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ABSTRACT
Code comment, i.e., the natural language text to describe code, is
considered as a killer for program comprehension. Current litera-
ture approaches mainly focus on comment generation or comment
update, and thus fall short on explaining which part of the code
leads to a specific content in the comment. In this paper, we propose
that addressing such a challenge can better facilitate code under-
standing. We propose Fosterer, which can build fine-grained se-
mantic interactions between code statements and comment tokens.
It not only leverages the advanced deep learning techniques like
cross-modal learning and contrastive learning, but also borrows
the weapon of pre-trained vision models. Specifically, it mimics the
comprehension practice of developers, treating code statements as
image patches and comments as texts, and uses contrastive learning
to match the semantically-related part between the visual and tex-
tual information. Experiments on a large-scale manually-labelled
dataset show that our approach can achieve an F1-score around
80%, and such a performance exceeds a heuristic-based baseline to
a large extent. We also find that Fosterer can work with a high
efficiency, i.e., it only needs 1.5 seconds for inferring the results
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for a code-comment pair. Furthermore, a user study demonstrates
its usability: for 65% cases, its prediction results are considered as
useful for improving code understanding. Therefore, our research
sheds light on a promising direction for program comprehension.
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1 INTRODUCTION
Program comprehension plays a critical role in software main-
tenance and evolution. This process, however, is widely known
as labor-intensive since it can take up nearly 60% of developers’
time, as reported by Xia et al. [60]. Code comment is considered
as a killer to enhance the readability of code [3, 11, 58]. These
comments, either written by the developers or generated by the
automated approaches [10, 16], usually summarize the behaviour
and/or design decisions of a code chunk (at the method level, under
most conditions). Despite that these comments are shown to facili-
tate the comprehension process to some extent [40, 44], one thing
remains challenging is the lack of fine-grained interpretation of the
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Figure 1: A motivating example from spring-security project.

code-comment relations. Specifically, developers still do not know
which part of code corresponds to the specific contents (i.e., tokens)
in the comment with only the plain comment on hand. Suppose
that a developer is trying to understand a method. She finds some-
thing important for her comprehension in the comment and tries
to locate the related code. Typically, she needs to browse tens of or
even hundreds of lines of code for such localization, which is rather
time-consuming. From this perspective, the program comprehen-
sion would be further boosted if the developers can be informed
about which part of the code is related to a specific token in the
comment.

The code and its corresponding comment share semantic in-
teractions. A concrete example is shown in Figure 1. This piece
of code is from the spring-security open-source project,1 and the
comment is written by its developers. From this example, we note
that all the contents in the comment can semantically match with a
part of the source code. For instance, the verb Return in the com-
ment is related with the return statement in the code, since this
statement reflects the main purpose of this method; the adjective
the first is related with the if conditional statement, since the
method will return a value the first time the condition in line 3 is
satisfied; the attributive matching corresponds to the Application
Programming Interface (API) called in line 3 (aka. matches); and
so on. With these semantic interactions established, a number of
program comprehension tasks can be improved, for example, com-
ment update [21, 25]. Suppose that during the software evolution,
line 3 is changed into if (chain.contains(request)) {, then,
with the matching relations on hand, the developer would easily
realize the suitable comment for the current code is “Returns the
first filter chain containing the supplied URL” because the called
API in line 3 is replaced and its name corresponds to the gerund in
the comment as analyzed above. Code search [4, 28, 62] is another
instance where after searching for the target code snippet with a
natural language description, the interaction between the code and
the description can be utilized to better help developers compre-
hend the search results. Therefore, the basic idea of this study is
the code-comment semantic interaction analysis is beneficial for
program comprehension.

In this paper, we propose Fosterer, a Fine-grained cOde-comment
Semantic inTERaction analyzER, which can automatically analyze
which part of code has semantic relation with a specific token in
the comment and hence provide fine-grained information for code
understanding. Theoretically, if this task is to be performed man-
ually, a potential scenario would be that developers check each

1https://github.com/spring-projects/spring-security.

line of code in the method and match the line with specific to-
kens in the comment if they find semantic interactions between
them. Our automated approach is designed to mimic this situation
where we utilize a cross-modal deep neural network to learn the
semantic interactions between each statement in the code and each
token in the comment. Specifically, we treat each statement in the
code as an image patch and use a vision Transformer to encode
it, while we treat the comment as textual information and use a
text Transformer for encoding. Transformer, the backbone of our
approach, is a widely-used network architecture in recent years
which is designed based on the self-attention mechanism [48]. The
intuition of treating code as images is threefold: (1) by using the
pre-trained model from large-scale image dataset like ImageNet
[15], the knowledge hidden in the model can be leveraged for code-
related tasks by fine-tuning while there lacks dataset of such large
scale in source code; (2) the long-dependency problem is still a key
bottleneck for sequential model and treating code like images has
already achieved promising results on several code comprehension
tasks [20, 24, 32]; and (3) it mimics human’s practice on reading
code: usually, humans understand code by reading each statement.
If we rely on the token sequence of the code snippet or nodes from
the corresponding AST to perform this task, we might build corre-
lations between code tokens and comment tokens, which may be
too fine-grained for developers. In contrast, by using code images,
we can establish relations between code statements and comment
tokens, which is a more user-friendly granularity. After embedding
the code and comment respectively, we adopt contrastive learning
[5] to model their semantic interactions. With contrastive learning,
each image patch can be matched with the textual token that is
most similar to it in the high-dimensional vector space, and sim-
ilarly, each textual token is matched with its closest image patch.
Therefore, when applied after training, Fosterer can bridge the
interaction between a token in the comment and its related code
statement(s), hence providing fine-grained comprehension infor-
mation. Applying a pre-trained model on downstream tasks need
tremendous training data since the pre-trained models usually have
a large amount of parameters [51]. To address this challenge, we
adopt data augmentation technique, which is commonly used to
enrich the training dataset and make it as diverse as possible. Specif-
ically, for code, we consider semantic-preserving transformation
where semantically invariant code can be created with different
implementation details. For comments, we use a back-translation
strategy [61] to create comments with identical semantics.

To evaluate our approach, the first step is to create a benchmark
with ground-truth (i.e., the semantic interactions between code and
comment should be already labelled). To this end, we manually
labelled 5,018 code-comment pairs from 10 open-source projects
for evaluation. To our best knowledge, we are the first to target
code-comment semantic interaction analysis. We therefore design
a heuristic-based baseline approach which relies on analyzing the
impacts of different statements on a code summarization model.
Our experiment results show that Fosterer can significantly out-
perform the baseline. In concrete, Fosterer achieves an F1-score
of nearly 80% and beats the heuristic-based baseline method by
6% on Precision metric, 5% on Recall metric and 5% on F1-score
metric. We also investigate the efficiency of Fosterer and results
show that once trained, it only takes 1.5 seconds for Fosterer to

https://github.com/spring-projects/spring-security
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build the semantic interactions for a code-comment pair, which is
an affordable time consumption. Moreover, a user study shows that
the code-comment semantic interaction built by Fosterer can help
participants better understand the code compared with the plain
comment under most conditions (i.e., for 65% cases).

The main contributions of this paper are summarized as follows:
• We propose Fosterer, a code-comment semantic interaction
analyzer built on top of cross-modal and contrastive learning
techniques. Fosterer can provide fine-grained interpretation
of the relationship between the code and the comment. To our
best knowledge, we are the first to explore this direction in the
literature.

• We build a dataset with over 5k code-comment pairs whose
semantic interaction relationships have already been manually
annotated. It is the first large dataset for this task. Based on it, we
perform experiments to show the effectiveness of our approach.

• We open source our replication package at https://github.com/
gmy2013/FOSTERER, including the dataset, the source code of
Fosterer, and test results, for follow-up studies.

2 RELATEDWORK
Our work is related to three research directions in the literature,
including data augmentation, semantic representation learning, and
multi-modality interaction mechanism.

2.1 Data Augmentation
Data augmentation aims to increase the data diversity and thus
the generalization ability of the model by various transformation
techniques. This approach is widely used in the computer vision do-
main [43, 57]. In recent years, researchers apply data augmentation
to code data as well [34, 35, 38]. A series of studies are motivated by
the fact that existing models are vulnerable to adversarial examples,
and they design methods to expose the vulnerability of models
and improve the robustness of models. In this work, we simply
augments the data and feeds the augmented data into the model to
improve our training process.

2.2 Semantic Representation Learning on
Source Code

Deep learning techniques on program analysis have attracted much
attention. Plenty of works [2, 9, 18, 22, 23, 39, 46, 47, 52–54, 59]
have focused on code representation for facilitating diverse down-
stream software engineering tasks. These approaches mainly utilize
textual or syntactic structures to model code. Bajracharya et al. [1]
proposed a code search engine Sourcerer which can extract fine-
grained structural information from source code. Lv et al. [29]
proposed CodeHow, a code search technique which measures APIs
and the queries based on text similarity, and applies an extended
boolean model to retrieve code. Raychev et al. [39] adopted an RNN
and n-gram model for code completion. To capture the structure
information of code, Mou et al. [31] proposed a novel tree-based
convolutional neural network (TBCNN) to represent the ASTs of
source code. Wei et al. [56] proposed a framework (CDLH) incor-
porating an AST-based LSTM to exploit the lexical and syntactical
information. More recently, Wan et al. [50] proposed MMAN to
combine multiple semantic information of code, including tokens,

AST, and graph information of source code. TBCCD (Tree-based
Convolutional Clones Detection) [65] exploits tree-based convolu-
tion and position-aware character embedding technology to detect
semantic clones, by capturing both the structural information of
a code fragment from its AST and lexical information from code
tokens. To fully capture the rich information in ASTs brought by the
large size/depth, CAST [42] hierarchically splits and reconstructs
ASTs. In concrete, CAST splits the AST of source code into several
subtrees, embeds each subtree, and aggregates the information of
subtrees back to form the full AST representation. FA-AST [55]
builds a graph representation of programs called flow-augmented
abstract syntax tree (FA-AST) by augmenting original ASTs with
explicit control and data flow edges. IR2vec [49] exploits a concise
and scalable encoding infrastructure to represent programs as a
distributed embedding in continuous space. The distributed embed-
ding is obtained by combining representation learning methods
with flow information to capture the syntax as well as the semantics
of the input programs. In our work, we complement literature ap-
proaches of source code representation via using computer vision
and contrastive learning techniques.

2.3 Multi-Modality Interaction Mechanism
The core of vision-language pre-training models lies in modeling
the interaction between the two modalities. There are mainly two
types of cross-modal interaction architectures: single-stream and
dual-stream models. Single-stream models like Visual-Bert [19] and
ViLT [14] directly concatenate the patch-wise or regional visual
features and textual embeddings, and then feed the fused vectors
to the Transformer-based encoder. Dual-stream models such as
ViLBERT [27] and CLIP [36] have separate encoders for different
modalities. Such techniques illustrate flexible use of different mod-
els for different modalities, and efficient inference for downstream
tasks like image-text retrieval, through the ability of decoupling the
encoders and pre-compute image/text features offline. In this paper,
we propose to exploit a new multi-model interaction mechanism
[63] to capture the fine-grained representations between source
code and comments.

3 METHODOLOGY
In this section, we introduce the architecture of Fosterer. We focus
on the following 4 parts in detail: encoders for visual renderings of
source code and comments, the contrastive learning mechanism,
the cross-modal late interaction part, and the prediction part.

3.1 Encoding
Fosterer is a dual-stream model with Transformer-based image
and text encoders. For the visual modality, the image encoder is a
Vision Transformer, which takes the concatenation of extra <CLS>
and <EOS> token embedding and linearly projected image patches
as input. Our rendering is implemented using the pillow Python
image drawing and manipulation library with a white background.
A variation of the Plain text visualization consists in rendering the
code text while highlighting syntax with colors, similarly to what is
done in compilers. This rendering approach is implemented by first

https://github.com/gmy2013/FOSTERER
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Figure 2: The workflow of Fosterer.

generating an html page to highlight the code using the google code-
prettify javascript library.2 The web page is then saved as a PNG
image using the imgkit, 3 which is a python wrapper for the Webkit
web browser engine.4 The syntax highlighting visual representation
will highlight code structures for human programmers, which can
make the semantic understanding task easier. In future, we will
also explore other visualization method for source code renderings,
e.g., using abstract syntax trees or graph representations.

In order to guarantee that the patching of the visual rendering or
code snippet is not interrupted, we design a series of pre-processing
rules. First, since the lengths of different visual rendering of source
code are different, the traditional patching method of images [7]
which divides the images into 𝑁 × 𝑁 squares cannot be directly
applied because the code will lose its initial semantics once being
split. Therefore, we decide to set the size of each patch to 24× 1000.
The height of each patch is calculated as the height of the whole
visual rendering divided by the number of code lines. Our pre-study
experiment shows the value is 24. By doing so, we can ensure that
one code statement will not be split into different patches. The
width is set to 1000 to guarantee that the token information of each
line will not be discarded after patching. Furthermore, to guarantee
that the width 1000 is long enough to involve each token in the
line, we reformulate the indents to avoid the situation where 1000
pixels cannot accommodate the snippet line. We add an <EOS>
token embedding to indicate the ending of the visual rendering
since the length of the visual rendering is not fixed. In our study, the
image encoder is pre-trained on the ImageNet dataset to efficiently
produce embeddings that can exploit the powerful knowledge from
the computer vision field.

For the textual modality, following [36], we use the lower-cased
byte pair encoding (BPE) [41] with a vocabulary size of 49,408 to
tokenize the text. Each text sequence starts with [BOS] token and
2https://github.com/googlearchive/code-prettify.
3https://pypi.org/project/imgkit/.
4https://webkit.org/.

ends with [EOS] token. After the word embedding layer, the to-
ken embeddings are fed into a modified decoder-only Transformer
model as in [37]. On top of the visual rendering of source code
and comment encoders, the representations of textual tokens and
visual tokens are linearly projected to the multi-modal common
space, and are separately L2-normalized. We do not model the
cross-modal interaction via only the global features of the entire
image and text sequence. Instead, we exploit a novel fine-grained
contrastive learning objective equipped with cross-modal late in-
teraction which takes into account the fine-grained interaction
between image patches and textual tokens. Following the experi-
ment setting in the previous study [63], for the image encoder, we
exploit the transformers with 12 layers, 768 widths and 12 heads.
For the text encoder, we exploit the transformers with 12 layers,
512 widths and 8 heads. The embedding dimension is set to 256.

3.2 Contrastive Learning
Contrastive learning has recently been found to learn better rep-
resentations than the predictive counterpart in both visual and
vision-language cross-modal pre-training [45]. Under a general
formulation of cross-modal contrastive learning, we want to learn
encoders 𝑓𝜃 for image data I and𝑔𝜙 for text data T such that, given
an image 𝒙𝐼 ∈ I and a a text 𝒙𝑇 ∈ T , the encoded representations
𝑓𝜃

(
𝒙𝐼
)
and 𝑔𝜙

(
𝒙𝑇

)
are close if they are related and far apart if

not, under a distance metric. In each training batch, we sample 𝑏

image-text pairs
{
𝒙𝐼
𝑘
, 𝒙𝑇

𝑘

}𝑏
𝑘=1

, 𝑥𝑇
𝑘
. For image X in image-text pair,{

𝒙𝐼
𝑘
, 𝒙𝑇

𝑘

}
is its positive, while the other texts will be used as in-batch

negatives. The image-to-text contrastive loss 𝐿𝐼
𝑘
for 𝑥 𝐼

𝑘
can then be

formulated as

L𝐼
𝑘

(
𝒙𝐼
𝑘
,

{
𝒙𝑇𝑗

}𝑏
𝑗=1

)
= − 1

𝑏
log

exp
(
𝑠𝐼
𝑘,𝑘

)
∑

𝑗 exp
(
𝑠𝐼
𝑘,𝑗

) , (1)
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where 𝑠𝐼 (𝑘, 𝑗) denotes the similarity of the k-th image to the j-th
text. Similarly, the text-to-image contrastive loss for 𝑥𝑇

𝑘
is

L𝑇
𝑘

(
𝒙𝑇
𝑘
,

{
𝒙𝐼𝑗

}𝑏
𝑗=1

)
= − 1

𝑏
log

exp
(
𝑠𝑇
𝑘,𝑘

)
∑

𝑗 exp
(
𝑠𝑇
𝑗,𝑘

) . (2)

The total loss of this mini-batch can be represented by

L =
1
2

𝑏∑︁
𝑘=1

(
L𝐼
𝑘
+ L𝑇

𝑘

)
. (3)

3.3 Cross-modal Late Interaction
For the contrastive loss, the cross-modal interaction is reflected in
how we compute the similarities 𝑠𝐼

𝑖, 𝑗
and 𝑠𝑇

𝑖,𝑗
for the i-th image and

j-th text. Instead of simply encoding each image or text separately
to a global feature, we apply a cross-modal late interaction inspired
by [13] to model the token-wise cross-modal interaction.

Specifically, denote 𝑛1 and 𝑛2 as the number of (non-padded) to-
kens of the i-th image and j-th text, respectively. The corresponding
encoded features are 𝑓𝜃

(
𝒙𝐼
𝑖

)
∈ R𝑛1×𝑑 and 𝑔𝜙

(
𝒙𝑇
𝑗

)
∈ R𝑛2×𝑑 . For

the k-th visual token, we compute its similarities with all textual
tokens of 𝒙𝑇

𝑗
, and use the largest one

max
0≤𝑟<𝑛2

[
𝑓𝜃

(
𝒙𝐼𝑖

)]⊤
𝑘

[
𝑔𝜙

(
𝒙𝑇𝑗

)]
𝑟

(4)

as its token-wise maximum similarity with 𝑥𝑇
𝑗
. We then use the

average token-wise maximum similarity of all non-padded tokens
in the image as the similarity of an image to a text (resp. a text to
an image). The similarity of the i-th image to the j-th text can thus
be formulated as:

𝑠𝐼𝑖, 𝑗

(
𝒙𝐼𝑖 , 𝒙

𝑇
𝑗

)
=

1
𝑛1

𝑛1∑︁
𝑘=1

[
𝑓𝜃

(
𝒙𝐼𝑖

)]⊤
𝑘

[
𝑔𝜙

(
𝒙𝑇𝑗

)]
𝑚𝐼

𝑘

, (5)

where 𝑚𝐼
𝑘

= argmax0≤𝑟<𝑛2

[
𝑓𝜃

(
𝒙𝐼
𝑖

)]⊤
𝑘

[
𝑔𝜙

(
𝒙𝑇
𝑗

)]
𝑟
. Similarly,

the similarity of the j-th text to the i-th image is

𝑠𝑇𝑖,𝑗

(
𝒙𝐼𝑖 , 𝒙

𝑇
𝑗

)
=

1
𝑛2

𝑛2∑︁
𝑘=1

[
𝑓𝜃

(
𝒙𝐼𝑖

)]⊤
𝑚𝑇

𝑘

[
𝑔𝜙

(
𝒙𝑇𝑗

)]
𝑘
, (6)

where 𝑚𝑇
𝑘

= argmax0≤𝑟<𝑛1

[
𝑓𝜃

(
𝒙𝐼
𝑖

)]⊤
𝑟

[
𝑔𝜙

(
𝒙𝑇
𝑗

)]
𝑘
. Note that

𝑠𝐼
𝑖, 𝑗

(
𝒙𝐼
𝑖
, 𝒙𝑇

𝑗

)
in Equation X does not necessarily equals 𝑠𝑇

𝑖,𝑗

(
𝒙𝐼
𝑖
, 𝒙𝑇

𝑗

)
in Equation (6).

Intuitively, the token-wise maximum similarity in Equation (4)
means that for each image patch, we find its most similar textual
token. Similarly, for each textual token, we also find its closest
image patch. By applying this to the similarity calculation in (5)
and (6) for contrastive loss (3), Fosterer will learn fine-grained
alignment between image patches and textual tokens.

3.4 Prediction
Given a visual rendering of source code and the corresponding
textual comment, we now introduce how to exploit Fosterer to
discover the fine-grained interactions. First, the source code is
visualized as an image by highlighting the syntax with colors on

the basic of plain texts. Then, the visual rendering of source code is
patched into 𝑁 × 24× 1000 patches before fed to the visual encoder,
where 𝑁 represents the lines of the code snippet, 24 denotes the
height pixels of each patching, and 1000 represents the width pixels
of the patch, which also indicates the maximum length of each
statement in the visual rendering. Similarly, the textual comment
will be tokenized to a series of tokens using BPE before fed to the
textual encoder.

After the patching and tokenization process, the image patches
and the textual tokens will be fed to the trained vision encoder
and the textual encoder respectively to get the embedding repre-
sentation. The word-patch alignment is performed on the basis of
the token-wise similarity between the embedding of image patches
and textual tokens. In concrete, for the k-th textual token, the loca-
tion index of image patch with the largest similarity with it (𝑚𝑇

𝑘
in

Equation (6)) is considered as its matching patch. Finally, we can
acquire the matching patches for all textual tokens by calculating
the location index of the image patch with the largest similarity.

4 EXPERIMENTS
In this section, we introduce the research questions in this study,
the dataset preparation, the details in the evaluation, as well as the
experimental results.

4.1 Research Questions
To assess the effectiveness of our Fosterer, we propose to answer
the following research questions:
• RQ1: How effective is Fosterer in building semantic inter-
actions between code and comment? In this RQ, we seek to
assess the performance of Fosterer on code-comment semantic
interaction analysis. Since Fosterer is the first approach to tar-
get this problem, we compare Fosterer with a heuristic-based
baseline proposed by ourselves.

• RQ2: How efficient is Fosterer? The efficiency of Fosterer
is critical for its application in practice. If it needs a lot of time
to infer its results, its usefulness would be drastically decreased
since developers would like to obtain the results quickly when
reading code. Therefore, except for the effectiveness, we assess
the efficiency of Fosterer in this RQ.

• RQ3: To what extent can Fosterer help developers better un-
derstand programs? In this RQ, we aim to investigate whether
the prediction results from Fosterer can better help developers
comprehend code than the pure comments. The answers will
reflect the potential of Fosterer in practice.

4.2 Dataset Preparation
In order to assess the effectiveness of Fosterer on the fine-grained
code-comment semantic interaction analysis ability, we need a
dataset which labels the relationship between source code and
comment tokens. As far as we know, there is no available dataset
for this task. Therefore, we need to manually label a test set of Java
programming language for our evaluation.

We first collect code and the corresponding comment from 10
randomly-selected GitHub repositories from the test set of Java
part in CodeSearchNet. We first filter comments shorter than three
tokens to ensure the comments in our study are descriptive. Then
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Table 1: The details of our test data.

Repository Number of Pairs

Unidata/thredds 1,656
oblac/jodd 1,042

wildfly/wildfly 432
orientechnologies/orientdb 421

rupertlssmith/lojix 389
streamsets/datacollector 344

tiefaces/TieFaces 288
ngageoint/geopackage-android 256
spring-projects/spring-security 138

ReactiveX/RxJava 52
All 5,018

Figure 3: An example to illustrate how we label the fine-grained
interactions between source code and comments.

we get in touch with our contact person in a top-tier international
software company. This person helps us recruit five qualified partic-
ipants, who are all software practitioners with more than five years
of Java development experience. We ask each participant to label
the fine-grained relationship between source code and comments
in the following manner.

First, the visual renderings of source code are split into state-
ments by line and comments are split into tokens by blanks. Then,
each participant should label a 2-dimensional matrix, which indi-
cates whether the token in the comment has semantic relations
with the corresponding visual patches. The detailed example is
shown in Figure 3 where the fine-grained matching relationship
between the code and comment is marked in different colors. As
for the 2-dimensional labeled matrix, the value in the i-th row and
j-th column indicates whether the i-th image patch of source code
has semantic relevance with the j-th token of the comment. Each
statement can be semantic relevant with multiple tokens at the
same time and vice versa. Besides, the cross validation process is
implemented to eliminate the personal knowledge bias. In concrete,
when two participants do not reach agreement on a sample pair,
the third participant will attend and the voting mechanism will be
applied to give a final judgement. Finally, we get 5,018 labels of the
fine-grained interactions between source code and comments. The
manually labeling process lasts for three weeks. Details of our test
dataset are shown in Table 1.

4.3 Baseline Approach
Our approach is the first to address code-comment semantic inter-
actions. Nonetheless, we design a simple heuristic-based baseline

Table 2: Statistics of the dataset used for training Fosterer.

Programming Language Bimodal Data Pairs

Go 319,256
Java 500,754

JavaScript 143,252
PHP 662,907

Python 458,219
Ruby 52,905
All 2,137,293

approach for comparison. This baseline is based on an off-the-shelf
Neural Comment Generation (NCG) model [17]. Generally speak-
ing, given a code snippet, the model itself can generate a natural
language description for it. To apply this model on our task, we
remove one sentence in the code each time and use the model to
generate comment according to the new code. Then we observe
which part of the comment is changed (if any) and the changed part
is matched with the deleted code statement. It should be noted that
this process is performed for each statement so one comment token
may correspond to multiple code statements like our approach.

Note that the prerequisite for applying this baseline is that this
code summarization model can generate oracle comments (i.e.,
those identical to the human-written ones). We carefully checked
our dataset and ensured that this condition is satisfied for 3,608
instances in the test set. Consequently, our evaluation is performed
on these 3,608 code-comment pairs.

4.4 Training Details
4.4.1 Training dataset. Since we use constractive learning, we do
not need explicit code-comment semantic interaction information
in the training set. Any bimodal (i.e., containing code-comment
pairs) dataset can be used.We exploit a recent large dataset provided
by Husain et al. [12], which includes 2.1M bimodal datapoints across
six programming languages (Python, Java, JavaScript, PHP, Ruby,
and Go) from GitHub repositories. Data statistics are shown in
Table 2.

The data comes from popular GitHub repositories and are filtered
with a set of constraints and rules. Namely, (1) each project should
be used by at least one other project, (2) each documentation is
truncated to the first paragraph, (3) documentations shorter than
three tokens are removed, (4) functions shorter than three tokens
are removed, (4) functions shorter than three lines are removed,
and (5) function names with substring “test” are removed.

4.4.2 Data augmentation. To obtain better generalization and data-
efficiency of the model, we perform data augmentation on both
visual rendering of code snippets and texts during the training
phase to construct more code-comment pairs. To ensure the aug-
mented data is semantically similar as the original one, we design
nine data augmentation strategies for code snippets because the
traditional data augmentation strategies (i.e., flipped or cropped) for
images [43] cannot be directly applied to source code renderings.
The details are shown in Table 3. In concrete, the nine strategies are
the semantic-preserving transformations which could be applied to
the source code. The strategies will change the lexical or structural
of the initial source code while preserving the initial semantics. For
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Table 3: The data augmentation techniques used for source code.

Number Data augmentation technique

1 Changing the code format and adding blank lines
2 Renaming identifiers
3 Adjusting code statements order
4 Replacing constants
5 Changing data types
6 Substituting equivalent operators
7 Adding redundant statements
8 Substituting equivalent control structures
9 Substituting equivalent APIs

example, as for the sixth data augmentation strategy, we can change
the operator “++” to “+=1”. As for the eighth data augmentation
strategy, we can change the “while” loop function to “for” loop func-
tion. As for the ninth data augmentation strategy, we can change
the “cout” API to “printf” API. Note that these data augmentation
techniques are widely used code transformation approaches. Due
to the space limit, we cannot enumerate them here and readers are
referred to [34, 51, 66] for more details.

For text augmentation, inspired by the text augmentation strate-
gies in natural language processing (NLP) area, we augment the
texts by exploiting back-translation strategy [61]. In concrete, the
English comments are first translated to another language (Chinese,
in this study) and then translated back to English. Furthermore,
we manually re-write 51,224 comments by replacing the keywords
with the semantic-relevant ones to increase the diversity of the com-
ments. For example, the comment “verify that any buffers acquired
by the test have been released” will be re-written as “check/inspect
that any buffers gained/obtained by the test have been delivered/set
free”. The synonym information is obtained through using theWord-
Net database.5 When feeding a batch of code-comment pairs during
the training process, the visual rendering of source code and the
comment are randomly sampled from the semantic-relevant candi-
dates. The data augmentation process can enrich the diversity of
the samples and help Fosterer strengthen the ability to capture the
fine-grained interactions between the source code and comments.

4.4.3 Implementation details. To save memory and scale up the
batch size, automatic mixed-precision [30] and gradient checkpoint
[8] are used. Each patch of the input images is resized to 24× 1000
resolution during training and the maximum length of the image
patches is limited to 30 with a <BOS> ending flag. The maximum
length of the comment is set to 30 tokens according to the distri-
bution of the training set. The training is mainly conducted on
Nvidia V100 GPUs. We train Fosterer using the LAMB optimizer
[64] and cosine learning rate schedule [26] with a linear warmup.
Weight decay regularization is applied to all parameters except bias,
layer normalization, token embedding, positional embedding and
temperature in contrastive loss.

For the implementation of the contrastive loss, we also set the
temperature in the softmax function to be a learnable parameter
and initialize it as 0.07. For the training, we use the LAMB optimizer
implemented by the cybertroniai’s open-source repository.6 For
5https://wordnet.princeton.edu/.
6https://github.com/cybertronai/pytorch-lamb

Table 4: Hyper-parameters for training Fosterer.

Hyperparameter Value

Vocabulary Size 49408
Initial temperature 0.07

LAMB 𝛽1 0.9
LAMB 𝛽2 0.999
LAMB 𝜖 0.0001

Warm-up iters 3000
Training epochs 30

Batch size 1024 × 8
Base LR 6 × 10−3

Weight decay 3e-2

the learning rate scheduler, we first assign a base learning rate and
then linearly warm it up to the peak learning rate according to the
effective total batch size by a square root strategy. We note that
a large weight decay is crucial to stabilize training and improve
generalization. Specifically, we found that the training stability is a
challenging issue when applying mix-precision training to large-
scalemodels, i.e., the training is extremely unstable and theNaN loss
easily happens. The base learning rate andweight decay are selected
manually via observing the performance at the early training stage.
Table 4 summarizes the hyperparameters for Fosterer’s training.

4.5 Evaluation Metrics
To evaluate the effectiveness of Fosterer, we use thewidely adopted
precision, recall, and F1-score metrics. Precision measures to what
extent the <code statement, comment token> interaction pairs pre-
dicted by Fosterer are real, and Recall measures to what extent
the real <code statement, comment token> interaction pairs can be
captured by Fosterer. The interaction pairs which are semantic
relevant found by Fosterer are denoted as 𝐹𝑜𝑢𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 , while
the interaction pairs which are actually semantic relevant in our
test set are denoted as𝐴𝑐𝑡𝑢𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 . Then, the Precision, Recall
and F1-score can be calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑜𝑢𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∩𝐴𝑐𝑡𝑢𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐹𝑜𝑢𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
(7)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑜𝑢𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∩𝐴𝑐𝑡𝑢𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐴𝑐𝑡𝑢𝑎𝑙𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛
(8)

Since precision and recall are a pair of trade-off metrics, we also
introduce F1-Score taking both metrics into account.

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(9)

4.6 User Study
To answer RQ3, we invite 4 Ph.D students in our college majoring in
software engineering to help us assess the usability of the prediction
results of Fosterer on program comprehension. For each code-
comment pair, we show them the semantic interaction results from
Fosterer and ask them if they think the result is useful for them
to better understand the code snippet compared with the pure
comment. The comprehension is reflected by the understanding
of the intention of each variable and statement. They assess the

https://wordnet.princeton.edu/.
https://github.com/cybertronai/pytorch-lamb
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usefulness of each case on a 5 point Likert scale (Very Unuseful,
Unuseful, Neutral, Useful, and Very Useful). Apart from scoring,
they are welcomed to provide the rationale for each case’s score.

We randomly select 20 code-comment pairs from our test set.
Each participant assesses the prediction results of Fosterer for 10
of them. To alleviate the bias induced by subjectivity, each case is
assessed by two participants, and if their scores are different, they
discuss with each other to reach a final score.

4.7 Experiment Results
In this section, we introduce our experiment results to answer the
proposed research questions.

4.7.1 RQ1: Effectiveness of Fosterer. We report the experiment
results in Table 5. From the results, we note that Fosterer achieves
relatively high precision and recall. Specifically, the overall value
of precision reaches 82%, which means the semantic interaction
pairs reported by Fosterer are of high probability to be correct;
and the recall reaches 77%, indicating that most of the real semantic
interaction pairs are identified by Fosterer. The reason that the
recall value is relatively lower than the precision value is that
Fosterer usually misses the one-to-many situation where one
token may match several code statements at the same time.

Moreover, the F1-scores of Fosterer consistently exceed those of
the baseline approach on all the projects except for the lojix project
where both approaches achieve an F1-score of 75%. Totally, the
precision, recall, and F1-score of Fosterer outperform those of the
baseline by 6%, 5%, and 5% respectively. We also perform an ablation
study and results show that the F1-score of the approach decreases
2.4% without the data augmentation technique. This means that
such a technique, which is used to increase the generalization of
the model, contributes slightly to the final effectiveness.

The F1-score of Fosterer nearly reaches 80%, exceeding that of the
baseline which is 74% to a large extent.

4.7.2 RQ2: Efficiency of Fosterer. Fosterer exploits the fine-
grained matching interactions between image patches and textual
comments by updating only contrastive loss, while simultaneously
acquiring the ability to pre-compute source code and comment
representations offline at inference, keeping both the training and
inference efficient. In order to optimize the time for inference, we
implement a series of operations to save the communication and
computation time. First, we reduce the embedding size from 512 to
256 to decrease the number of parameters of Fosterer. Second, we
reduce the precision of the last-layer features of the image encoder
and the text encoder from fp32 to fp16 before node communication
and perform the multiplication in Equation (5) and Equation (6)
under the reduced precision. Finally, in the similarity calculation
process, for a token in comments, we select 50% image patches with
the highest token-wise maximum similarity score in Equation (4)
among all patches.

The results of the time consumption of Fosterer under diverse
configurations are shown in Table 6. We can see that all the three
strategies can optimize the efficiency of Fosterer to a large degree.
For instance, if we only reduce the embedding dimension from 512
to 256, the inference time for each item (i.e., the code-comment

Table 5: The effectiveness of semantic interaction analysis of Fos-
terer compared with that of the baseline.

Project Tool Precision Recall F1-score

Unidata/thredds Baseline 74% 72% 73%
Fosterer 81% 77% 79%

oblac/jodd Baseline 73% 71% 72%
Fosterer 80% 76% 78%

wildfly/wildfly Baseline 78% 74% 76%
Fosterer 82% 78% 80%

orientechnologies/orientdb Baseline 76% 72% 74%
Fosterer 81% 73% 77%

rupertlssmith/lojix Baseline 77% 73% 75%
Fosterer 77% 74% 75%

streamsets/datacollector Baseline 73% 71% 72%
Fosterer 83% 74% 77%

tiefaces/TieFaces Baseline 79% 75% 77%
Fosterer 83% 79% 78%

ngageoint/geopackage-android Baseline 74% 68% 71%
Fosterer 85% 79% 82%

spring-projects/spring-security Baseline 75% 73% 74%
Fosterer 84% 78% 81%

ReactiveX/RxJava Baseline 79% 73% 76%
Fosterer 82% 78% 80%

Total Baseline 76% 72% 74%
Fosterer 82% 77% 79%

Table 6: Efficiency study of Fosterer. We report the training time
and inference time respectively. The training process is exploited
on 8 V100 GPUs, with a batch size of 512 per GPU.

Embed Embed Token Training time Inference time
dim precision (%) (sec/item) (sec/item)

512 fp32 100% 2.85 2.81
512 fp16 100% 2.67 2.62
256 fp16 100% 2.32 2.29
256 fp16 50% 1.61 1.57

Figure 4: The results of our user study.

pair) will be dropped from 2.81 to 2.62, a decrease of around 7%.
When all the three strategies are applied together, the training time
and inference time are optimized to 1.61 and 1.57 second per code-
comment pair, respectively. Once trained, our model can be applied
for multiple times, thus it will take a little time (i.e., around 1.5
seconds) for developers to obtain the prediction results in practice,
which is an affordable time consumption.

With a number of lightweight strategies, the time consumption of
Fosterer to make prediction for a code-comment pair is about 1.5
seconds, which is quite efficient for applying in practice.
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Figure 5: Visualizations on a sample selected from GitHub repository RxJava. The first line represents the comment. For each token in
comments, the matched patch label predicted by Fosterer is shown in red. The true label is shown in black. The visualization rendering of code
snippets after patching by line is shown below.

Figure 6: Another sample from GitHub repository RxJava. The information is illustrated in the same way as Fig. 5.

4.7.3 RQ3: User study. Results of our user study are shown in
Fig. 4. For 6 out of the 20 code-comment pairs, the prediction re-
sults of Fosterer are considered as Very Useful to help program-
mers understand the code, and the number of Useful is 7. Such
results also demonstrate the rationale of the basic point of our
study that building accurate code-comment semantic interactions
can boost program comprehension. Our participants only find one
code-comment instance where the semantic interaction informa-
tion from Fosterer hinders the comprehension process. In such a
case, one noun in the comment should be matched with a parameter
in the method signature, while Fosterer fails to establish such a
relationship. In the contrary, it matches this token with a statement
in the method body. Such a result may cast side effect since it misses

a number of critical information such as what type is the parameter
and how it is operated from the beginning. Thus, our participants
consider the prediction results as Unuseful.

In our user study, the prediction results of Fosterer are considered
as useful or very useful for 65% (13/20) cases.

5 DISCUSSION
5.1 Qualitative Analysis
In RQ1, we have analyzed the effectiveness of Fosterer quanti-
tatively. In this section, we provide qualitative case study to in-
vestigate what is captured by Fosterer and what is missed. We
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randomly select 100 code-comment pairs from the test set and man-
ually compare the matching relations built by Fosterer with the
oracles to identify the strengths and weakness of Fosterer.

We mainly find that Fosterer is good at capturing the semantics
inherent in the control statements like If conditional statements.
An example from our test set is shown in Fig. 5. In this case, Fos-
terer make good predictions for the tokens corresponding to the
control statements. For instance, it matches the conditional state-
ment if (getCount() != 0) with the condition in the comment
(i.e., is counted down), which captures the semantic of this If
statement accurately. In another case, it successfully captures the re-
lation between the bound condition in the comment (i.e., or when
the wait is interrupted) and the Catch statement in the code
catch (InterruptedException ex).

Nonetheless, Fosterer does have some limitations. The most
significant one is, as pointed out in our user study, it tends to miss
semantic information from method signatures. Specifically, a num-
ber of comment tokens should have semantic relations with the
method parameters but Fosterer does not make such predictions.
This situation becomes worse if the parameter is not named as the
token in the comment. A concrete example is shown in Fig. 6. In this
example, Fosterer also demonstrates its capability of capturing the
semantic of Control statements. For instance, it precisely matches
the description or return false if the subject has terminated
with the conditional statement if (a == TERMINATED). It, how-
ever, fails to match the given subscriber with the parameter of
this method. The assignment operation in the method (i.e., b[n]
= ps) is related with the parameter ps and thus our annotators
believe ps refers to the given subscriber in the comment and build
this relationship. In contrast, Fosterer assigns these tokens to
another statement where the token subscriber occurs, which is a
mismatching. Our analysis shows the strengths and weaknesses of
Fosterer, which indicates that there is still improvement space for
future works.

5.2 Threats to Validity
Internal threats. Any manually-created dataset may face the bias
from subjectivity. Thus there may exist bias in our labelled code-
comment semantic interaction dataset. This threat, however, is
alleviated considering that (1) the participants for dataset labelling
are all experienced developers; and (2) cross-checking is applied in
the labelling process which can ensure one code-comment pair is
checked by at least two participants. Furthermore, we open source
the largest dataset on this task so far in our replication package for
the community’s review.

Another threat is that in our user study, we randomly select
20 cases as the experiment objects. This process is suffered from
randomness. However, we cannot burden our participants with too
much workload and we checked that Fosterer achieves an average
F1-score of 78% on these cases, a performance that is similar to its
overall result on the whole dataset.

In our user study, the initial target is to judge if our motivation
for this study holds in practice, i.e., if providing developers with the
code-comment semantic interactions can help them comprehend
programs. We do not provide participants with results from our
baseline approach since we are afraid that if we provide them with

the results from two tools, they may focus more on comparing the
differences between the results rather than assessing whether the
results from a single tool are helpful. The qualitative comparison
with the baseline is left as our future work.

Fosterer is the first to tackle the ambition of code-comment
semantic-interaction analysis. Apart from our designed baseline,
other approaches could also be proposed to address this task, among
which the traditional traceability approach [6] is a possible one.
Such comparisons are left in future.

External threats. External threats to validity mainly relate to
the representativeness of our dataset. Our dataset collects Java code-
comment pairs from 10 open-source highly-ranked repositories,
and they are also included in another widely-known benchmark,
CodeSearchNet [12]. Considering that the labelling process is quite
time-consuming, enlarging the scale of our dataset is considered as
our future work. All comments used in our evaluation are about
functionality description (the category A in the previous study
[33]). We believe this is the only suitable type for performing the
code-comment semantic interaction analysis task, for example, we
cannot expect to build relations between the ToDo comments and
the code.

In RQ1, to fairly compare against the baseline, we only evaluate
the effectiveness of Fosterer on a part of cases in our dataset
(those where the code summarization model can generate oracle
comments). We also evaluate the effectiveness of Fosterer on the
whole dataset and results reveal it can achieve 76% for precision,
73% for recall, and 75% for F1-score. Such a performance experiences
slightly decrease compared with that shown in Table 5. From this
perspective, Fosterer and automated code summarization tools
seem to face the similar challenges.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose Fosterer, a tool that can automatically
analyze which part of code has semantic relation with a specific to-
ken in the comment. The core idea is that program comprehension
can be enhanced by establishing fine-grained interaction relation-
ship between code statements and comment tokens. The approach
is based on cross-modal learning and contrastive learning, and
also borrows the weapon of pre-trained models. Experiments have
shown that (1) Fosterer can effectively capture the fine-grained
semantic interactions between visual renderings of source code
and comments compared with a heuristic-based baseline approach;
(2) Fosterer can be applied in practice with an affordable time
consumption; and (3) programmers consider the prediction results
of Fosterer as useful for better understanding the code for most
conditions. According to the results of our user study, we believe
this study points out a promising direction for boosting program
comprehension for future studies.

In future, we will further enlarge the scale of our labeled dataset
to perform more comprehensive evaluation. Besides, we will ex-
plore other data augmentation and AutoML technologies and design
a more advanced image encoder as well as an interaction layer to
further improve the results of fine-grained code-comment semantic
interaction analysis. Finally, we will design pipelines which inte-
grate our Fosterer for better performing downstream tasks such
as automatic comment update.
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