SFL and DSFL in
generating the list of suspicious statements is different
and different lists of suspicious statements are produced
by the two algorithms. Therefore, these algorithms will
lead to different repair times. Moreover, previous

studies have used this metric to evaluate the
effectiveness of automated program repair tools [21].

C. Implementation of the Experiment
 In the SFL techniques, many suspiciousness calculation
formulas have been proposed. To study the effect of dynamic
slicing on program repair under different SFL techniques, we
implement two formulas, including Tarantula and Jaccard [13],
in Nopol. Given the faulty program, the SFL techniques collect
the execution trace of the positive and negative test cases, and
use the calculation formula to compute the suspiciousness of
each statement. The two formulas are shown in Table I.

We also apply the DSFL to the previously implemented
suspiciousness-first algorithm (SFA)-based Nopol and rank-
first algorithm (RFA)-based Nopol [22], which originally use
the SFL, to assess the influence of SFL and DSFL on program
repair under different statement selection strategies. The RFA
selects the top-ranked statement as the target statement. In the
SFA, the probability that each statement will be selected for
modification depends on its suspiciousness value.

TABLE I. CALCULATION FORMULAS

Formula Name Algebraic Form

Tarantula
ef

ef nf

ef ep

ef nf ep np

a

a a
a a

a a a a

+

+
+ +

Jaccard
ef

ef nf ep

a

a a a+ +
aef is the number of failed tests executing the statement.
anf is the number of failed tests that do not execute the statement.
aep is the number of passed tests executing the statement.
anp is the number of passed tests that do not execute the statement.

 We implement these two suspiciousness calculation
formulas in the Nopol version based on the RFA and SFA. The
DSFL algorithm is also implemented in the four versions of the
Nopol. In this way, we finally obtain 8 Nopol versions. To
ensure the accuracy of the experimental results, we use these 8
versions of Nopol to perform 100 repeated repairs for each
faulty program. The evaluation metrics for the repair results are
presented in boxplots, and analyzed by the Wilcoxon signed-
rank test. Finally, the effect of dynamic slicing on the
efficiency of automated repair can be summarized according to
these data.

IV. RESULTS AND ANALYSIS

A. Experimental results
 We analyzed 197 versions of 3 programs in Defects4j. As
shown in Table II, in 166 versions, the root cause of program
failure and the failure statement reported in the bug report are
in the same class. With the use of a sampling method, we
extract 10 of the 166 programs and implemented algorithm 1 to
obtain their EPC.

582

TABLE II. RATE OF ERROR PROPAGATION IN SINGLE CLASS

Program Rate

Chart 25/26

Lang 62/65

Math 79/106

Total 166/197

Fig. 1. Boxplot of NCP. S1 and S2 represent the SFL-based Nopol, which
uses SFA, with the implementation of the Jaccard and Tarantula formulas, R1
and R2 represent the SFL-based Nopol, which use RFA, with the
implementation of Jaccard and Tarantula formulas. DS1, DS2, DR1 and DR2
represent the DSFL-based Nopol implementing the Jaccard and Tarantula
formulas, which use SFA and RFA, respectively.

TABLE III. MEAN NCP OF 8 NOPOL VERSIONS

 P-Value

S1&DS1

P-Value

S2&DS2

P-Value

R1&DR1

P-Value

R2&DR2

Chart_5 0.0004 0.0000 0.0000 0.0000

Chart_9 0.0012 0.0000 1.0000 1.0000

Chart_13 0.0000 0.0000 0.0000 0.0000

Chart_17 0.0000 0.0000 1.0000 1.0000

Lang_44 0.0047 0.0000 0.0000 0.0000

Lang_51 0.0000 0.0000 0.0000 0.0000

Lang_58 0.0001 0.0000 0.0000 0.0000

Math_40 0.0000 0.0074 0.0000 0.0000

At Significance level of 5%.

Fig. 2. Boxplot of Repair Time.

Figure 1 shows the distribution of NCP obtained by 100
repeated repairs for each faulty program on 8 Nopol versions.

TABLE IV. MEAN REPAIR TIME OF 8 NOPOL VERSIONS

P-Value

S1&DS1

P-Value

S2&DS2

P-Value

R1&DR1

P-Value

R2&DR2

Chart_5 0.0000 0.0000 0.0000 0.0000

Chart_9 0.0000 0.0000 0.0000 0.0000

Chart_13 0.1136 0.0006 0.0000 0.0000

Chart_17 0.0000 0.1361 0.0000 0.0000

Lang_44 0.0008 0.0536 0.0000 0.0000

Lang_51 0.0143 0.0152 0.0019 0.0005

Lang_58 0.0533 0.5252 0.0000 0.0000

Math_40 0.0000 0.0000 0.0000 0.0000

At Significance level of 5%.

The boxplot shows the differences between SFL-based Nopol
and DSFL-based Nopol on NCP. To further evaluate the
effectiveness of the two algorithms, we perform the Wilcoxon
signed-rank test to calculate the p-values of NCP generated by
the SFL and DSFL algorithms, as shown in Table III.

Figure 2 depicts the repair time of each faulty program
for eight Nopol versions. The distribution of repair time in
Figure 2 is similar to that in the boxplots of NCP in Figure 1.
We also calculate the p-values of repair time to further analyze
the effectiveness of the SFL and DSFL algorithm, as displayed
in Table IV.

B. Analysis

a) The error propagation of most faulty programs is in
a single class: As shown in Table II, the failure and root
statement that cause the failure are in the same class, and they
account for 84% of the 197 faulty programs. When the EPCs
of the 10 extracted sample programs are obtained, the errors of
all 10 progams are only propagated in single class. This class
is the failure class reported in the bug report. Thus, we can
conclude that the majority of faulty programs spread the error
in a single class, such that we can consider only the failure
class reported in the bug report when performing debugging or
fault localization.

b) The DSFL makes automated program repair more
efficient than that of the SFL: As shown in Figure 1, the mean
and minimum NCP of DSFL-based Nopol are smaller than or
equal to the mean and minimum NCP of SFL-based Nopol for
the same faulty program, regardless of any suspiciousness
calculation formulas and statement selection rule. This finding
indicates that the DSFL-based Nopol modifies fewer
suspicious statements before generating a valid patch. Table
III further confirms that the repair efficiency of DSFL-based
Nopol is significantly improved under the NCP metric. The
DSFL considers the dynamic slicing information, the list of
suspicious statements produced by the SFL, and the error
propagation characteristics, thereby resulting in a new list of
suspicious statements. Consequently, the search space for
statement selection during candidate patch generation is
reduced.

583

On the basis of the results of repair time, we determine
that in most cases, the time required by the DSFL-based
Nopol to repair the same faulty program is less than that of the
SFL-based Nopol. On the contrary, in a few cases, the time
required by SFL-based Nopol to repair faulty program is less.
The DSFL reduces the search space for the candidate patch
generation and patch verification phases, such that fewer
statements are considered and less time is spent before
producing a valid patch. However, the DSFL also needs to
collect dynamic slicing information for the faulty programs.
Furthermore, longer time may be needed to collect dynamic
slicing information than that for patch generation and patch
verification on the statements removed by DSFL from the list
generated by SFL. Thus, in a few cases, the DSFL-based
Nopol may take more repair time than that of the SFL-based
Nopol. Wilcoxon test results show that significant difference
exists between SFL and DSFL in terms of repair time of 8
Nopol versions at a significance level of 5%. In summary, the
DSFL-based Nopol is more efficient at repairing the same
faulty program than that of the SFL-based Nopol when the
metric is repair time.

Analysis on NCP and repair time demonstrates that
DSFL exhibits a significant improvement in the efficiency of
automated program repair compared with that of SFL.

V. CONCLUSION AND FUTURE WORK
In this paper, we analyzed the manual patches and bug

reports of 197 faulty programs and use the dynamic slicing tool
Javaslicer to obtain the EPC of 10 programs. On the basis of
the EPC and analysis results, we can conclude that the error
propagation of most faulty programs is in a single class.
Accordingly, we should only consider the statements in the
failure class reported in the bug report when performing fault
localization.

Moreover, we implement a new DSFL algorithm in RFA-
based Nopol and SFA-based Nopol [22] with two suspicious-
ness calculation formulas, which originally use SFL.
Afterwards, we use these 8 versions of Nopol to perform 100
repeated repair experiments on 8 faulty programs from
Defects4j. The effects of DSFL and SFL on automated repair
efficiency are evaluated under our evaluation metrics, namely,
NCP and repair time. The preliminary experimental results
show that DSFL-based Nopol is more efficient than SFL-based
Nopol in repairing the same faulty program under the metric of
NCP and repair time. Therefore, we can conclude that dynamic
slicing makes fault localization and automated program repair
more efficient.

In future work, we plan to obtain the EPC for a large
number of faulty programs and provide basis to further
improve the accuracy of fault localization and the correctness
of automated repair by analyzing the characteristics of error
propagation. We also intend to conduct more repair
experiments on more faulty programs in Defects4j with more
automated program repair tools to confirm our findings.

ACKNOWLEDGMENT

This research is supported by the National Natural Science
Foundation of China (Grant No.61379054, 61672592).

REFERENCES

[1] https://github.com/hammacher/javaslicer
[2] https://github.com/SpoonLabs/nopol
[3] https://github.com/rjust/defects4j
[4] Le Goues, Claire, et al. Genprog: A generic method for automatic

program repair. IEEE Transactions on Software Engineering 38.1:
54-72,2012.

[5] Kim, Dongsun,et al. Automated patch generation learned from
human-written patches. Proceedings of the 2013 International
Conference on Software Engineering. IEEE Press, 2013.

[6] Qi Yuhua, et al. The strength of random search on automated program
repair. Proceedings of the International Conference on Software
Engineering. IEEE Press, 2014.

[7] Tan, Shin Hwei, and Abhik Roychoudhury. reflix: Automated repair
of software regressions. Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 2015.

[8] Xuan Jifeng, et al. Nopol: automatic repair of conditional statement
bugs in java programs. IEEE Transactions on Software Engineering
43.1:34-55, 2017.

[9] Naish L, Lee, Ramamohanarao K. A model for spectra-based
software diagnosis. ACM Transactions on Software Engineering and
Methodology 20.3:1-32,2011.

[10] Xie X, et al. A theoretical analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Transactions on Software
Engineering and Methodology 22.4:402-418,2013.

[11] Zhang X, Gupta N, Gupta R. Pruning dynamic slices with
confidence. Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 2006.

[12] Mao Xiaoguang, et al. Slice-based Statistical Fault Localization.
Journal of Systems and Software 89:51-62, 2014.

[13] Wong, W. Eric, et al. A survey on software fault localization. IEEE
Transactions on Software Engineering 42.8:707-740,2016.

[14] Qi, Yuhua, et al. "Using automated program repair for evaluating the
effectiveness of fault localization techniques." Proceedings of the 2013
International Symposium on Software Testing and Analysis. ACM,
2013.

[15] Hammacher C, Streit K, Hack S and Zeller A. Profiling java programs
for parallelism. The Workshop on Multicore Software Engineering.
2009.

[16] Just, René, Darioush Jalali, and Michael D. Ernst. Defects4J: A
database of existing faults to enable controlled testing studies for Java
programs. Proceedings of the 2014 International Symposium on
Software Testing and Analysis. ACM, 2014.

[17] Zeller A. Why Programs Fail: A Guide to Systematic Debugging
2nd Edition. Elsevier, 2009.

[18] Xuan J and Monperrus M. Test case purification for improving fault
localization. Proceedings of the 22nd ACM SIGSOFT International
Symposium on foundations of software Engineering. ACM, 2014.

[19] Zhang Y and Mesbah A. Assertions are strongly correlated with test
suite effectiveness. Proceedings of the 2015 joint meeting on
Foundations of Software Engineering. 2015.

[20] Durieux, Thomas, et al. Automatic repair of real bugs: An experience
report on the defects4j dataset. 2015.

[21] Nguyen, Hoang Duong Thien, et al. "Semfix: Program repair via
semantic analysis." Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 2013.

[22] Yang Deheng, Qi Yuhua, Mao Xiaoguang. An Empirical Study on the
Usage of Fault Localization in Automated Program Repair.
Proceedings of 2017 IEEE International Conference on Software
Maintenance and Evolution. IEEE Press,2017.

584

