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Abstract—Pre-trained code models are essential for various
code intelligence tasks. Yet, their effectiveness is heavily influ-
enced by the quality of the pre-training dataset, particularly
human-written reference comments, which usually serve as a
bridge between the programming language and natural language.
One significant challenge is that such comments could become
inconsistent with the corresponding code as the software evolves,
leading to suboptimal model performance. Large language mod-
els (LLMs) have demonstrated superior capabilities in generating
high-quality code comments. This work investigates whether sub-
stituting original human-written comments with LLM-generated
ones can improve pre-training datasets for more effective pre-
trained code models. As existing reference-based metrics can-
not evaluate the quality of human-written reference comments
themselves, to enable direct comparison between LLM-generated
and human reference comments, we introduce two auxiliary
tasks as novel reference-free metrics, including code-comment
inconsistency detection and semantic code search. Experimental
results show that LLM-generated comments exhibit superior
semantic consistency with the code compared to human-written
reference comments. Our manual evaluation also corroborates
this conclusion, which indicates the potential of utilizing LLMs to
enhance the quality of the pre-training dataset. Based on this find-
ing, we rebuilt the CodeSearchNet dataset with LLM-generated
comments and re-pre-trained the CodeT5 model. Evaluations on
multiple code intelligence tasks demonstrate that models pre-
trained by LLM-enhanced data outperform their counterparts
(pre-trained by original human reference comments data) on code
summarization, code generation, and code translation tasks. This
research validates the feasibility of rebuilding the pre-training
dataset by LLMs to advance code intelligence tasks. It advocates
rethinking the reliance on human reference comments for code-
related tasks.

Index Terms—Code Summarization, Pre-Training, Large Lan-
guage Models, Code Intelligence.

I. INTRODUCTION

In the realm of code intelligence, pre-trained code models
have significantly enhanced a spectrum of tasks such as code
summarization [1], code generation [2]–[4], code search [5]–
[7], clone detection [8] and automated bug fixing [9], [10].
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Pre-trained source code models such as CodeBERT [11],
GraphCodeBERT [12], CodeT5 [13] and UniXcoder [14] have
achieved remarkable results on various software engineering
tasks and even outperform large language models when fine-
tuned with domain-specific data [15]. The comments of the
corresponding code snippets serve as a crucial bridge between
the programming language (PL) and natural language (NL),
providing contextual understanding pivots that are vital for
pre-training the above models. As such, the effectiveness of
the pre-trained code models relies heavily on the quality of
their pre-training datasets [6], which depend heavily on human
reference comments.

However, this reliance on NL comments introduces a fun-
damental challenge: as software evolves, these comments
often become mismatched with the code [16]–[18], leading
to semantic inconsistencies between the code and comment.
Previous research has highlighted such inconsistencies. Shi
et al. [19] revealed that 41.9% of the code summarization
dataset TLC [20] is noisy, with 22.8% of the comments being
inconsistent with the corresponding code snippets. Conse-
quently, inconsistent comments deteriorate the quality of the
PL-NL dataset, which can degrade the training efficacy and
performance of code models. Sun et al. [6] identified that more
than one-third of the comments in CodeSearchNet (Java) [21]
did not describe core functionalities. The model trained with
noisy data faces severe performance degradation [6].

Recently, LLMs [22]–[24] have demonstrated superior gen-
eration capabilities in generating high-quality code com-
ments [25]–[27]. In light of this, we are motivated to utilize
LLMs to address the limitations faced by pre-trained code
models. Specifically, we aim to answer the following question:
Can we rebuild the pre-training dataset by substituting the
original human-written comments with LLM-generated ones
for training more effective pre-trained code models?

To that end, we first conduct a comprehensive evaluation to
compare LLM-generated comments with human-written refer-
ence comments. To ensure the representativeness of the review,
both open source (e.g., Code Llama [22] released by Meta,
DeepSeek-Coder [28] developed by DeepSeek AI, and Star-



Coder2 [29] built by BigCode in collaboration with NVIDIA)
and closed source LLMs (e.g., Text-davinci-003/GPT-3.5/GPT-
4 released by OpenAI [23]) are considered in this work. A fun-
damental problem faced by our study is the lack of appropriate
metrics. Specifically, traditional evaluation metrics for code
summarization are reference-based, measuring the similarity
between predicted and human-written reference comments.
However, the underlying assumption of the reference-based
evaluation is that reference comments are gold standard supe-
rior to other baselines [30]. A critical purpose of this work is to
compare the quality of LLM-generated comments with human-
written reference comments. Thus, we cannot directly apply
off-the-shelf reference-based metrics to assess the quality of
reference comments, which makes reference-free evaluation
essential for our comparative comparison.

To address this challenge, we introduce two auxiliary tasks,
code-comment inconsistency detection and semantic code
search, to offer a more refined reference-free assessment of
code comment quality. The inconsistency detection task aims
to identify inconsistency between comment and code, and
the semantic code search task assesses the ability to retrieve
the correct code snippet using its comment as a query. Our
intuition is that a higher-quality comment would exhibit better
semantic consistency with the corresponding code so that (1)
it is less likely to be detected as inconsistent by a well-
trained classifier and (2) it is expected to facilitate accurate
retrieval of the associated code from a database when used
as a search query. The reference-free evaluation results show
that comments generated by LLMs preserve better semantic
consistency with the code than human reference comments.
In addition, we conduct a human evaluation to rate the LLMs-
generated comments generated and human-written ones. The
human evaluation results validate the effectiveness of two
proposed reference-free metrics and confirm that comments
generated by LLMs preserve better semantic consistency with
code than the human-written reference comments. This insight
forms the basis for reconstructing the training dataset.

Due to the data quality issues [6] in the widely used
CodeSearchNet dataset, we rebuild it by substituting the
human-written reference comments in CodeSearchNet [21]
with LLM-generated ones. We further extend our research
by re-pre-training the widely used model CodeT5 [13] with
this rebuilt CodeSearchNet dataset and evaluating its perfor-
mance across five downstream code intelligence tasks. The
model trained with the LLM-rebuilt dataset exhibits superior
performance in code intelligence tasks like code summariza-
tion, code generation, and code translation compared to the
counterpart model trained with original datasets containing
human reference comments. These findings affirm the potential
of LLMs in improving the quality of training data for code
intelligence tasks and underscore the need to reevaluate the
longstanding reliance on human reference comments.

This research makes the following contributions: (1) In-
novative Evaluation Metrics: To our knowledge, we are the
first to leverage code comment inconsistency detection and
semantic code search as reference-free evaluation metrics for

assessing code comment quality. (2) Empirical Validation
of LLMs: Empirical results demonstrate that LLM-generated
comments preserve better semantic consistency with code than
human-written references, validating the quality and reliability
of LLM-generated comments in software engineering. (3)
Exploration of LLMs in Dataset Construction: We demon-
strate the efficacy of LLMs for creating high-quality code
comment datasets, successfully generating over 2M comments
using GPT-3.5-turbo to rebuild the CodeSearchNet dataset.
This approach validates LLMs’ potential for enhancing code
intelligence training data.

II. PRELIMINARIES

This section relates to the metrics measuring code comment
quality (Section II-A), as assessing the quality of LLM-
generated comments is essential in this work. Also, we explore
the effectiveness of LLM as benchmark builders, so the NL-PL
pre-trained models are discussed (Section II-B).

A. Assessing the Quality of Code Comments

Quantitatively evaluating the quality of generated sum-
maries is challenging. Typically, this involves comparing the
model-generated summary to a reference summary. The simi-
larity between the generated and reference summaries is then
calculated as an indicator of quality. These metrics, known
as reference-based, are classified into two main categories: n-
gram overlap and semantic similarity [31], [32].

The dominant evaluation methods are traditional n-gram
overlap-based metrics like BLEU [33], ROUGE [34] and
METEOR [35], initially utilized in the machine translation
community to measure the predicted translations’ similarity to
reference translations. They compute whether the same n-gram
appear in the same order in both predictions and references.

The evaluation methods based on semantic similarity assess
similarity in embedding space, providing “partial credit” for
word matches, as termed by Wieting et al. [36]. The applica-
tion of semantic similarity to code summary assessment is sup-
ported by growing evidence of the insufficiency of mere word
overlap [37], [38]. Mahmud et al. recommend BERTScore for
its effectiveness in capturing semantic similarities [38], while
Haque et al. find that cosine similarity using Sentence-BERT
and Universal Sentence Encoder representations closely align
with human judgments [39], [40].

However, reference-based metrics rely on human-written
comments, often mined from software repositories, which may
not always be high quality as software evolves [18], [41].
Additionally, with LLMs capable of generating high-quality
comments, reference-based metrics may struggle to capture
nuances, particularly when assessing if generated comments
are equal to or better than human references.

B. NL-PL Pre-trained Models

A standard NL-PL pre-trained model first involves training a
large-scale model on extensive unlabeled datasets using self-
supervised objectives, then fine-tuning it for specific down-
stream tasks like code understanding and generation using
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task-specific loss functions. This paradigm, initially introduced
in NLP communities [11]–[13], has been proposed, featuring
variations in architecture and pre-training tasks.

CuBERT [42] and CodeBERT [11] were among the first
NL-PL models, with CodeBERT being the first large pre-
trained model for multiple programming languages. Both
use a multi-layer bidirectional Transformer architecture [43],
similar to BERT [44] and RoBERTa [45]. CodeBERT is
pre-trained on the bimodal CodeSearchNet dataset [21] with
two objectives: Masked Language Modeling (MLM) [46].
GraphCodeBERT [12], which shares CodeBERT’s architec-
ture, adds structural code features by incorporating data flow
graphs (DFG), replacing RTD with DFG-specific tasks such
as predicting data flow edges and aligning nodes, leading to
improved performance in several downstream tasks.

Encoder-only models require an additional decoder for
generation tasks, limiting their ability to leverage pre-training
for such tasks. Conversely, GPT-C [47] and CodeGPT [48]
employ unidirectional language modelling, which works well
for code generation but is suboptimal for understanding tasks.
Recent work has explored encoder-decoder models for both
understanding and generation tasks. PLBART [49], based on
the BART architecture [50], is pre-trained on both NL and
PL with denoising objectives. CodeT5 [13] modifies the T5
model [51] to include token type information for identifiers,
supporting multi-task learning in downstream applications.
UniXcoder [14] further extends these ideas, using a decoder-
only approach for auto-regressive tasks like code completion
and incorporating multi-modal inputs such as code comments
and abstract syntax trees (AST) to enhance representation.

Instead of optimizing model architectures or designing
domain-specific pre-training tasks, our study emphasizes the
impact of pre-training data quality. We investigate how im-
provements in pre-training dataset quality can enhance the
performance of pre-trained code models on downstream tasks.

III. EVALUATION OF LLM-GENERATED COMMENTS

In this section, we comprehensively compare the LLM-
generated comments and human-written reference comments.

A. Objective and Research Questions

Traditional code comment evaluation relies on reference-
based metrics using human-written comments as the gold
standard, limiting direct quality comparisons between gener-
ated and human reference comments [30]. To address this
limitation, we propose a paradigm shift towards reference-
free evaluation using extrinsic auxiliary tasks: code-comment
inconsistency detection and semantic code search. These tasks
assess the semantic alignment between code and comments
without requiring human references. In this section, our study
addresses two key research questions:

RQ1: How effective are the proposed reference-free
metrics in assessing the quality of code comments? We
explore the effectiveness of our newly proposed evaluation
metrics. It examines the alignment of reference-free metrics
with reference-based metrics and human judges, laying the

foundation for a comparative evaluation of LLM-generated and
human reference comments.

RQ2: How does the quality of comments generated by
LLMs compare to human-written reference comments?
We examine whether LLM-generated comments can match
or exceed the quality of human-written references, which is
central to determining the practicality of employing LLMs to
enhance training datasets for code intelligence tasks.

B. Reference-free Evaluation Metrics

1) Code Comment Inconsistency Detection: Code comment
inconsistency detection (CCID) determines whether a com-
ment is semantically misaligned with the corresponding code
snippet [18]. Since CCID is of immense practical use to
software developers who have a vested interest in keeping
their code bases easily readable, navigable, and as bug-free
as possible, prior works proposed kinds of approaches for
detecting inconsistencies [52], [53].

Code Evolution
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Inconsistent ？Comment Code 
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NL

Code
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Version 1 Version 2
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Fig. 1: Code comment inconsistency detection as a reference-
free evaluation metric.

We propose the CCID task as a quantitative measure of com-
ment quality. This approach stems from the principle that high-
quality comments should accurately reflect their corresponding
code. Inconsistent comments can cause confusion, errors,
or misinterpretations, reducing effectiveness. The CCID task
identifies discrepancies between code and comments, serving
as an objective metric for comment quality and providing
insights into the effectiveness of software documentation. We
evaluate comment quality by measuring inconsistency rates in
test datasets. The CCID task contains two distinct settings,
post-hoc and just-in-time. In our work, we adopt the post-
hoc setting because the comment/code pairs are available, and
there are no code changes in the code summarization situation.

The data [54] we used to train the CCID classifier is curated
by Panthaplackel et al. [52], which includes 40,688 sam-
ples of @return, @param, and summary Javadoc comments
paired with their corresponding Java code methods. They
consider comment-code pairs from each version of consecutive
commits: (c1, nl1), (c2, nl2). We collect examples that code
changes do exist between two versions in which c1 ̸= c2. As
a result of code changes, the developer updated the comment
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because it would have otherwise become inconsistent. There-
fore, if nl1 ̸= nl2, we take nl1 comment to be inconsistent
with c2 code. As illustrated in Figure 1, (c1, nl2) and (c2, nl1)
are consequently constitute the inconsistent examples. In con-
trast, if nl1 = nl2, the collected examples (i.e. (c1, nl1) and
(c2, nl2)) are labelled as consistent examples. The assumption
is that the developer chose not to update the comment while
modifying the code, as the comment was still consistent with
the changes [52]. Figure 1 demonstrates the data constructing
and training process of the CCID classifier.

Specifically, we utilize the state-of-the-art approach in the
post-hoc setting proposed by Steiner et al. [53] as a clas-
sification model. The tokenized code C and the NL are
concatenated into one sequence as input ([CLS] C tokens
[SEP] NL tokens [SEP]), where [CLS] is the classification
token and [SEP] is the separation token. The model outputs
a binary label indicating whether the code-comment pair is
inconsistent. Following the replication package [55], the model
achieved 87.21% accuracy, 92.43% precision, 80.69% recall,
and 86.16% F1 score on the test data curated by Panthaplackel
et al. [52], and we utilize this model as a well-trained CCID
classifier in this study.

Suppose f denotes the well-trained CCID classifier, and the
input of f is a code snippet c and its corresponding comment
nl. The output f(c, nl) = 1 indicates they are semantically
inconsistent; otherwise, f(c, nl) = 0. Assume < C,NL > is
the code snippets, its paired model-generated/human-written
comments in test datasets, and the total examples in test
datasets is N . We define the inconsistency rate (IncRate) by
calculating the proportion of inconsistent examples.

IncRate =
1

N

N∑
i=0

f(ci, nli) (1)

We propose to use IncRate as a reference-free metric to eval-
uate the quality of comments, and the lower IncRate indicates
better semantic consistency between code and comments.

2) Semantic Code Search: The semantic code search task
is to retrieve a code snippet that matches a given query
by effectively capturing the semantic similarity between the
query and code. Semantic code search is a vital software
development assistant significantly improving development
efficiency and quality [5].

Our motivation is rooted in the premise that the code search
task could indicate the degree to which comments are aligned
with their corresponding code. We assume that high-quality
comments should not only elucidate code functionality but also
enhance the discoverability of code snippets through semantic
code search. This assumption aligns with the practical use case
of developers who regularly rely on comments to navigate and
understand large code bases. Additionally, code comments are
an alternative to the practical queries in research communi-
ties [6], [21]. Consequently, the effectiveness of comments in
facilitating accurate and efficient code search results serves as
a proxy for their quality, providing a concrete, measurable
dimension to an otherwise subjective attribute of software

documentation. Therefore, we argue comments that are more
helpful for code search tasks are likely to be higher quality.
Our study employs comments as queries within a code search
task to assess the comment quality.

Comment as Query

Codebase Code Rank 

1

Code search model

Fig. 2: Code search as a reference-free evaluation metric.

To evaluate the performance of code search, we use the
Mean of Reciprocal Rank (MRR) [5], [56], [57], which has
been widely adopted in the evaluation of semantic code search.
The MRR score quantifies the ranking of the target code snip-
pet to the given comment query, and it only cares about where
the most relevant result is ranked. We use CodeBERT [11] for
code search task and follow the configuration reported in their
artifacts [58] to construct data and fine-tune the model. When
computing MRR scores in the testing set, for each query-code
pair, |Q| − 1 code snippets from other pairs in the same batch
play the role of distractor codes, where |Q| is the batch size,
and we set as 1000 in this work. For a single batch, MRR is
calculated as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

Rank(c̃i, nli)
(2)

where c̃i is the ground-truth code snippet for its paired com-
ment query nli, and Rank(c̃i, nli) is its corresponding rank
in the retrieved results. MRR gives a score of the predicted
result based on its rank. The average value of all batches is
the final MRR score.

We propose to use MRR as a reference-free metric to eval-
uate the quality of comments. A higher MRR indicates better
semantic consistency between the code and the comments.

C. Experiment Design

1) Dataset: We conduct experiments on a widely used Java
benchmark dataset TLC [20], which has 66k code-comment
pairs collected from more than 9K open-source Java projects
created from 2015 to 2016 with at least 20 stars. They first
extracted Java methods and Javadocs and treated the first
sentence of the Javadoc as the ground-truth comment of the
corresponding code. We use the TLC dataset open-sourced
by the previous work [19]. The training/validation/test set
contains 53,528/7,555/4,985 samples, respectively.

2) Baselines: Our research aims to investigate the effective-
ness of two proposed reference-free metrics, comprehensively
analyze comment quality, and compare LLMs’ performance
with human-written comments. Three deep learning (DL)
based code summarization models are introduced as baselines
to provide a meaningful context for evaluation. Six LLMs,
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encompassing both open-source and closed-source models, are
examined in this work to enhance the representativeness of
the LLMs. This comparison will facilitate a more nuanced
understanding of the performance differences in DL model-
generated, LLMs-generated, and human-written comments.

NCS [59] is a transformer-based model that utilizes relative
distances in self-attention and includes a copy mechanism to
handle rare tokens from source code. SIT [60] integrates AST
structure features into self-attention by combining the AST
tree, data-flow graph, and control-flow graph into a multi-view
graph matrix to refine token connections. DOME [61] lever-
ages intent-guided selective attention to extract intent-relevant
details, generating comments tailored to various intents. We
use consistent data splits and default training parameters as in
the original studies.

In this work, three types of models published by OpenAI are
considered. Text-davinci-003. The text-davinci-003 [62] is a
model trained using reinforcement learning with rewards from
human comparisons. It performs well in consistent instruction
following and longer output when completing any language
task. GPT-3.5 Turbo. The capable and most cost-effective
model (costs 1/10th of text-davinci-003) in the GPT-3.5 family
can understand and generate natural language and code. The
snapshot of GPT-3.5-turbo from Jan 25th, 2024, gpt-3.5-turbo-
0125 [63] is used in this work. GPT-4 Turbo can solve
complex problems with greater accuracy than any previous
models of OpenAI, thanks to its broader general knowledge
and advanced reasoning capabilities. The snapshot gpt-4-0125-
preview [64] is utilized in this work.

The development process of LLMs varies in openness.
Proprietary models, like OpenAI’s GPT-4, are accessible via
paid APIs, while their development specifics remain undis-
closed. In contrast, open-source LLMs release model weights,
allowing the community to run, inspect, and fine-tune these
models. We consider three open-source LLMs: Code Llama
by Meta AI, based on Llama2 [65], provides state-of-the-
art performance, extensive input context handling, and zero-
shot instruction-following for programming tasks. This study
uses the 70B-parameter Code-Llama model [66]. DeepSeek
Coder [67] is a range of open-source code models trained
on 2 trillion tokens from 87 programming languages, with a
16K context length for complex tasks. We employ the largest
model, DeepSeekCoder-33B. StarCoder2 [68] by BigCode
includes models with 3B, 7B, and 15B parameters trained on
The Stack v2 dataset. All models and training resources are
fully open-source.

To obtain summaries written by LLMs, we design a simple
prompt with the format:

You are an expert [PL] programmer.
For the given [PL] method, please write a
one-sentence description as comment:
[Code Snippet Content]

We collected summaries from LLMs using this prompt for
4,985 Java methods in the test set. As LLM tends to give
much longer comments than human-written references, we set

TABLE I: Statistics of unique words occurred in baseline-
generated comments on TLC test set.

Methods Avg.words Unique words
NCS 8.72 3,485
DOME 8.91 3,924
SIT 8.68 4,034
Human References 11.76 5,854
StarCoder2-15B 13.80 5,420
Text-davinci-003 13.49 6,392
CodeLlama-70B 14.18 5,931
DeepSeekCoder-33B 15.56 6,742
GPT-3.5-Turbo 15.22 6,721
GPT-4-Turbo 16.44 7,719

the parameter max tokens=30 to meet the same length level as
human references for a fair comparison. Table I displays the
word length statistics and unique words for LLMs-generated
and reference comments. As for the sampling temperature
parameters, we set the top p = 1 and the tempreture = 1.

3) Evaluation Metrics: We must also report commonly
used traditional metrics in research communities for compari-
son as we propose new evaluation metrics. We categorize the
evaluation metrics into two main groups based on whether
references are needed as a standard: (1) reference-free metrics
(IncRate and MRR) and (2) reference-based metrics (BLEU,
ROUGE, METEOR and USE).

IncRate is a reference-free metric for code summarization.
As introduced in the former subsection III-B1, IncRate eval-
uates the quality by measuring the percentage of inconsistent
comment-code pair examples in the test set.

MRR is used initially to evaluate information retrieval. As
detailed in former subsection III-B2, we adopt it to measure
the semantic relationship between the comment query and its
paired code snippet. Higher MRR means a better quality of
comment in semantic coherence.

BLEU [33] is a textual similarity metric that calculates the
precision of n-grams in a translated sentence compared to a
reference sentence, with a weighted brevity penalty to punish
short translations. We use the standard BLEU score, which
provides a cumulative score of uni-, bi-, tri-, and quat-grams.

ROUGE [34] is a popular automatic evaluation metric that
is recall-oriented. It computes the count of several overlapping
units such as n-grams, word pairs, and sequences. ROUGE has
several different variants, which we consider the ROUGE-L.

METEOR [35] is a metric based on the general concept
of unigram matching, and it combines precision, recall, and
a custom score determining the degree to which words are
ordered correctly in the translation.

USE [32] is a metric that encodes the reference and the
predicted summary to a fixed-length vector using a universal
encoder and computes the similarity scores between two
summaries. In this work, our experiments use the pre-trained
universal-sentence-encoder-large model [69].

D. Automatic Evaluation Results Analysis

1) reference-based metrics: From the first three rows of
Table II, the performance of NCS, DOME, and SIT models
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TABLE II: Evaluation of DL-based methods generated, LLMs-generated comments and human references comments.

Methods reference-based metrics reference-free metrics human-evaluation Avg. (Std.)
BLEU ROUGE METEOR USE InRate ↓ MRR Naturalness Consistency Usefulness Average

NCS 21.55 35.98 15.08 0.5198 31.84% 0.5614 3.31 (0.66) 3.19 (0.52) 3.36 (0.71) 3.29
DOME 22.20 36.67 16.47 0.5460 24.99% 0.6296 3.27 (0.51) 3.23 (0.74) 3.47 (0.65) 3.32
SIT 22.54 37.87 16.11 0.5634 23.65% 0.6404 3.35 (0.73) 3.28 (0.61) 3.44 (0.69) 3.36
Human References - - - - 15.05% 0.8165 3.41 (0.82) 3.35 (0.73) 3.67 (0.91) 3.48
StarCoder2-15B 14.59 32.29 15.68 0.6297 3.95% 0.8750 3.59 (0.78) 3.44 (0.80) 3.70 (0.86) 3.58
Text-Davinci-003 17.49 34.69 15.38 0.6234 3.65% 0.8826 3.73 (0.85) 3.57 (0.91) 3.77 (0.81) 3.69
CodeLlama-70B 14.73 32.51 16.19 0.6353 2.91% 0.9007 3.66 (0.83) 3.70 (0.68) 3.79 (0.92) 3.72
DeepSeekCoder-33B 12.39 29.71 16.06 0.6242 2.31% 0.9214 3.95 (0.75) 3.79 (0.75) 3.80 (0.83) 3.85
GPT-3.5-turbo 12.91 30.56 16.45 0.6505 1.30% 0.9562 3.98 (0.71) 3.96 (0.88) 3.95 (0.81) 3.96
GPT-4.0-turbo 11.24 28.61 16.63 0.6434 0.52% 0.9679 4.10 (0.67) 4.02 (0.68) 3.96 (0.95) 4.03

appears closely matched, with no more than 2% difference
in BLEU, ROUGE, and METEOR scores. Such marginal
disparities challenge the intuitive differentiation of model
efficacy, and less than 2 points improvements of overlap-
based metrics do not guarantee systematic improvements in
summarization quality [70]. When measured using reference-
based evaluation metrics, the USE reveals a more significant
discrepancy among the three DL-based models than BLEU,
ROUGE, and METEOR. This phenomenon highlights the limi-
tations of traditional n-gram overlap-based metrics in capturing
subtle semantic differences.

The traditional n-gram overlap-based metrics merely mea-
sure the literal proximity of predicted comments to reference
comments. Yet, many words have close synonyms and certain
words within a sentence carry more weight than others [32].
While comments generated by three DL-based models may
seem similar on a superficial literal level, the USE metric,
which assesses semantic similarity through embedding vectors,
provides a nuanced ability to distinguish the quality differences
between these DL models’ generated comments.

Finding 1: Compared to n-gram overlap metrics, the USE
metric demonstrates superior nuanced ability in capturing
quality differences of DL baselines generated comments.

2) reference-free metrics: Among three DL-based base-
lines, the SIT-generated comments exhibit the lowest In-
cRate, 23.65%, DOME performs the second, 24.99%, and
NCS-generated comments get the highest inconsistency rate,
31.84%, with their corresponding code snippets. Simulta-
neously, SIT-generated comments achieve the highest MRR
scores, 0.6404, while DOME ranks second, 0.6296, and
CSN performs the lowest MRR score, 0.5614. Our proposed
reference-free metrics, IncRate and MRR scores, align well
with the four traditional reference-based metrics when evalu-
ating three DL-based models.

Furthermore, our proposed two reference-free metrics can
reveal more substantial performance differences among NCS,
DOME, and SIT than reference-based metrics. While n-gram-
based metrics show less than a 2% difference and USE metrics
less than 5%, the IncRate and MRR metrics demonstrate a
wider gap of 8%. It highlights the effectiveness of IncRate
and MRR in detecting subtle but crucial semantic differences
in comment quality across the DL-based models.

Finding 2: The reference-free metrics, IncRate and MRR,
align well with reference-based metrics and demonstrate
greater sensitivity in detecting performance differences in
measuring DL baselines.

3) LLMs models vs DL models: In comparing LLMs with
three DL-based baseline models, all six LLMs fall behind in
BLEU, ROUGE, and METEOR scores but surpass all three
DL baselines in the USE metric. This discrepancy indicates
that relying solely on reference-based metrics could yield
unreliable or contradictory assessments. Notably, as shown
in Table I, most LLMs (5/6) exhibit a richer vocabulary
in their comments than human written reference comments.
The DL-based models share the same vocabulary list with
human references. It suggests that LLMs-generated comments
preserve more semantic diversity in word/token selection, as
they are usually pre-trained in a massive corpus. Therefore,
the large vocabulary underscores the importance of semantic
measurement over literal overlap for a more comprehensive
evaluation of LLM’s capabilities.

Based on the USE metric, all six LLM-generated comments
show better likeness with human references than three DL-
based baselines. According to our reference-free metrics, six
LLMs achieve lower IncRate and higher MMR scores than all
three DL-based baselines, which aligns well with the conclu-
sion obtained by the USE metric. These results validate the
effectiveness of IncRate and MRR in measuring the semantic
likeness between code snippets and comments.

Finding 3: The comments generated by LLMs show better
semantic likeness with human references than DL baselines.

4) LLMs vs human references: Reference-based evaluation
metrics cannot evaluate the quality of the human reference
comments themselves. Thus, they can not be used to compare
the quality of comments on LLMs and human references. In
contrast, our proposed metrics, IncRate and MRR, evaluate
comment quality independently of references, which provide
an objective basis for assessing comment quality across code
summarization models, LLMs, and human developers.

As shown in Table II, 15.05% of human reference comments
are detected as semantically inconsistent by the inconsistency
detection classifier, suggesting that non-standard practices of
co-evolving and maintaining comments with code often exist
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in software development and evolution. In comparison, the
IncRate for six LLM-generated comments is markedly lower,
no more than 4%. GPT-4-Turbo achieves the lowest 0.52%
inconsistency rate. Additionally, in the code search task where
comments are served as queries, all six LLM-generated com-
ments surpass human references. GPT-3.5-Turbo and GPT-4-
Turbo achieve MRR scores of 0.9562 and 0.9679, outperform-
ing the human reference MRR score of 0.8165.

Finding 4: LLM-generated comments preserve better se-
mantic consistency than human reference comments.

E. Human Evaluation

The proposed two reference-free metrics can measure the
semantic consistency and semantic similarity between code
snippets and comments without relying on human-written
references, but it’s not clear how they align with human
judgment. To further validate the effectiveness of IncRate and
MRR metrics, we perform a human evaluation to assess the
quality of human reference and baseline-generated comments.

To evaluate the large number of instances across six LLMs
and human references, we adopt a sampling method [71] to
ensure a reliable confidence interval. The minimum number
of cases required is calculated using MIN = n0/(1 +
(n0 − 1)/N), where N is the total number of test cases, and
n0 = (Z2 × 0.5)/e2, with Z as the z-score for the desired
confidence level and e = 0.05 at a 95% confidence level.
Using this method, we selected 357 samples from a total
of 4985 cases. For each code snippet, its ten corresponding
comments (three DL-model-generated, one human reference
and six LLM-generated comments) are evaluated. We recruited
36 participants (24 Undergraduate, 8 Master’s, and 6 PhD
students) with over three years of programming experience in
Software Engineering or Computer Science to manually assess
the quality of these comments.

Following the previous study [27], [72], [73], participants
rated each comment based on three aspects: (1) Natural-
ness reflects the fluency of comments from the grammar
perspective. (2) Consistency reflects the degree to which the
semantics of comments match the code. (3) Usefulness reflects
the practical usage value for developers and how comments
can help them. Scores range from 1 to 5 (1 for poor, 2 for
marginal, 3 for acceptable, 4 for good, and 5 for excellent).
For each code snippet, participants evaluated a reference
comment, three comments generated by DL-based approaches,
and six by LLMs. To ensure fairness, all ten comments were
anonymized, and each participant completed the questionnaire
independently. To avoid subjective bias, each comment was
evaluated by two participants, and their average score was
used. If their scores differed by two or more points, a third
participant’s evaluation was introduced to solve the conflict
and determine the final score, as we consider a difference of
more than 2 points to be an enormous disagreement.

Human evaluation results are presented in the third column
of Table II. The manual rating scores of human reference
comments in Naturalness, Consistency and Usefulness are

3.41, 3.35 and 3.67, respectively, surpassing the three DL
baseline models but scoring lower than all six LLM-generated
comments in three aspects. The GPT-4-Turbo achieves the
highest scores from participants, 4.10, 4.02 and 3.96 across
these three aspects. In addition, the average score of humans
rated in naturalness, consistency and usefulness is shown in
the last sub-column. Evaluation results on two reference-free
metrics aligned well with the overall quality level of manual
evaluation. We thus answer the first two RQs (RQ1&RQ2).

Ans. to RQ1: effectiveness of reference-free metrics
Our proposed reference-free metrics, IncRate and MRR,
demonstrate a strong correlation with both four traditional
reference-based metrics and human evaluations, indicating
their effectiveness in assessing code comment quality.

Ans. to RQ2: LLMs-generated vs. reference comments
The comments generated by LLMs exhibit higher quality
than human reference comments, which preserve lower
inconsistency and higher semantic relevance to the cor-
responding code. Human evaluations confirm that LLM-
generated comments demonstrate superior naturalness, con-
sistency and usefulness.

IV. DISTILLING LLM FOR CODE INTELLIGENCES

In pre-trained source code models, the quality of training
data is crucial for model performance. PL-NL paired data
helps bridge the semantic gap between programming and
natural language, providing context and descriptive insight
that facilitate code-intelligence tasks. Section III reveals that
LLM-generated comments exhibit higher semantic relevance
and lower inconsistency with the corresponding code snippets
than human reference comments. These findings suggest that
incorporating LLM-generated comments could enhance train-
ing data quality, motivating the reconstruction of pre-training
datasets for code intelligence. Thus, we ask the following
research question: RQ3: How does the pre-training data
rebuilt by LLM impact the performance of the downstream
code intelligence tasks?

A. Experiment Design

To assess the impact of LLM-rebuilt data on code intel-
ligence tasks, we conduct the following experiments: First,
we reconstruct a popular dataset by replacing human-written
comments with LLM-generated ones to improve semantic
consistency between NL comments and PL code. We then
use this rebuilt dataset to pre-train a widely used source code
model, fine-tune it on downstream tasks, and evaluate its
performance. Finally, we compare the results of models trained
on the rebuilt versus the original dataset, quantitatively and
qualitatively.

1) Dataset and Experimental Settings: As the empirical
results in Section III, the comments generated by GPT-4-turbo
exhibit the best quality among six LLMs. The performance
of GPT-4-turbo and GPT-3.5-turbo shows a minor difference
in metrics, while the expenses of GPT-4-turbo are ten times
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TABLE III: Statistics of cgpt-CSN dataset.

PLs W/ ChatGPT-NL W/o NL
Ruby 53,269 110,551

JavaScript 138,577 1,717,933
Go 346,333 379,103

Python 457,429 657,030
Java 496,651 1,070,271
PHP 578,072 398,058
Total 2,070,331 4,332,946

more expensive than GPT-3.5-turbo. Due to consideration of
OpenAI API costs, we rebuild the CodeSearchNet [21] by
replacing the human reference comments with GPT-3.5-turbo
generated ones, noted as cgpt-CSN. The prompt we used is
shown in Section III-C2. We did not incorporate the C/CSharp
dataset added in the original CodeT5 [13] for the sake of
training computation costs. We utilized approximately 2.07
million paired PL-NL instances, encompassing six PLs: Java,
Python, PHP, Javascript, Go, and Ruby. The total OpenAI API
costs approximately $2,000, and the rebuilt CodeSearchNet
cgpt-CSN statistics are displayed in Table III.

In this study, we choose CodeT5 [13], a widely-used pre-
trained model for source code based on an encoder-decoder
framework similar to T5 [51], as our pre-training model for
downstream code intelligence tasks. We follow Feng et al. [11]
to employ cgpt-CSN to pre-train CodeT5, consisting of six
PLs with unimodal and bimodal data. It is trained with four
pre-training tasks, including a Masked Span Prediction (MSP)
task, Identifier Tagging (IT), Masked Identifier Prediction
(MIP), and Bimodal Dual Generation (BDG).

As the pre-training implementation is not available, we re-
implement the CodeT5 pre-training process based on Hugging-
face’s T5 [51] PyTorch implementation, and the size of the
model is 220M, same as CodeT5-base. We set the maximum
source and target sequence lengths to be 512. We use the
mixed precision of FP16 to accelerate the pre-training. We set
the batch size to 48 and employed the peak learning rate 2e-
5 with linear decay. Following the settings in CodeT5 [13],
we pre-train the model with the denoising objective for 100
epochs and bimodal dual training for a further 50 epochs.
In the fine-tuning phase, we follow their default settings for
the hyperparameters in the CodeXGLUE [48] tasks, such as
learning rate, training steps, and batch size.

2) Code Intelligence Tasks and Metrics: For the code intel-
ligence tasks, we cover four generation and one understanding
tasks in the CodeXGLUE benchmark [48] and employ the
provided public datasets and the same data splits following it
for all these tasks. We first consider two cross-modal, text-
to-code and code-to-text generation tasks, two code-to-code
generation tasks, and one code understanding task.

Code summarization aims to summarize a function-level
code snippet into natural language descriptions. The dataset
comprises six PLs, including Ruby, JavaScript, Go, Python,
Java, and PHP from CodeSearchNet [21]. Empirical findings
in Section III show that the USE metric aligns well with
human evaluation. To provide a rich perspective view, we

employ one reference-based metric USE [32] and one of
our newly proposed reference-free metrics, MRR, to evaluate
code summarization. Note that the reference-based metric USE
refers to the comment generated by GPT-3.5-Turbo, as it
provides better consistency with code.

Code generation is an NL-PL task that generates a code
snippet based on NL descriptions. We employ the Concode
dataset [74] in Java, where the input contains both NL texts
and class contexts, and the output is a Java function. We
evaluate it with CodeBLEU [75], BLEU-4, and exact match
(EM) accuracy that considers syntactic and semantic matches
based on the code structure in addition to the n-gram match.

byte[] function(byte[] arg0, byte[] arg1) {
    return ArrayTool.transferValues(arg0, arg1, 0, arg1.length);
}

Human written text:

Code

NL

transfers the contents of the second byte array into 

the first byte array

concode_field_sep PlaceHolder placeholder 
concode_field_sep void swap 
concode_elem_sep void swap

transfers from right to left 

Class environment contexts:

GPT-3.5-Turbo    

generated comment:

Fig. 3: A Concode data sample rebuilt by GPT-3.5-Turbo.

Code translation aims to migrate legacy software from
one PL to another, where CodeXGLUE focuses on translating
functions from Java to CSharp and vice versa. Because we
omit C/CSharp in our updated version of the pre-training
dataset, cgpt-CSN, we use the AVATAR [76], a parallel corpus
for Java-Python program translation, for code translation tasks.

Code refinement is to detect which parts of code are
buggy and fix them by generating a correct code sequence.
We employ two Java datasets provided by Tufano et al. [77]
with various function lengths: small (fewer than 50 tokens)
and medium (50-100 tokens). Due to the limited edit refining,
there is a large token overlap between the source and target
code. The EM measurement could better reflect the correctness
of the refinement generation. We report EM and BLEU-4.

Clone detection aims to measure the similarity between
two code snippets and predict whether they have the same
functionality. We experiment with the Java data provided by
Wang et al. [78]. We employ Precision, Recall, and F1 scores
for evaluating code clone detection.

B. Results and Analysis

In this section, we evaluate the re-pre-trained CodeT5 on
downstream tasks. For better illustration, cgpt-CSN denotes
the model was pre-trained with an updated version of Code-
SearchNet that we rebuilt using GPT-3.5-Turbo.

Code Summarization The initial two rows in Table IV
reveal that the model pre-trained with cgpt-CSN outperforms
the one trained with vanilla CSN on code summarization
task, as indicated by higher USE and MRR scores across
all six PLs. We further explore the effect of GPT-3.5-Turbo-
generated comments data in the fine-tuning phase; we rebuild
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TABLE IV: Evaluation results of Code Summarization.

pre-train fine-tune Javascript PHP Ruby Java Python Go Average
USE MRR USE MRR USE MRR USE MRR USE MRR USE MRR USE MRR

CSN CSN 0.5404 0.8102 0.6381 0.8102 0.5262 0.8189 0.6031 0.8083 0.5875 0.8294 0.6692 0.8580 0.5941 0.8225
cgpt-CSN CSN 0.5420 0.8889 0.6429 0.8992 0.5375 0.8563 0.6111 0.9135 0.5911 0.9074 0.6763 0.9621 0.6002 0.9046

CSN cgpt-CSN-Sum 0.7698 0.9623 0.8142 0.9202 0.7599 0.9477 0.8127 0.9342 0.6953 0.9529 0.8142 0.9120 0.7777 0.9382
cgpt-CSN cgpt-CSN-Sum 0.7731 0.9665 0.8162 0.9617 0.7738 0.9617 0.8154 0.9553 0.6983 0.9552 0.8162 0.9244 0.7822 0.9541

Human References - 0.7710 - 0.8094 - 0.7988 - 0.8091 - 0.8153 - 0.8481 - 0.8086
GPT-3.5-Turbo - 0.9580 - 0.9559 - 0.9694 - 0.9624 - 0.9089 - 0.9351 - 0.9483

TABLE V: Evaluation results of NL-Code generation.

pre-train fine-tune CodeBLEU BLEU EM
CSN Concode 39.45 38.52 22.00
CSN cgpt-Concode 49.25 48.31 29.60

cgpt-CSN Concode 40.56 40.91 22.10
cgpt-CSN cgpt-Concode 50.49 50.20 30.00

the CSN code summarization datasets, denoted as cgpt-CSN-
Sum. Table IV shows the results in the middle two rows.
It should be noted that the ground truth for reference-based
metrics USE on the rebuilt CSN summarization test set is GPT-
3.5-Turbo-generated comments. We observe that the model
fine-tuned with the rebuilt summarization data outperforms
the model fine-tuned with human-referenced data. These find-
ings indicate that incorporating GPT-3.5-Turbo-generated data,
both in the pre-training and fine-tuning phases, advances code
summarization performance.

The final two rows in Table IV compare MRR scores
between reference comments and GPT-3.5-Turbo-generated
comments on the CSN summarization test set. GPT-3.5-Turbo-
generated comments achieve markedly higher MRR scores
across all six PLs, aligning with findings from Section III.
This consistency underscores the generalization capabilities of
MRR metric across multiple programming languages.

Code Generation The vanilla input in the Concode dataset
contains both NL text and class environment context. To
investigate the impact of GPT-3.5-Turbo-generated comments
in the fine-tuning stage, we also rebuild the Concode dataset
by replacing the NL texts with GPT-3.5-Turbo-generated com-
ments to form the updated inputs, as shown in Figure 3
and the updated version noted as cgpt-Concode. Table V
shows that the model pre-trained with cgpt-CSN and fine-
tuned with cgpt-Concode outperforms other training-tuning
settings in three metrics. Compared to the model pre-trained
on CSN and fine-tuned on Concode, GPT-3.5-Turbo-generated
comments data in both pre-training and fine-tuning phases
contributes to 11.04%, 11.68% and 8.00% points improvement
on CodeBLEU, BLEU, and EM respectively. Notably, in the
fine-tuning phase, the ChatGPT enhanced cgpt-Concode con-
tributes more significant performance gains than pre-training.

We attribute this phenomenon to the characteristics of the
NL-Code generation task itself. High-quality NL can better
align the semantics with Code, and the model learns better
representations in the embedding space during training. In the
NL-Code generation task, the quality of NL directly deter-
mines the semantic correlation between the input and the final

TABLE VI: Evaluation results of Code Translation.

pre-train fine-tune CodeBLEU BLEU EM
CSN Java2Python 48.28 51.29 2.57

cgpt-CSN 52.38 56.72 2.60
CSN Python2Java 55.52 56.82 1.21

cgpt-CSN 57.19 59.92 1.84

TABLE VII: Evaluation results of Code Refinement.

pre-train fine-tune EM BLEU
CSN Refine-small 21.41 77.41

cgpt-CSN 21.24 77.36
CSN Refine-medium 13.90 89.39

cgpt-CSN 13.74 89.51

target code. Therefore, in the fine-tuning stage, improving the
NL quality of the fine-tuning data of the NL-Code generation
task can significantly improve the quality of the generated
code. These results demonstrate that high-quality comment
data generated from GPT-3.5-Turbo could significantly ad-
vance the performance of the NL-code generation task.

Code Translation The experiment results of the code
translation task in the AVATAR test set are displayed in
Table VI. The model pre-trained with cgpt-CSN data per-
forms better than its counterpart pre-trained with human-
commented CSN. Compared to the original CSN, GPT-3.5-
Turbo-generated comments in the pre-training dataset con-
tribute to an improvement of 4.10 CodeBLEU, 5.43 BLEU
and 0.03 EM scores in Java-to-Python, 1.67 CodeBLEU, 3.10
BLEU and 0.63 EM scores in Python-to-Java translation,
respectively. The code translation is an NL-unrelated task,
and GPT-3.5-Turbo-generated NL in bimodal data can still
improve performance. We attribute the improvement to the
better alignment between PL and NL. The comments generated
by GPT-3.5-Turbo preserve better semantic consistency with
code, which could better representation for generation.

Code Refinement Experiment results of EM and BLEU
scores for code refinement tasks are shown in Table VII.
The results indicate no significant performance differences
between models trained with CSN and cgpt-CSN on both
small and medium code refinement test sets. These results
imply that a deep comprehension of programming logic and
syntax is essential for recognizing and correcting incorrect
code patterns. The enhancement of NL comments in the pre-
training stage is less directly applicable to identifying and
correcting code errors.

Clone Detection Table VIII presents F1 scores, Precision,
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TABLE VIII: Evaluation results of Clone Detection.

pre-train F1 P R
CSN 0.9464 0.9455 0.9473

cgpt-CSN 0.9432 0.9358 0.9508

and Recall for the clone detection task. Models pre-trained on
CSN and cgpt-CSN show comparable performance, with F1-
score differences of less than 0.5 percentage points. This none
non-significant difference can be attributed to the fundamental
nature of clone detection: the task primarily relies on analyzing
syntactic and semantic similarities between code content pairs
rather than their natural language descriptions. Consequently,
while GPT-3.5-Turbo generates higher-quality comments, this
enhancement does not transfer to improved clone detection
performance, as the task is inherently more dependent on code-
specific features than natural language documentation.

According to the experimental results on the five code intel-
ligence tasks, we thus conclude that LLMs are qualified bench-
mark builders and answer the third research question(RQ3).

Ans. to RQ3: impact of rebuilt data for code tasks
Training data rebuilt using GPT-3.5-Turbo’s high-quality
comments significantly improves the performance of code
intelligence tasks that rely on NL, like code summariza-
tion and NL-code generation, and it also enhances code
translation capabilities. However, tasks primarily focused
on code structure and semantics (code refinement and
clone detection) show no meaningful improvement from
enhanced comment quality.

V. THREATS TO VALIDITY

Internal validity. The scope of our study’s conclusions
is constrained by limitations in computing resources and the
expenses related to using the OpenAI API. Consequently, our
research focused solely on a specific pre-trained code model,
CodeT5, and we did not extend our analysis to include open-
source Code LLMs such as Code Llama [22].

Our study focuses on demonstrating the superior quality of
LLM-generated comments over human references for improv-
ing training datasets, rather than achieving SOTA performance
in code intelligence tasks. While current LLMs might outper-
form traditional pre-trained models on these tasks, our work’s
primary contribution lies in dataset quality enhancement rather
than model performance comparison. We acknowledge that a
direct performance comparison between our rebuilt pre-trained
models and current LLMs could provide additional insights,
but this falls outside our core research objective of improving
training data quality for future model development.

External validity. LLMs’ outputs can vary significantly
with slight changes in the prompt structure, wording, or
context. Our study employs a simple, consistent prompt across
programming languages to ensure reproducibility. However,
this approach may not capture the full potential of LLMs,
which could be achieved through more sophisticated prompt
engineering. Another threat to the validity stems from the

versions of ChatGPT used in our research, specifically Text-
davinci-003, GPT-3.5-turbo, and GPT-4-Turbo, which repre-
sent ChatGPT’s capabilities at a certain point in time. As com-
mercial LLMs undergo continuous updates, the performance
characteristics and findings reported in this study may evolve
with newer versions.

VI. RELATED WORKS

Recent advancements in code intelligence tasks are heavily
dependent on the quality of code-comment paired data. Pre-
vious studies have identified significant issues in code docu-
mentation [18], [41], [79], [80]. Fluri et al. found that 3-10%
of code comment changes lagged behind the corresponding
code changes in seven Java open-source projects [81]. Such
obsolete comments may provide misleading information to
developers, leading them to write vulnerable code [79] and
thus degrading the quality of the software. The noisy code
comments data could degrade the performance of data-driven-
based learning models for code intelligence tasks [6].

The main focus of the research community is on developing
customized models that can unleash the value of the available
data in specific tasks. As mentioned in [82], [83], improving
the quality of the training data is still a research opportunity
for machine learning, including DL-based source code models.
Sun et al. [6] proposed the first framework to improve the
dataset quality for code search datasets. Their data cleaning
framework, which consists of two subsequent filters, a rule-
based syntactic filter and a model-based semantic filter, is
considered to filter the noisy data. Xu et al. [84] investigated
the data quality issue in the obsolete comment detection
problem by proposing data cleaning and adversarial learning
techniques. They found that the performance of DL models
does improve with the cleaned training data. Unlike the above
studies, our work tackles the data quality issue by rebuilding
the dataset via LLMs, thereby replacing the noisy data with
high-quality ones.

VII. CONCLUSION

We present a comprehensive evaluation of LLM-generated
code comments against human-written references using novel
reference-free metrics based on inconsistency detection and
code search tasks. Our empirical study found that LLM-
generated comments are superior to comments written by
humans in the original repositories, challenging the conven-
tional use of human references as the gold standard for
code summarization. This finding led us to reconstruct the
CodeSearchNet dataset using LLM-generated comments and
subsequently retrain the CodeT5 model. The rebuilt model
showed significant improvements across multiple code intelli-
gence tasks, particularly in natural language-related tasks such
as code summarization and NL to Code generation. These
results validate both the superior quality of LLM-generated
comments and their practical value in enhancing training
datasets for code intelligence models.

We release all data and code of our work online at: https:
//anonymous.4open.science/r/LLM4DataConstruction.
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