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The current landscape of binary code summarization predominantly revolves around the generation of a
single summarization, limiting the scope of understanding and usability for reverse engineers. The existing
approaches often fail to address the multifaceted needs of users, such as detailed insights into usage patterns,
implementation nuances, and design rationale, as highlighted in the domain of source code summarization.
Consequently, the necessity of multi-intent binary code summarization, an essential way to enhance the
efficacy of reverse engineering processes, is underscored. To address this gap, our basic observation is that the
two types of information essential for binary code summarization (i.e., the assembly code and pseudo code) can
complement each other well. Specifically, the assembly code, characterized by its low-level nature, intricately
delineates the execution logic, whereas the pseudo-code, operating at a higher level, retains valuable contextual
information. Based on this insight, we propose MiSUm, a novel multi-modality heterogeneous code graph
alignment and learning method to integrate information from both assembly code and pseudo code. MiSUm
introduces a unified multi-modality heterogeneous code graph (MM-HCG) that achieves alignment between
assembly code graph and pseudo code graph and carries low-level execution details and high-level structural
information. To fuse the graph information, we propose multi-modality heterogeneous graph learning with
heterogeneous mutual attention and message passing, which caters to important code blocks and discovers
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inter-dependencies between different forms of codes. We also propose an intent-aware summary generator
with an intent-aware attention mechanism to produce customized summaries corresponding to multiple
intents. Extensive experiments, including evaluations across various architectures and optimization levels,
demonstrate thatMiSUm outperforms state-of-the-art baselines in BLEU, METEOR, and ROUGE-L metrics.
Human evaluations further validate its ability to effectively support reverse engineers in understanding diverse
binary code intents, providing a significant advancement in the field of binary code analysis.

CCS Concepts: • Software and its engineering→ Software maintenance tools.

Additional Key Words and Phrases: Binary code understanding, Multi-intent code summarization, Large
language models, Multi-modality fusion, Reverse engineering
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1 Introduction

The code summarization task (a.k.a. code comments generation) involves automatically generating
precise, human-readable natural language descriptions of code, which can enhance understanding
and facilitate maintenance [Al-Kaswan et al. 2023; Mu et al. 2023; Shang et al. 2024; Steidl et al.
2013; Zhang et al. 2022]. It is considered a critical way to facilitate program comprehension since
developers usually forget or have no time to write detailed code summaries, thereby holding the
potential to significantly boost software development and maintenance activities [Geng et al. 2022,
2023]. Currently, code summarization tasks can be categorized into two types: source code sum-
marization and binary code summarization. (1) Source code summarization aims to automatically
produce natural language descriptions of source code. (2) Binary code summarization generates
summaries directly from binary code when source code is not accessible.
Recent studies reveal a growing trend in source code summarization that increasingly focuses

on understanding the specific intents of developers [Geng et al. 2024; Mu et al. 2023]. The term
"intents" refers to the perspectives from which developers aim to understand code in practical
scenarios [Mu et al. 2023]. Specifically, Zhai et al. [2020] identified six common types of intents in
real-world projects: what, why, how-to-use, how-it-is-done, property, and others, as shown in Table 1.
A statistical analysis by Mu et al. [2023] found that approximately 67% of top-starred Java projects
on GitHub contain code comments reflecting multiple intents. These findings suggest a need to
move beyond traditional source code summarization (a one-to-one mapping between source code
and its summary) and towards generating summaries that are customized according to developers’
intents (a one-to-many mapping between source code and multi-intent summaries). This approach
is known as multi-intent source code summarization [Geng et al. 2024]. To address this task, Mu
et al. [2023] proposed an approach called DOME, which employs an attention mechanism to focus
on different parts of the code for different intents. Geng et al. [2024] conducted an empirical study
showing that Large Language Models (LLMs) can serve as few-shot summarizers for multi-intent
source code using few-shot in-context learning. Similarly, in the field of binary code summarization,
reverse engineers who specialize in analyzing binary files also need to understand the code from
multiple perspectives. For instance, Ye et al. [2023] conducted a preliminary study involving 15
reverse engineers from both academia and industry, showing that they frequently analyze binary
code with different intents, such as identifying the main function or understanding implementation
details. In light of these findings, it is necessary to extend existing binary code summarization
methods (one-to-one mapping) to consider multiple intents (one-to-many mapping). This task is
referred to as multi-intent binary code summarization in this paper.
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Table 1. The intent taxonomy of code comments [Geng et al. 2024; Zhai et al. 2020].

Category Definition Example

What Describes the functionality of a method “Checks if the tile units at the given coordinates
are displayed on the screen”

Why Explains the reason why a method is provided
or the design rationale of the method

“Prepare to start making calls to the currently
registered callbacks”

How-to-use Describes the usage or the expected set-up of
using a method “Code executed before the intercepted method”

How-it-is-done Describes the implementation details of a method “Ends the current table, discards it and pops the
top of the stack to be the new current table”

Property Asserts properties of a method including
pre-conditions or post-conditions of a method

“Returns true if the value is a string that matches
a regex”

Others Unspecified or ambiguous comments “I am done with the model, free the resources”

To accomplish the task of multi-intent binary code summarization, we can adapt existing main-
stream code summarization methods to this task. A common approach treats code summarization
as a translation task, employing Neural Machine Translation (NMT) models [Stahlberg 2020] to
convert code into natural language based on a specific intent. For binary code summarization,
given the inherent difficulty in understanding binary code in its native form (as machine code
or executable files), researchers typically use reverse engineering techniques to translate binary
code into either assembly code or pseudo code, which is then converted into natural language.
However, both assembly code and pseudo code have inherent limitations. Assembly code, being a
low-level language, directly describes the underlying execution logic but lacks high-level structural
and contextual information. Conversely, pseudo-code is closer to high-level languages and retains
more context and logical structure, but it is often imprecise and lacks critical low-level details,
such as specific memory operations and register manipulations. To address these limitations, we
propose leveraging the complementary strengths of both assembly and pseudo code, enabling a
more comprehensive understanding of binary code.
Based on these insights, we need to integrate both assembly code and pseudo code for multi-

intent binary code summarization. Traditional fusion methods [Li et al. 2021; Ma et al. 2022; Tao
et al. 2023] first use encoders to separately encode assembly code and pseudo code tokens and then
fuse their feature representations. These methods require the models to accurately understand
both types of code. Undergoing comprehensive training on extensive source code datasets, Large
Language Models (LLMs) exhibit a robust proficiency in understanding code [Chen et al. 2021],
prompting researchers to employ LLMs with prompt engineering [White et al. 2023] and in-context
learning (ICL) [Min et al. 2022] for multi-intent source code summarization tasks [Geng et al.
2024]. However, applying prompt-based or ICL to fuse assembly code and pseudo code for multi-
intent binary code summarization presents unique challenges. This approach requires LLMs to be
pre-trained to understand both assembly and pseudo code. However, current LLMs are primarily
trained on source code and have a limited understanding of assembly code, making it hard to
effectively integrate assembly code and pseudo code to fully comprehend binary code. Therefore,
developing a multi-modal fusion approach for multi-intent binary code summarization remains
highly challenging.

In this paper, to better deal with the multi-intent binary code summarization task, we propose a
multi-modality heterogeneous code graph alignment and learningmethod to leverage both assembly
and pseudo code. Our proposed method,MiSUm, introduces a Multi-Modality Heterogeneous Code
Graph (MM-HCG), which integrates assembly and pseudo code into a unified graph to capture both
low-level execution details and high-level structural information. To better facilitate the integration
of the two levels of graphs, we propose a heterogeneous graph alignment algorithm by a cross-
form statement mapping, ensuring consistent and comprehensive representation across modalities.
To fuse the information over the heterogeneous graph, we propose MM-HCG heterogeneous
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graph learning with heterogeneous mutual attention and message passing, which attends more
to important code blocks and helps to discover inter-dependencies and semantic relationships
between different modalities (forms of code). Finally, we also construct an intent-aware summary
generator with intent-aware attention to focus on the most relevant information for each intent
and generate the corresponding summary.
We conducted extensive experiments to evaluate the effectiveness of MiSUm. Since training

and evaluatingMiSUm require a large volume of labeled summary-intent data, we constructed a
large-scale binary code summary dataset labeled with corresponding intents across six categories.
Specifically, we classified intents based on the approach by Mu et al. [2023] on the dataset released
by Ye et al. [2023], resulting in an intent-aware binary code summary dataset. We performed
experiments across three different architectures (X86, X64, ARM) and three optimization levels
(O1, O2, O3) to ensure a fair comparison with baselines. The results from both automatic metrics
and human evaluations demonstrate the superiority ofMiSUm. In particular, human evaluations
indicate thatMiSUm significantly meets the varying needs of reverse engineers in understanding
binary functions. Our contributions are as follows:

• We introduce the novel task of multi-intent binary code summarization, offering a new perspective
and research direction in the field.
• We create a comprehensive dataset specifically designed for multi-intent binary code summa-
rization. This dataset includes a diverse range of binary code samples and their corresponding
multi-intent summaries, facilitating robust evaluation and development in this area.
• We propose an innovative Multi-Modal Heterogeneous Code Graph (MM-HCG) alignment
method, which effectively integrates information from both assembly code and pseudo code
modalities. This method leverages the complementary strengths of each modality and improves
the representation and understanding of binary code.
• We achieve state-of-the-art performance in multi-intent binary code summarization. Our exten-
sive experiments demonstrate that our approach outperforms several strong baselines, including
ChatGPT and GPT-4, on both automatic metrics and human evaluations.

2 Related work

2.1 Source Code Summarization

Code summarization involves automatically generating natural language descriptions (or comments)
for code snippets [Shi et al. 2024; Steidl et al. 2013; Su and McMillan 2024; Zhang et al. 2022; Zhou
and Liu 2024]. Research in this area dates back to 2010 when Haiduc et al. [2010] first applied
automated text summarization techniques to source code. Until 2017, most methods focused on
information retrieval (IR) [Haiduc et al. 2010; Moreno et al. 2013; WANG et al. 2015] and template-
based approaches [McBurney and McMillan 2014; Sridhara et al. 2010, 2011]. With the advent of
neural machine translation (NMT) [Stahlberg 2020] in natural language processing (NLP), many
researchers adapted its encoder-decoder architecture for code summarization tasks [Gao et al.
2023; Hu et al. 2018; Zheng et al. 2019]. Recently, the field has seen a surge in research on large
language models (LLMs) for code summarization [Shi et al. 2024; Su and McMillan 2024; Zhou and
Liu 2024]. Fried et al. [2022] introduced an LLM called InCoder and conducted zero-shot training
on the CodeXGLUE Python dataset [Lu et al. 2021], achieving notable results. However, fine-tuned
smaller pre-trained language models (PLMs) like CodeT5 [Wang et al. 2021] still outperform this
zero-shot setting. Ahmed and Devanbu [2022] explored few-shot prompting for adapting LLMs
to code summarization, finding that it enables Codex [Chen et al. 2021] to significantly surpass
fine-tuned smaller PLMs.
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2.2 Binary Code Summarization

Binary code summarization aims to extract and generate concise summaries from binary code to
aid in program understanding [Al-Kaswan et al. 2023; Jin et al. 2023; Shang et al. 2024; Taviss et al.
2024; Xiong et al. 2023; Ye et al. 2023]. BinT5 [Al-Kaswan et al. 2023], the pioneering model in this
domain, extends the scope of source code pre-trained language models to binary code. It treats
decompiled code as a specialized programming language, using fine-tuned CodeT5 [Wang et al.
2021] to capture its semantics and generate summaries. This innovation has paved the way for
further research in binary code summarization. HexT5 [Xiong et al. 2023], an advanced pre-training
model based on CodeT5, supports multi-task learning, including function name recovery and binary
code summarization, demonstrating promising performance. CP-BCS [Ye et al. 2023] employs a
bidirectional instruction-level control flow graph and pseudo code enriched with expert knowledge
to learn comprehensive binary function execution behavior and logic. Jin et al. [2023] introduced
the BinSum benchmark, featuring over 557,000 binary functions, and proposed a prompt-based
method using ChatGPT/GPT-4 [Achiam et al. 2023]. Additionally, Shang et al. [2024] assessed
the effectiveness of popular LLMs in binary code summarization, highlighting their potential to
advance binary code understanding.

2.3 Code Summarization with Multiple Intents

Code summarization with multiple intents seeks to generate tailored code summaries based on
specific user intents [Geng et al. 2024; Mu et al. 2023]. Mu et al. [2023] proposed a developer-intent-
driven code comment generation approach called DOME, which generates comments aligned
with specified intents using an attention mechanism focused on relevant code information. Geng
et al. [2024] evaluated LLMs using the in-context learning [Dong et al. 2022] paradigm, showing
that LLMs significantly outperform state-of-the-art supervised learning methods in generating
multi-intent comments for source code. However, research on multi-intent summarization for
binary code is sparse, representing a critical gap in the field. Understanding binary code in various
contexts is as vital as it is for source code.

3 Problem Definition

The goal of the multi-intent binary code summarization task is to generate a summary that aligns
with specific intents given a binary code snippet. Formally, given a binary code snippet 𝑥 and a
set of intent categories 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} where each 𝑒𝑖 represents a particular intent category,
the objective is to generate a textual summary 𝑦 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} with a sequence of tokens 𝑦𝑖 ,
which satisfies the intents specified by 𝐸. The summary should capture the key aspects of the code
snippet 𝑥 as per each intent in 𝐸.

4 Motivation Example

In existing literature, there are two main approaches for applying NMT models to translate binary
code into natural language descriptions in the field of program repair. The first approach involves
using reverse engineering to transform binary code into assembly code, which is then translated
into natural language. The second method uses plugins to convert assembly code into pseudo
code, which is subsequently translated. However, both assembly and pseudo code have inherent
limitations: assembly code, being a low-level language, captures the execution logic but lacks
high-level structural and contextual information. In contrast, pseudo-code is closer to high-level
languages and retains more context and logical structure, but it is often imprecise and omits crucial
low-level details, such as specific memory operations and register manipulations.
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1 // Assembly Code:
2 loop_start: next_node:
3 LDRB R1, [R0, #15] LDR R0, [R0]
4 CMP R1, R2 CMP R0, #0
5 BNE next_node BNE loop_start

6

7 LDRB R3, [R0, #12] MOV R0, #0
8 CMP R3, R3 BX LR
9 BGT next_node

10

11 LDR R4, [R0, #8]
12 CMP R4, R5
13 BLT next_node

14

15 MOV R0, R0
16 BX LR
17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 /∗∗ Summary:
19 ∗ This code snippet performs a loop that checks
20 ∗ conditions on memory values pointed by R0,
21 ∗ using registers R1−R5 for comparisons, and
22 ∗ branches to 'next_node' if not meet conditions,
23 ∗ continuing until R0 points to a null address. ∗/
 	
Fig. 1. An example showing binary code sum-
marization based on assembly code.

� �
1 // Pseudo Code:
2 int ∗∗__fastcall find_matching_node(int ∗∗∗a1,

unsigned int a2, unsigned int a3, unsigned
int a4) {

3 int ∗∗v1;
4 unsigned int v2, v3;
5

6 for (v1 = ∗a1; v1; v1 = (int ∗∗)∗v1) {
7 v2 = ∗((unsigned __int8 ∗)v1 + 15);
8 if (v2 == a2) {
9 v3 = ∗((unsigned __int8 ∗)v1 + 12);
10 if (v3 <= a3 && v1[2][10] >= a4)
11 return v1;
12 }
13 }
14 return 0;
15 }
16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 /∗∗ Summary:
18 ∗ The `find_matching_node` function searches
19 ∗ through a linked list and returns the first node
20 ∗ that meets specified criteria.
21 ∗ If no such node is found, it returns `0`. ∗/
 	

Fig. 2. An example showing binary code sum-
marization based on pseudo-code.

To motivate the need for a multi-intent binary code summarization approach, we observe
that different types of information are useful for generating different types of summaries. Low-
level details found in assembly code, such as memory operations, register manipulations, and
instruction sequences, are particularly suitable for generating summaries that focus on "how-to-use"
or "how-it-is-done" intents, which describe the precise operations and execution steps of the binary
code. On the other hand, high-level information found in pseudo-code, such as the algorithmic
flow and purpose of the code, is more suitable for generating summaries that align with "what,"
"why," or "property" intents, which provide an overview of the code’s functionality, purpose, or
characteristics. To illustrate the limitations of existing summarization techniques based on single-
modality approaches, we present several examples that demonstrate how these methods fail to
provide comprehensive binary code summaries. The summaries in Figures 1 and 2 are generated
using GPT-4 following Shang et al. [2024], with prompts reflecting different intents: "what" for
assembly code and "how-it-is-done" for pseudo code. The prompt templates are as follows: "Imagine
you are an experienced binary reverse engineer. Your task is to analyze the provided code and generate a
brief comment that describes the function’s overall functionality for assembly code (or implementation
details for pseudo code). Here are the code snippets: Assembly Code (Pseudo Code)."
Figure 1 illustrates an example of binary code summarization using assembly code. Assembly

language is a low-level programming language where instructions consist of operands and opcodes
that directly reflect the underlying machine instructions and execution logic. Therefore, summaries
generated from assembly code are more likely to describe low-level operational details of the
code. The assembly code snippet in Figure 1 performs a search operation to find a matching node
in a linked list. The summary generated from this code specifically details the operations such
as "checks conditions on memory values pointed by R0", "using registers R1-R5 for comparisons",
and "continuing until R0 points to a null address". These elements of the summary focus on the
specific interactions with registers and memory addresses, reflecting the fine-grained execution
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logic inherent to assembly code. However, assembly code often struggles to provide a high-level,
conceptual understanding of the function’s overall purpose, making it less effective in satisfying
the "what" intent. The focus on fine-grained details can obscure the broader functional goal of the
code, leading to summaries that may lack clarity in conveying the code’s overall behavior or intent.

Figure 2 illustrates an example of binary code summarization using pseudo code. Pseudo code is
a high-level representation, offering a more abstract view compared to assembly language. It is
designed to be easy to read and understand, reflecting the logic and flow of the code in amore human-
readable form. The pseudo-code snippet in Figure 2 describes the function find_matching_node,
which iterates through a linked list to find and return the first node that meets specific criteria, or 0
if no matching node is found. The summary provided for this pseudo code captures the high-level
functionality of the algorithm, stating that it "searches through a linked list" and "returns the first
node that meets specified criteria". It is well-aligned with the "what" intent, providing a clear and
concise explanation of the function’s purpose. However, pseudo code typically lacks the detailed
operational insights found in assembly code, such as specific register usage or low-level memory
operations, making it less effective at fulfilling the "how-it-is-done" intent. As a result, while pseudo
code excels at summarizing a function’s overall goal, it often misses critical implementation details
that are necessary for a deeper understanding of the underlying execution logic.
Thus, each modality—assembly code and pseudo code—has inherent strengths and limitations

when used independently for binary code summarization. Assembly code excels in providing
detailed operational descriptions but falls short in summarizing the overall function ("what"), while
pseudo code offers a clear high-level overview but lacks the depth to describe how the function is
implemented ("how-it-is-done"). Combining both modalities can better address the diverse intents
in multi-intent binary code summarization.

5 Method

5.1 Overview

Figure 3 illustrates the overview of MiSUm, which comprises four core components: (1) Multi-

Modality Code Graph (MM-HCG) Constructor, integrating pseudo code and assembly code
into a unified heterogeneous graph structure and enabling the effective merging of information for
improved semantic understanding; (2)Multi-Modality Heterogeneous Code Graph Alignment

and Integration, aligning and integrating the heterogeneous graphs derived from different code
modalities to ensure consistent and comprehensive representation; (3) MM-HCG Heterogeneous

Graph Learning, learning to represent the aligned MM-HCG and fusion the semantic features of
the code via the aligned graphs; (4) Intent-Tailored Summary Generator, utilizing an intent-
aware attention mechanism to selectively summarize the most pertinent information, and generate
summaries closely aligned with the user’s specific intent.

5.2 Multi-Modality Code Graph Constructor

To better understand the information from the target binary code, we transfer the binary code into
pseudo code and assembly code and then construct graphs to carry the information on pseudo code
and assembly code, where models may discover the complex structure and unreachable codes, and
execution behavior from the graphs.

5.2.1 Graph with Pseudo Codes. We construct an Augmented Abstract Syntax Tree (AAST) of
pseudo code to obtain the structural and semantic information; and then transform the tree to a
graph with pseudo codes. Specifically, in program analysis, several representations such as the
Abstract Syntax Tree (AST), Control Flow Graph (CFG), and Data Flow Graph (DFG) are commonly
used to capture the syntactic and semantic relationships within source code. To complement these
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Fig. 3. Overview of MiSUm. We first translate the binary code into assembly code (ASM) and pseudo
code, converting each into a graph structure. Through the graph alignment and integration, we obtain the
Multi-Modal Heterogeneous Code Graph (MM-HCG) and then conduct the graph learning. The Generator
produces summaries awarded to specific intent.

traditional structures, we also incorporate the Natural Code Sequence (NCS), which provides a
"human-readable" representation of code token relationships. We integrate the AST, CFG, DFG,
and NCS into a unified framework known as the Augmented Abstract Syntax Tree (AAST). The
AAST is defined as a graph 𝐺𝑃 = (𝑉 , 𝐸), where 𝑉 represents the nodes from all four structures,
and 𝐸 represents the directed edges capturing syntactic, control flow, data flow, and sequential
relationships. By combining these elements, the AAST offers a comprehensive view of a program’s
semantics and execution logic, facilitating more effective analysis and understanding of the code. 1

5.2.2 Graph with Assembly Code. To understand the structure and execution behavior of assembly
code, we extract the Control Flow Graph (CFG). A CFG is comprised of basic code blocks and their
jump control flows among blocks. The nodes indicate basic blocks and the edges indicate jump
control flows. CFGs are instrumental in optimizing the assembly code by enabling the identification
of redundant or unreachable code blocks. Its capability to represent complex control logic succinctly
makes CFGs effective in reverse engineering and automated analysis of assembly code.

5.3 Multi-Modality Heterogeneous Code Graph Alignment and Integration

To align and integrate the modality information from pseudo code and assembly code, we align
the above two graphs (pseudo code graph 𝐺𝑃 and assembly code graph 𝐺𝐴) by a cross-language

1We follow Zhou et al. [2019] to make use of the open-source code analysis platform for C/C++ based on code property
graphs, Joern [Yamaguchi et al. 2014], to extract ASTs, CFGs, and DFGs for all code functions.
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Algorithm 1: Graph Alignment and Integration for Heterogeneous Code Graph
Data: Pseudo Graph 𝐺𝑃 , Assembly Code Graph 𝐺𝐴, Pseudo Code 𝑃𝑐 , Assembly Code 𝐴𝑐 ,

Address Information from DecompilerM
Result: Heterogeneous Code Graph 𝐺𝑃𝐴

1 Function AlignGraphs(𝐺𝑃 ,𝐺𝐴, 𝑃𝑐 , 𝐴𝑐 ,M):
2 𝐺𝑃𝐴 ← InitializeEmptyGraph();
3 // Step 1: Construct mapping from address information

4 mapping← ∅;
5 for each address pair (𝑝𝑖 , 𝑎 𝑗 ) inM do

6 Add mapping from pseudo code statement 𝑝𝑖 to assembly code instruction 𝑎 𝑗 ;
7 // Step 2: Node matching

8 for each node 𝑠𝑖 in 𝐺𝑃 do

9 for each node 𝑣 𝑗 in 𝐺𝐴 do

10 if 𝑠𝑖 matches 𝑣 𝑗 based on mapping then
11 Add edge between 𝑠𝑖 and 𝑣 𝑗 in 𝐺𝑃𝐴;
12 else

13 Continue;

14 return 𝐺𝑃𝐴;

statement mapping and construct a unified heterogeneous code graph 𝐺𝑃𝐴 = {𝐺𝑃 ;𝐺𝐴} carrying
both low-level execution details and high-level structural information.

Since the pseudo code is obtained by decompiling assembly code using IDA Pro’s Hex-Rays plugin
[Hex-Rays 2024], the decompilation provides address information that maps pseudo code statements
to their corresponding assembly code instructions. This mapping facilitates the alignment of code
blocks and statements between pseudo code and assembly code. Algorithm 1 encourages bridging
the sub-graphs𝐺𝐴 and𝐺𝑃 and then composing multi-modality heterogeneous graph𝐺𝑃𝐴 based on
the assembly code-to-pseudo code mapping. The algorithm involves the following steps:

• Mapping Construction: Using address information provided by the decompiler, we construct a
mapping from assembly code instructions to pseudo code statements. This mapping establishes
the correspondence between nodes in the pseudo code graph and their counterparts in the
assembly code graph.
• Node Matching:We iterate over nodes in both the pseudo code graph and the assembly code
graph. Based on the constructed mapping, we determine the corresponding nodes by checking
the matching relationships between pseudo code statements and assembly code instructions.
• Heterogeneous Edge Addition: After identifying matching nodes, we integrate the two graphs
by adding edges between matched nodes. This process effectively unifies the pseudo code and
assembly code graphs into a Multi-Modality Heterogeneous Code Graph (MM-HCG).

5.4 MM-HCG Heterogeneous Graph Learning

To fusion the information over graphs, we propose MM-HCG heterogeneous graph learning
with heterogeneous mutual attention and message passing. Specifically, it takes the multi-modality
heterogeneous graph as input and produces representations that carry both structural and contextual
information. It enhances the model’s ability to understand complex dependencies and interactions
within the code, ultimately leading to more accurate and nuanced code summarization.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE061. Publication date: July 2025.



FSE061:10 Kangchen Zhu, Zhiliang Tian, Shangwen Wang, Weiguo Chen, Zixuan Dong, Mingyue Leng, Xiaoguang Mao

5.4.1 Positional Encoder. The positional encoder serves as a foundational component for the graph
learning process, enabling the model to capture the order of nodes in the heterogeneous graph.
Given the importance of execution order, each node 𝑣 ∈ 𝑉 is assigned a positional encoding based
on its position in a depth-first traversal of the graph. It facilitates subsequent learning steps such as
§5.4.2 heterogeneous mutual attention and §5.4.3 heterogeneous message passing.

5.4.2 Heterogeneous Mutual Attention. The Heterogeneous Mutual Attention is designed to ef-
fectively integrate and prioritize information from diverse types of nodes and edges within the
MM-HCG. This component plays a crucial role in understanding how different elements of the
pseudo code and assembly code contribute to the overall code semantics by dynamically adjusting
the importance of information from neighboring nodes based on their contextual relevance. For
each edge 𝑒 = (𝑠, 𝑣) connecting nodes 𝑠 and 𝑣 , the attention mechanism evaluates the significance of
the message from node 𝑠 to node 𝑣 . The attention score, which considers both node and edge types,
determines how much influence the message from 𝑠 should have in updating the representation of
𝑣 . The attention score 𝐴 (𝑘 ) (𝑠, 𝑒, 𝑣) is calculated as follows:

𝐴 (𝑘 ) (𝑠, 𝑒, 𝑣) =
(
𝐾 (𝑘 ) (𝑠) ·𝑊 𝐴

𝜙 (𝑒 ) ·
(
𝑄 (𝑘 ) (𝑣)

)𝑇 )
·
𝜇⟨𝜏 (𝑠 ),𝜙 (𝑒 ),𝜏 (𝑣) ⟩√

𝑑
, (1)

where 𝑄 (𝑘 ) (𝑣) and 𝐾 (𝑘 ) (𝑠) are the query and key vectors derived from the node features (code
block information) of 𝑣 and 𝑠 , respectively. These vectors are obtained through linear transforma-
tions that account for the node types (code structure information), Q-Linear𝜏 (𝑣) and K-Linear𝜏 (𝑠 ) .
The matrix𝑊 𝐴

𝜙 (𝑒 ) represents the edge type-specific weights, and 𝜇⟨𝜏 (𝑠 ),𝜙 (𝑒 ),𝜏 (𝑣) ⟩ is a trainable scaling
factor for each meta relation triplet ⟨𝜏 (𝑠), 𝜙 (𝑒), 𝜏 (𝑣)⟩. The normalization factor

√
𝑑 ensures stability

in the attention scores. After calculating the unnormalized attention scores, a softmax function
is applied to normalize these scores. The attention heads are then concatenated to form the final
heterogeneous attention representation.

5.4.3 HeterogeneousMessage Passing. TheHeterogeneousMessage Passing aggregates information
from neighboring nodes (context information) by accounting for both node and edge types. For each
node 𝑣 , messages are gathered from its neighborsN(𝑣):𝑀 (𝑘 ) (𝑠, 𝑒, 𝑣) = M-Linear𝜏 (𝑠 )

(
ℎ
(𝑘−1)
𝑠

)
·𝑊𝑀

𝜙 (𝑒 ) .

M-Linear𝜏 (𝑠 ) projects the representation of node 𝑠 into the message space, while𝑊𝑀
𝜙 (𝑒 ) incorporates

the influence of the edge type 𝜙 (𝑒). The messages from multiple heads are concatenated to form
a comprehensive heterogeneous message representation: Message = Concat(𝑀1, . . . , 𝑀ℎ). These
messages are then weighted according to the attention scores computed in the Heterogeneous
Mutual Attention Layer. The weighted aggregation of messages is expressed as:

𝑎
(𝑘 )
𝑣 =

∑︁
𝑠∈N(𝑣)

(
Attention(𝑘 ) (𝑠, 𝑒, 𝑣) ·Message(𝑘 ) (𝑠, 𝑒, 𝑣)

)
(2)

Finally, the node representation is updated by combining the aggregated message with residual
information from the previous layer: ℎ (𝑘 )𝑣 = 𝜎

(
C-Linear𝜏 (𝑣)

(
𝑎
(𝑘 )
𝑣

))
+ ℎ (𝑘−1)𝑣 .

The Heterogeneous Message Passing enhances node representations by integrating and updating
information from neighboring nodes, taking into account their types and edge types.

5.5 Intent-Tailored Summary Generator

The Intent-Tailored Summary Generator aims to produce summaries that are closely aligned
with user intentions by effectively integrating intent information with code representations. The
generator employs two types of attention mechanisms: the Intent-Aware Attention Mechanism
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(IAAM), which focuses on relevant parts of the encoded code representations based on the user’s
intent, and the Multi-Head Cross Attention, which refines the context by combining intent-aware
information with the current decoder state. Summaries are then generated based on conditional
probabilities, ensuring coherence and relevance to the user’s objectives.

5.5.1 Intent-Aware Attention Mechanism (IAAM). The IAAM plays a crucial role in adjusting the
attention distribution based on the specified intent. This mechanism ensures that the decoder
focuses on the parts of the encoded code representations that are most relevant to the user’s intent.
For each decoder state ℎ𝑑𝑒𝑐𝑖 at layer 𝑖 , and the intent embedding 𝑧𝑖𝑛𝑡𝑒𝑛𝑡 (intent information), the
IAAM computes attention scores to prioritize the most relevant encoder outputs, and then the
scoring function combines the decoder state, encoder outputs, and intent embedding to produce:

score
(
ℎ𝑑𝑒𝑐𝑖 , ℎ𝑒𝑛𝑐𝑗 , 𝑧𝑖𝑛𝑡𝑒𝑛𝑡

)
=

(
𝑊𝑄ℎ

𝑑𝑒𝑐
𝑖

) (
𝑊𝐾ℎ

𝑒𝑛𝑐
𝑗 +𝑊𝐼𝑧𝑖𝑛𝑡𝑒𝑛𝑡

)𝑇
√
𝑑𝑘

(3)

𝛼 𝐼𝐴𝐴𝑀𝑗 =

exp
(
score

(
ℎ𝑑𝑒𝑐𝑖 , ℎ𝑒𝑛𝑐𝑗 , 𝑧𝑖𝑛𝑡𝑒𝑛𝑡

))
∑
𝑗 ′ exp

(
score

(
ℎ𝑑𝑒𝑐
𝑖
, ℎ𝑒𝑛𝑐
𝑗 ′ , 𝑧𝑖𝑛𝑡𝑒𝑛𝑡

)) (4)

The computed attention weights 𝛼 𝐼𝐴𝐴𝑀𝑗 are then used to generate the intent-aware context vector
𝑐𝐼𝐴𝐴𝑀𝑖 ( 𝑐𝐼𝐴𝐴𝑀𝑖 =

∑
𝑗 𝛼

𝐼𝐴𝐴𝑀
𝑗 ℎ𝑒𝑛𝑐𝑗 ). This context vector 𝑐𝐼𝐴𝐴𝑀𝑖 represents the importance of different

parts of the code with the user’s intent, providing the decoder with the most relevant aspects.

5.5.2 Multi-Head Cross Attention with Gated Fusion. Following the IAAM, the Multi-Head Cross
Attention refines the context further by integrating the intent-aware context 𝑐𝐼𝐴𝐴𝑀𝑖 with the current
decoder state ℎ𝑑𝑒𝑐𝑖 . This is achieved through cross-attention, where the context from the IAAM
is used to enhance the decoder’s current state: Cross-Attn(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇

√
𝑑𝑘

)
𝑉 . Here,

𝑄 =𝑊𝑄ℎ
𝑑𝑒𝑐
𝑖 , 𝐾 =𝑊𝐾𝑐

𝐼𝐴𝐴𝑀
𝑖 , and 𝑉 =𝑊𝑉 𝑐

𝐼𝐴𝐴𝑀
𝑖 . This operation results in a cross-attention context

𝑐𝑐𝑟𝑜𝑠𝑠𝑖 , which is then combined with the decoder state through a gated fusion mechanism:

ℎ𝑑𝑒𝑐𝑖+1 = 𝜎 (𝑊𝑔 [𝑐𝑐𝑟𝑜𝑠𝑠𝑖 ;ℎ𝑑𝑒𝑐𝑖 ]) ⊙ 𝑐𝑐𝑟𝑜𝑠𝑠𝑖 + (1 − 𝜎 (𝑊𝑔 [𝑐𝑐𝑟𝑜𝑠𝑠𝑖 ;ℎ𝑑𝑒𝑐𝑖 ])) ⊙ ℎ𝑑𝑒𝑐𝑖 (5)

where 𝜎 denotes the sigmoid function, and𝑊𝑔 is a learnable weight matrix that controls how
much of the cross-attention context is integrated with the decoder’s current state.

5.5.3 Summary Generation through Conditional Probability. The generator outputs the summary
by predicting the next token in the sequence based on the context provided by the aforementioned
mechanisms. This process utilizes conditional probability to produce a coherent and contextually
relevant summary. Given the decoder’s state ℎ𝑑𝑒𝑐𝑖 at a specific position in the sequence, the proba-
bility distribution over the vocabulary for the next token is computed using a softmax function:
𝑃 (𝑤𝑖 | ℎ𝑑𝑒𝑐𝑖 ) = softmax(𝑊𝑜𝑢𝑡ℎ

𝑑𝑒𝑐
𝑖 ).𝑊𝑜𝑢𝑡 is a learnable weight matrix, and𝑤𝑖 represents the possible

tokens in the vocabulary. The decoder selects the token with the highest probability as the next
token in the summary. This process is repeated iteratively to generate the complete summary.
In summary, the Intent-Tailored Summary Generator aligns code summaries with user intent

through intent-aware and refined cross-attention mechanisms, ensuring that the generated sum-
maries are both relevant and clear. The final summaries are produced using conditional probability,
predicting each token based on the context from previous layers for a coherent output.
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Table 2. The 50 binary projects and versions, chosen to reflect real-world reverse engineering needs, are
commonly used in existing benchmarks for binary tasks.

Binary Projects Version Binary Projects Version Binary Projects Version Binary Projects Version

a2ps 4.14 binutils 2.30 libiconv 1.15 libidn2 2.0.5
bool 0.2.2 ccd2cue 0.5 libmicrohttpd 0.9.59 libosip2 5.0.0
cflow 1.5 coreutils 8.29 libtasn1 4.13 libtool 2.4.6
cpio 2.12 cppi 1.18 libunistring 0.9.10 lightning 2.1.2
dap 3.10 datamash 1.3 macchanger 1.6.0 nettle 3.4

direvent 5.1 enscript 1.6.6 patch 2.7.6 plotutils 2.6
findutils 4.6.0 gawk 4.2.1 readline 7.0 recutils 1.7
gcal 4.1 gdbm 1.15 sed 4.5 sharutils 4.15.2
glpk 4.65 gmp 6.1.2 spell 1.1 tar 1.30

gnudos 1.11.4 grep 3.1 texinfo 6.5 time 1.9
gsasl 1.8.0 gsl 2.5 units 2.16 vmlinux 4.1.52
gsS 1.0.3 gzip 1.9 wdiff 1.2.2 which 2.21
hello 2.10 inetutils 1.9.4

6 Experiment Design

6.1 ResearchQuestions

To assess the effectiveness of MiSUm, we propose to answer the following research questions:

• RQ1: What is the performance of MiSUm in binary code summarization? This RQ aims
to establish a new effectiveness baseline for binary code summarization.
• RQ2: How do different architectures and optimization levels affect MiSUm? This RQ
investigates the impact of various architectures and optimization levels on the results, providing
insights into how these factors influence the effectiveness ofMiSUm.
• RQ3: How do different intent categories affect the summarization results of MiSUm? This
RQ analyzes the impact of various intent categories on the quality of the summaries generated by
MiSUm, identifying which types are summarized more effectively and which are less successful.
• RQ4: How does each component contribute to the overall performance of MiSUm? This
RQ involves an ablation study to measure the contribution of different components inMiSUm,
which could inspire future improvements.
• RQ5: Can MiSUm assist reverse engineers in understanding the different intents within

binaries? This RQ focuses on a user study aimed at evaluating the practical usefulness ofMiSUm
in meeting the varied needs of reverse engineers when interpreting the intents of binary code.

6.2 Dataset Construction

Source Code Selection. To reflect real-world reverse engineering needs, we selected 50 projects
that are widely used in existing binary-related benchmarks, such as binary clone detection [Hemel
et al. 2011; Yang et al. 2023] and binary function name prediction [Gao et al. 2021; Jin et al.
2022]. These projects have high credibility, excellent code quality, and maintenance standards,
covering seven application domains, including cryptography, compression, networking, video,
image processing, databases, and neural networks. Table 2 displays the list of 50 binary projects
and their corresponding versions.

Compilation. We manually compiled the source code files into binary files using the GCC 7.3.0
compiler at three different optimization levels: -O1, -O2, and -O3, each representing progressively
deeper levels of optimization. The -O1 level applies basic optimizations that enhance code size
and performance without significantly increasing compilation time. The -O2 level introduces more
advanced optimizations, such as loop unrolling and inlining. The -O3 level includes all optimizations
from -O2 with additional techniques such as vectorization and function cloning. Each source code
was compiled into nine different binary variants, corresponding to these three optimization levels
across three computer architectures (x86, x64, ARM).
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Stripping.We employed the strip command in Linux to remove the symbol tables from these
binaries. To maintain consistency with actual stripped scenarios, we used the strip -s command
to process the binary files. This stripping operation eliminates certain sections, including "debug,"
"symtab," and "strtab," among others. As a result, it removes symbol tables and all associated
debugging information from the binary files, ensuring that the files reflect the conditions of a
production environment where such data is typically stripped away.

Disassembling.We utilize IDA Pro [Hex-Rays 2024] to disassemble both the original and stripped
binaries, generating their corresponding assembly code. The assembly code is then segmented at
the function level. From the original binary, we extract tuples in the format of <function_name,
function_boundaries>. In the stripped binary, while the function_name is replaced with a placeholder
sub_address, the function_boundaries remain consistent regardless of whether the binary is stripped.
For the stripped binary, we extract triplets in the format of <sub_address, stripped assembly code,
function_boundaries>.
Multi-Intent Binary Summary Dataset Construction. To extract multi-intent summaries,

we began by analyzing the source code using srcML [Maletic and Collard 2015], a tool that parses
source files into an XML format, allowing us to identify and extract both single-line and multi-line
summaries located above function declarations and definitions. This step resulted in a collection
of <function_name, summaries> pairs. Next, we utilized the source code to identify the func-
tion_boundaries, which served as indices to match the function names with their corresponding
functions in the stripped binary. This mapping enabled us to construct triplets in the format of
<function_name, stripped binary, summaries>. To categorize the intents within the summaries, we
employed the CodeBERT-base model [Feng et al. 2020], fine-tuned on a dataset manually labeled by
the previous study [Mu et al. 2023]. This classifier achieved an accuracy of 92%, demonstrating its
effectiveness on the intent classification task. We thus chose to use this model to classify the intents,
allowing us to construct the final dataset in the format <stripped assembly code, intent, summary>.
Subsequently, we implemented a two-step deduplication process. First, a hashing mechanism was
used to generate unique identifiers for each data sample, effectively eliminating exact duplicates.
Second, we performed an 8:1:1 random split to create training, validation, and test sets with no
overlap. Table 3 presents the data statistics for the six different intents across three architectures.

Additionally, there is a concern that code clones would significantly influence the performances of
the evaluated approaches. Regarding this, we argue that code duplication phenomenon is mitigated
in the binary code domain. The binary code dataset uses <assembly code, summary> pairs instead of
<source code, summary> pairs.When two similar source code samples are compiled into binary code,
the complex compilation and disassembly processes significantly reduce the similarity between
the resulting assembly codes. To illustrate, we analyzed 100 pairs of similar source code samples
with an average cosine similarity of 0.92 (encoded by CodeLlama, where > 0.9 indicates high
similarity [Yang et al. 2023]). After compilation and disassembly (ARM, O1), the similarity of the
corresponding assembly code dropped to 0.61 (encoded by CLAP [Wang et al. 2024], where < 0.8
indicates dissimilarity [Yang et al. 2023]). This significant reduction demonstrates how compilation
processes, such as instruction reordering and register allocation, alter the structure of the code,
effectively mitigating code duplication in the binary code domain.

6.3 Baselines

6.3.1 DL-based Baselines. (1) BinT5 [Al-Kaswan et al. 2023] is the first model focused on binary
code summarization, extending the application scope of source code pre-trained language models. It
treats decompiled code as a special programming language and uses fine-tuned CodeT5 to capture
its semantics and generate summaries. (2)HexT5 [Xiong et al. 2023] is a unified pre-training model
also based on CodeT5, allowing for multi-task learning. It supports function name recovery, binary

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE061. Publication date: July 2025.



FSE061:14 Kangchen Zhu, Zhiliang Tian, Shangwen Wang, Weiguo Chen, Zixuan Dong, Mingyue Leng, Xiaoguang Mao

Table 3. Dataset Statistics.

Dataset

ARM X86 X64

Train Valid Test Train Valid Test Train Valid Test

What 455,481 37,524 39,764 439,294 34,659 36,505 433,749 36,296 37,345
Why 114,875 9,047 9,769 105,905 6,849 7,480 108,474 6,236 6,832

How-to-use 25,267 2,420 2,261 13,370 1,652 1,346 19,572 1,884 1,830
How-it-is-done 96,843 7,638 8,264 87,904 3,578 4,194 86,849 3,536 4,523

Property 88,166 7,159 7,683 81,577 4,117 4,740 81,476 4,075 4,932
Others 35,768 1,491 2,405 37,437 1,379 1,578 32,441 1,399 1,413
Total 816,400 65,279 70,146 765,487 52,234 55,843 762,561 53,426 56,875

Table 4. Detail information of Large Language Models. In the License column, "✓" denotes Open Source,
while ” × ” denotes Closed Source.

Domain Model Size Base Model Training Corpus Publisher LicenseRaw Size #Tokens #Instances

Code
LLMs

CodeGen2-7b-instruct 7B CodeGen2 - 1.4T - Salesforce ✓
WizardCoder-33b-V1.1 33B Deepseek-Coder - - - WizardLM ✓
Code Llama-7b-instruct-hf 7B Llama-2-7b 4.4TB 525.0B - Meta AI ✓
Code Llama-70b-instruct-hf 70B Llama-2-70b - 1.0T - Meta AI ✓
DeepSeek-Coder-33b-instruct 33B - - 2.0T - DeepSeek-AI ✓

General
LLMs

ChatGLM3-6B 6B - - 1.4T - THUDM ✓
Vicuna-13b-v1.5 13B Llama-2-13b - - 125.0K L.Zheng et al. ✓
Llama-3-13b-chat-hf 13B - - 2.0T - Meta AI ✓
Llama-3-70b-chat-hf 70B - - 2.0T - Meta AI ✓
Mistral-7B-Instruct-v0.2 7B Mistral-7B - - - Mistral AI ✓
ChatGPT 175B - - - - OpenAI ×
GPT4 1.7T - - - - OpenAI ×

code summarization, and other downstream tasks, showing promising performance. (3) CP-BCS
[Ye et al. 2023] utilizes a bidirectional instruction-level control flow graph and pseudo code to learn
the comprehensive binary function execution behavior and logic semantics.

6.3.2 LLM-based Baselines. We follow Shang et al. [2024] to evaluate the effectiveness of the
most popular large language models (LLMs) in multi-intent binary code summarization. Our
evaluation was conducted in a zero-shot setting to assess the models’ ability to generalize to this
task without any fine-tuning or task-specific training. We extensively evaluated four code-domain
LLMs (CodeGen [Nijkamp et al. 2022], WizardCoder [Luo et al. 2023], DeepSeek-Coder [Guo et al.
2024], Code Llama [Roziere et al. 2023]) and six general-domain LLMs (ChatGLM [GLM et al. 2024],
Vicuna [Chiang et al. 2023], Llama [Touvron et al. 2023], Mistral [Jiang et al. 2023], ChatGPT
[Ouyang et al. 2022], GPT4 [Achiam et al. 2023]). Detailed information about these Large Language
Models can be found in Table 4.

6.4 Evaluation metrics

We use common metrics for evaluation: (1) BLEU [Papineni et al. 2002] measures the similarity
between a generated and reference sentence using n-gram precision, commonly used in code
comment generation. (2) ROUGE [Lin 2004], specifically ROUGE-L, evaluates text similarity based
on overlapping units like n-grams, word pairs, and the longest common subsequence. (3)METEOR

[Banerjee and Lavie 2005] assesses the quality of generated summaries by aligning them with
reference summaries and obtaining similarity.

6.5 Implementation details

Our model is implemented with the framework PyTorch 2. All the experiments are performed on a
server with 8 NVIDIA A100 GPUs. The batch size is set to 256, and the Adam optimizer is used with

2https://pytorch.org/
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Table 5. Results on the dataset for ARM architecture with O1 optimization level for comparison of DL-based,
Code LLMs and General LLMs baselines on multi-intent binary code summarization. To simplify notation, we
use B to represent BLEU, M to represent METEOR, and R to represent Rouge-L. The best-performing methods
in each intent domain are highlighted with a blue background, while the overall best methods across all

domains are highlighted with a red background and marked in bold.

Method
Intent What Why How-to-use How-it-is-done Property Others Average

B M R B M R B M R B M R B M R B M R B M R
BinT5 0.04 2.12 4.83 0.03 2.09 4.81 0.05 2.13 4.86 0.04 2.06 4.79 0.03 2.08 4.78 0.03 2.04 4.68 0.04 2.09 4.79
HexT5 0.09 6.32 8.53 0.07 6.24 8.46 0.11 6.45 8.64 0.08 6.28 8.49 0.10 6.32 8.55 0.08 6.29 8.48 0.09 6.32 8.53
CP-BCS 5.83 26.19 20.67 3.47 10.06 15.42 3.06 10.81 15.84 3.61 10.64 15.39 3.48 10.73 15.43 3.41 10.04 15.48 3.81 13.08 16.37
CodeGen 3.87 23.61 18.95 3.64 23.15 18.64 3.46 22.57 17.65 3.51 22.64 18.64 3.56 22.96 18.57 3.41 22.67 17.65 3.58 22.93 18.35
Code Llama-7B 4.65 22.20 20.66 4.21 21.80 20.13 4.32 21.82 20.13 4.12 21.58 19.68 4.05 21.65 20.61 4.63 21.98 20.12 4.33 21.84 20.22
WizardCoder 4.74 23.43 20.34 4.65 23.13 20.16 4.68 23.12 20.84 4.59 23.31 19.86 4.65 23.17 19.89 4.65 23.23 19.93 4.66 23.23 20.17
DeepSeekCoder 5.22 24.10 20.84 5.17 23.68 20.64 5.13 23.80 20.64 5.16 23.68 20.46 5.02 23.85 20.16 4.86 23.74 20.62 5.09 23.81 20.56
Code Llama-70B 4.64 23.75 20.82 4.28 23.46 20.47 4.35 23.46 20.14 4.35 23.46 20.49 4.67 23.14 20.68 4.35 23.48 20.63 4.44 23.46 20.54
ChatGLM3 4.29 26.37 20.66 4.25 26.29 20.13 4.15 26.06 19.43 4.17 26.24 19.24 4.16 26.03 20.17 4.13 26.01 18.98 4.19 26.17 19.77
Mistral 5.98 24.37 23.55 5.81 24.23 23.45 5.61 24.15 23.42 5.61 24.37 23.05 5.61 23.89 22.86 5.24 24.16 23.42 5.64 24.20 23.29
Llama3-13B 6.16 24.47 22.51 5.79 24.17 22.34 6.09 24.38 22.16 6.01 24.32 22.15 6.02 23.97 22.23 5.86 24.23 21.86 5.99 24.26 22.21
Vicuna 4.90 21.20 22.48 4.52 20.84 22.13 4.52 20.84 22.13 4.86 20.96 22.37 4.68 20.86 21.86 4.68 20.48 22.01 4.69 20.86 22.16
Llama3-70B 5.51 26.26 21.51 5.16 26.13 21.41 5.16 25.89 21.34 5.12 26.05 20.98 5.46 26.04 21.45 5.25 26.13 21.46 5.28 26.08 21.36
ChatGPT 6.89 27.51 22.74 4.81 27.46 22.67 6.48 27.46 22.35 6.21 27.11 22.32 6.82 27.17 22.63 6.12 27.23 22.32 6.22 27.32 22.51
GPT4 7.37 28.13 23.76 7.14 27.81 23.48 7.13 28.01 23.37 7.28 27.84 23.24 7.19 27.87 23.68 7.15 27.93 23.48 7.21 27.93 23.50
MiSUm (Ours) 10.56 33.05 28.91 9.87 32.63 28.17 8.96 32.36 28.48 10.16 32.76 28.43 10.44 31.86 28.61 10.29 32.43 28.76 10.05 32.52 28.56

an initial learning rate of 10−4. The training process will terminate after 100 epochs or will stop
early if the performance on the validation set does not improve for 10 epochs. The number of blocks
𝑁 in both the encoder and decoder is 8, with the number of heads ℎ in the multi-head attention
mechanism set to 16. The dimension of the word embedding vectors is 512. We leverage greedy
search during validation and beam search during model inference, setting the beam width to 4.
Additionally, for the LLM-based baselines, we follow the prompt engineering approach proposed by
Geng et al. [2024]. For example, the prompt used in our implementation when the intent is "what"
is: "You are an expert C/C++ programmer and reverse engineer, please describe the functionality of
the method. <Pseudo Code> <Assembly Code>."

7 Evaluation

7.1 RQ1: What is the performance of MiSUm in binary code summarization?

Compared to DL-based baselines. We compare our approach with three pre-trained models
fine-tuned on binary comprehension tasks. Due to space constraints, we present results obtained
on the ARM architecture with the O1 optimization level as Table 5 shown, while results from
other settings are available in RQ2, where similar trends can be observed. For these DL-based
expert models, BinT5 [Al-Kaswan et al. 2023] achieves average scores of 0.04, 2.09, and 4.79 on
BLEU-4, METEOR, and ROUGE-L across the six intent categories, respectively. HexT5 [Xiong et al.
2023] shows slight improvements, but its performance remains significantly lower. Interestingly,
CP-BCS [Ye et al. 2023] achieves a comparable level with other LLMs on the "what" intent, but
shows a marked decline on the other five intents. This is mainly because CP-BCS is trained to learn
a one-to-one mapping of <binary, code functionality>, making it well-suited for describing the
functionality of a method but unable to meet other intents.

Compared to LLM-based baselines. We compare our approach with the most popular LLMs,
including Code LLMs, which specialize in code-related tasks, and General LLMs, which are designed
for more general tasks, as Table 5 shown. For Code LLMs, we compared models of various sizes,
including 7B, 33B, and 70B. The results indicate that DeepSeekCoder-33B outperforms other Code
LLMs in BLEU-4, METEOR, and ROUGE-L, with average scores of 5.09, 23.81, and 20.56, respectively.
For General LLMs, GPT-4 demonstrates a strong capability for binary understanding and summary
generation, surpassing all other LLMs, including both Code LLMs and General LLMs. However, due
to limited training on binary data, GPT-4 still lacks domain-specific knowledge and has room for
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Fig. 4. Comparison of average results for different architectures and optimization levels.

improvement. Our method,MiSUm, effectively integrates pseudo-code and assembly code into a
heterogeneous graph to fully capture the semantic information of binary code and is further trained
with user intents. As a result, MiSUm outperforms all other baselines, including DL-based models,
Code LLMs, and General LLMs, achieving average scores of 10.05, 32.52, and 28.56, respectively.
Our paired t-tests confirmed that MiSUm significantly outperforms all baselines (p-values < 0.01).

Answering RQ1: For each intent category, MiSUm outperforms the state-of-the-art baselines in terms of
three metrics, including DL-based models, Code LLMs, and General LLMs.MiSUm improves the perfor-
mance of BLEU, METEOR, ROUGE-L by 39.4%↑, 16.4%↑, 21.5%↑.

7.2 RQ2: How do different architectures and optimization levels affect MiSUm?

Analysis of Different Architectures. We evaluated MiSUm across three architectures: ARM,
X86, and X64, as illustrated in the left of Figure 4. On average,MiSUm achieved 26.3% and 34.4%
higher BLEU performance on ARM compared to X86 and X64, respectively, with notable gains in
both METEOR and ROUGE-L metrics. These improvements can be attributed to ARM’s simpler
and more adaptable Reduced Instruction Set Computing (RISC) architecture. In contrast, the X86
and X64 architectures are based on Complex Instruction Set Computing (CISC), which involves a
larger number of operation codes and registers to handle intricate mathematical operations, thus
complicating the interpretation of their assembly code.
Analysis of Different Optimization Levels. We assessed our method under various opti-

mization levels, including O1, O2, and O3, as depicted in the right of Figure 4. Overall, MiSUm
demonstrates superior performance under the O1 optimization level compared to O2 and O3. Our
observations of assembly code generated under different optimization levels reveal that O2 and
O3 apply a range of advanced optimization techniques, such as vectorization instructions and
loop unrolling, to enhance execution speed. However, these techniques result in more complex
assembly code. On the other hand, O1 employs relatively straightforward strategies, such as register
allocation and basic block reordering, which avoid producing excessively complex assembly code.
Additionally, the pseudo-code derived from O1-optimized assembly code tends to be more accurate
and closer to the original source code compared to O2 and O3. Consequently, the pseudo-code
generated under O1 provides richer and more precise semantic information, enablingMiSUm to
achieve better performance across all three metrics.

Answering RQ2: The performance ofMiSUm is affected by both architecture and optimization levels. The
best results are on the ARM architecture and at the O1 optimization level compared to other settings.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE061. Publication date: July 2025.



MiSum: Multi-modality Heterogeneous Code Graph Learning for Multi-intent Binary Code Summarization FSE061:17

Fig. 5. Results of MiSUm on six categories of intents.

7.3 RQ3: How do different intent categories affect the summarization results of MiSUm?

To analyze the impact of different intent categories on summary generation, we selected the
best-performing models from three domains in RQ1: CP-BCS (DL-based), DeepSeekCoder (Code
LLMs), GPT-4 (General LLMs), and our proposed MiSUm. Figure 5 presents the results of these
models across six intents on three metrics. Overall, MiSUm outperforms other state-of-the-art
models across all six intents. This superior performance is attributed toMiSUm’s ability to integrate
the semantic information of both pseudo-code (which captures high-level code abstraction) and
assembly code (which retains detailed information). While CP-BCS also considers both types of
information, it lacks an effective fusion strategy, resulting in suboptimal complementary effects. In
contrast,MiSUm employs a heterogeneous graph to blend pseudo-code and assembly code, enabling
a more comprehensive understanding of the code.
When examining performance by intent category, MiSUm achieves the highest scores across

all three metrics for the "What" intent, which aligns with the results seen in other baselines. This
suggests that models are generally more adept at describing the primary functionality of code
snippets. However, while baselines show a marked decline in performance for other intents (except
"What"),MiSUm consistently excels across all intents. This is primarily due to its effective fusion of
pseudo-code and assembly code semantics using a heterogeneous graph, allowing the model to
fully capture the nuances of binary code. In contrast, other baselines primarily focus on the textual
information of code while overlooking the importance of structural information and effective
information integration, thereby limiting their ability to comprehensively understand binary code.

Answering RQ3:While all models demonstrate strong performance in the "What" intent, other models
struggle with intents beyond "What." In contrast, MiSUm excels across all intent categories, effectively
integrating both pseudo-code and assembly code to deliver superior results.

7.4 RQ4: How does each component contribute to the overall performance of MiSUm?

To evaluate the performance of different components within the MiSUm framework, we conducted
a series of ablation studies, as shown in Table 6. For the model components, these studies involve
comparing three modified versions of theMiSUm system, each with a critical element removed:
(1) the removal of the Multi-Modality Heterogeneous Code Graph (MM-HCG), denoted as - MM-
HCG; (2) the exclusion of the MM-HCG Encoder, indicated as - EncMM-HCG; (3) the removal of the
Intent-Aware Attention Mechanism (IAAM), marked as - IAAM. Regarding the code modalities,
we performed analyses by removing either the assembly code or the pseudo-code, denoted as -
Assembly Code and - Pseudo Code, respectively. To simplify the demonstration, we focused on a
specific dataset with a fixed architecture (ARM) and optimization level (O1).
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Table 6. Ablation study results on the dataset for ARM architecture with O1 optimization level.

Model What Why How-to-use How-it-is-done Property Others Average
B M R B M R B M R B M R B M R B M R B M R

MiSUm 10.56 33.05 28.91 9.87 32.63 28.17 8.96 32.36 28.48 10.16 32.76 28.43 10.44 31.86 28.61 10.29 32.43 28.76 10.05 32.52 28.56
- MM-HCG 5.42 24.63 21.04 4.69 25.31 21.06 4.72 23.77 20.65 5.27 23.41 21.15 5.38 22.69 20.84 4.38 23.16 20.82 4.98 23.83 20.93
- EncMM-HCG 5.21 24.23 21.64 4.87 25.18 21.75 4.68 23.65 20.48 5.16 23.21 21.06 5.24 22.41 20.47 4.25 22.86 20.47 4.90 23.59 20.98
- IAAM 5.86 25.16 22.79 4.23 25.06 21.41 4.32 23.22 20.17 5.01 22.89 20.96 5.06 21.86 20.19 4.03 21.30 20.11 4.75 23.25 20.94
- Assembly Code 6.74 26.12 23.63 5.45 26.63 22.81 5.17 24.35 21.83 5.92 23.84 21.78 5.63 22.81 20.86 4.48 23.67 21.26 5.57 24.57 22.03
- Pseudo Code 5.36 23.85 20.93 4.06 24.84 20.76 4.28 23.62 20.13 4.93 22.75 20.64 4.96 21.54 19.62 3.67 21.52 19.88 4.54 23.02 20.33

From the perspective of model components, we replaced MM-HCG with the textual representa-
tions of pseudo-code and assembly code, resulting in a notable decline in summary quality across all
intents. Subsequently, we substituted the MM-HCG-specific graph encoder with a traditional graph
attention network (GAT) encoder [Veličković et al. 2017], which also led to a significant negative
impact on performance, demonstrating the effectiveness of the MM-HCG Encoder. Additionally,
when the Intent-Aware Attention Mechanism (IAAM) was removed from the decoder, we observed
a substantial decline in performance across all intents except "what," indicating that IAAM is crucial
for generating intent-specific summaries.
Regarding the code modalities, we first removed assembly code and retained only pseudo-

code, which resulted in a noticeable performance drop. When pseudo-code was removed and only
assembly code was retained, the decline in performance (BLEU: 44.88%↓, METEOR: 29.21%↓, ROUGE-
L: 28.82%↓) was greater than when only pseudo-code was retained (BLEU: 44.58%↓, METEOR:
24.45%↓, ROUGE-L: 22.86%↓). This suggests that pseudo-code is more effective than assembly code
in supporting multi-intent binary summarization tasks.

Answering RQ4: The ablation studies reveal that removing any component—whether the Multi-Modality
Heterogeneous Code Graph (MM-HCG), the MM-HCG Encoder, or the Intent-Aware Attention Mechanism
(IAAM)—significantly degrades performance, emphasizing the critical role of each in maintaining high-
quality summaries. Additionally, omitting pseudo-code leads to the most substantial performance decline,
highlighting its importance in multi-intent summarization.

7.5 RQ5: Can MiSUm assist reverse engineers in understanding the different intents

within binaries?

We conducted a human evaluation to assess the quality of summaries generated by MiSUm in
terms of Similarity, Fluency, and Appropriateness. For this evaluation, we recruited 10 participants,
consisting of 5 PhD students and 5 reverse engineers, each with 1-3 years of experience in software
engineering and reverse engineering. To ensure a manageable evaluation process, we divided the
2,400 generated summaries into 10 groups, with each group containing 240 summaries covering
all 6 different intents. Each summary was randomly selected to avoid any bias across groups,
and the groups were designed to ensure that no summary was duplicated across groups. Each
participant was assigned to review 2 different groups, leading to each summary being reviewed
by 2 participants. For the evaluation, we used the best-performing models from three domains
as baselines: CP-BCS [Ye et al. 2023] for DL-based domain models, DeepSeekCoder [Guo et al.
2024] for Code LLMs, and GPT-4 [Achiam et al. 2023] for General LLMs. Participants were asked to
evaluate the summaries based on the following criteria:
• Similarity: How similar is the generated summary to the ground truth?
• Fluency: Is the generated summary syntactically correct and fluent?
• Appropriateness: Does the generated summary align with the intended meaning?
Participants rated each summary on a scale from 1 to 5 for each metric, with higher scores

indicating better quality. To ensure consistency, the number and length of assembly code instructions
were kept uniform across all groups. Figure 6 presents the results of the human evaluation. MiSUm
outperforms all other models across all three metrics, demonstrating consistently high performance,
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Fig. 6. Results of Human evaluation.

as evidenced by the boxplots. In Similarity, it achieves a median score of 4.2, with a range from 4.0
to 4.4 and an upper quartile (Q3) of 4.3, highlighting its strong consistency and ability to generate
highly relevant content. The absence of outliers further underscores its reliability in maintaining
contextual accuracy. In Fluency, MiSUm exhibits a similar pattern, with a median of 4.3 and a
range from 4.2 to 4.4, reflecting its consistent ability to produce fluent and natural language. The
upper quartile (Q3) at 4.35 reinforces the model’s linguistic smoothness with minimal variation.
Finally, in Appropriateness, MiSUm scores a perfect 4.4, with a median of 4.4 and a narrow range
from 4.3 to 4.4, indicating its exceptional suitability for the tasks. This narrow range and high
consistency across all metrics suggest that MiSUm excels not only in generating contextually
accurate content but also in producing fluent and appropriate responses, making it the standout
model in this evaluation.
In contrast, GPT-4, DeepSeekCoder, and CP-BCS perform lower than MiSUm, particularly in

Similarity and Fluency. GPT-4 shows consistent performance, with a median of 4.0 in Similarity,
but it slightly lags behindMiSUm in terms of relevance. DeepSeekCoder exhibits greater variability,
with a wider range in Similarity (median of 3.8) and less consistency in Appropriateness, indicating
that its outputs are less reliably suitable for the given tasks. CP-BCS shows the weakest performance
overall, with narrow ranges in both Similarity (median of 3.7) and Fluency (median of 4.1), suggesting
limited variability and weaker overall output quality. These models demonstrate considerable room
for improvement in generating content that is more relevant, fluent, and consistent.

Answering RQ5: Human evaluations show thatMiSUm surpasses all other baselines in similarity, fluency,
and appropriateness, demonstrating its effectiveness in generating summaries that align well with user
intents and enhance understanding of binary code.

8 Discussion

8.1 Threats To Validity

External threats. Our study faces several external threats. First, the current evaluation relies
solely on C/C++ datasets due to the limited availability of open-source binary code summarization
datasets, which introduces a potential selection bias. Although our proposed multi-modality hetero-
geneous fusion and alignment method has been demonstrated to be effective on these datasets, its
performance on other programming languages remains unverified. Notably, while our framework
is initially implemented for C/C++ binaries, it is designed with the potential to be extended to other
languages by incorporating appropriate decompilers and disassemblers. However, the applicability
and reliability of such extensions are yet to be confirmed. To address these threats, future work
will systematically evaluate other languages to further validate the framework’s generalizability.
Secondly, there is a potential selection bias in baseline models. Recent years have seen a surge in
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the development of large models, including both code-specific and general-purpose ones [Achiam
et al. 2023; Touvron et al. 2023]. Our study may have a selection bias by considering only a subset
of these models as baselines. However, the selected models are widely recognized and have demon-
strated state-of-the-art performance on code-related tasks [Shang et al. 2024]. To provide a more
comprehensive evaluation, we plan to include additional models in future studies.

Internal threats.One internal threat comes from the potential biases in human evaluation, that is,
the results can be influenced by the participants’ programming experience and their understanding
of the evaluation metrics. Nonetheless, we have implemented several strategies to mitigate such
influences. Specifically, the inclusion of both PhD students and professional reverse engineers
with diverse experience levels ensures a comprehensive evaluation spectrum. Reviewing each
code-summary pair with two participants mitigates individual biases and enhances the reliability
of the assessment. The structured grouping and random shuffling of summaries promote fair
comparisons and minimize potential order effects, contributing to the validity and robustness of
the results. Another internal threat is the influence of evaluation metrics on our study’s results and
conclusions. To mitigate the bias from metric selection, we employed three different metrics that
evaluate the quality of generated code summaries from multiple perspectives. This multi-metric
approach provides a more robust and comprehensive evaluation of our method’s performance.

8.2 The Potential of Involving Additional Modality Information

Our study explores the combination of different modality information for multi-intent binary code
summarization. A natural question would be whether we could involve more modality information,
such as the LLVM IR, for further performance improvement. To explore this, we conducted an
additional experiment with two setups on the ARM architecture and at the O1 optimization level:
(1) We first used IR as the sole input, which led to a 14.2% performance drop due to IR’s lack of
explicit structure and context. (2) We integrated IR with pseudo-code and assembly. Specifically, we
used the LLM-Compiler-7B model [Cummins et al. 2024] to extract IR features and concatenated
these with pseudo-code and assembly features, resulting in a 3.9% performance improvement,
highlighting the valuable semantic information provided by IR. Encouraged by these results, we
plan to explore more advanced approaches for incorporating IR effectively in future work.

9 Conclusion

In this study, we introduce the task of multi-intent binary code summarization, which significantly
enhances the efficacy of reverse engineering processes. To address this challenge, we propose
MiSUm, an innovative approach that utilizes Multi-modal Heterogeneous Code Graph (MM-HCG)
alignment to integrate semantic information from both assembly and pseudo code. Our Summary
Generator employs an intent-aware attentionmechanism to produce customized summaries tailored
to various intents. Extensive experiments and human evaluations show thatMiSUm outperforms
leading baselines, paving the way for future advancements in software reverse engineering.

10 Data Availability

All the code and data in this study are publicly available at https://github.com/Kobe-Zed/MiSum.
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