
An Extensive Study on Adversarial Attack against Pre-trained
Models of Code

Xiaohu Du
∗†

Huazhong University of Science

and Technology, China

xhdu@hust.edu.cn

Ming Wen
∗†‡

Huazhong University of Science

and Technology, China

mwenaa@hust.edu.cn

Zichao Wei
∗†

Huazhong University of Science

and Technology, China

u201911736@hust.edu.cn

Shangwen Wang

National University of Defense

Technology, China

wangshangwen13@nudt.edu.cn

Hai Jin
∗§

Huazhong University of Science

and Technology, China

hjin@hust.edu.cn

ABSTRACT
Transformer-based pre-trained models of code (PTMC) have been

widely utilized and have achieved state-of-the-art performance in

many mission-critical applications. However, they can be vulnera-

ble to adversarial attacks through identifier substitution or coding

style transformation, which can significantly degrade accuracy and

may further incur security concerns. Although several approaches

have been proposed to generate adversarial examples for PTMC,

the effectiveness and efficiency of such approaches, especially for

different code intelligence tasks, is not well understood. To bridge

this gap, this study systematically analyzes five state-of-the-art

adversarial attack approaches from three perspectives: effective-

ness, efficiency, and the quality of generated examples. The results

showed that none of the five approaches balanced all these perspec-

tives. Particularly, approaches with a high attack success rate tend

to be time-consuming, and the adversarial code they generate often

lack naturalness, and vice versa. To address this limitation, we ex-

plored the impact of perturbing identifiers under different contexts

and found that identifier substitution within for and if statements

was the most effective. Based on these findings, we proposed a

new approach that prioritizes different types of statements for vari-

ous tasks and further utilizes beam search to generate adversarial

examples. Evaluation results show that it outperforms the state-

of-the-art ALERT in terms of effectiveness and efficiency while

preserving the naturalness of the generated adversarial examples.

∗
Hubei Key Laboratory of Distributed System Security, Hubei Engineering Research

Center on Big Data Security, National Engineering Research Center for Big Data

Technology and System, Services Computing Technology and System Lab, Cluster and

Grid Computing Lab, Huazhong University of Science and Technology (HUST)

†
School of Cyber Science and Engineering, HUST

‡
Corresponding author

§
School of Computer Science and Technology, HUST

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00

https://doi.org/10.1145/3611643.3616356

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; • Computing methodologies → Neural networks.

KEYWORDS
Adversarial Attack, Pre-Trained Model, Deep Learning

ACM Reference Format:
Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang, and Hai Jin. 2023. An

Extensive Study on Adversarial Attack against Pre-trained Models of Code.

In Proceedings of the 31st ACM Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering (ESEC/FSE
’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3611643.3616356

1 INTRODUCTION
Given the rapid development of deep learning (DL), many researchers

have applied DL techniques in various programming language pro-

cessing tasks with promising results achieved over recent years, and

such a trend continuously rises. The recently-proposed Transformer

architecture [28], which mainly employs the self-attention mecha-

nism, has shown promising results on dealing with the long range

dependency problem, which is a critical challenge for traditional

sequence models such as the Recurrent Neural Network. Therefore,

a number of state-of-the-art DL models are designed based on such

an architecture, one category of which is the pre-trained models of

code (PTMCs), such as CodeBERT [3] and CodeGPT [14].

Via utilizing the pre-training techniques, domain knowledge in

the large-scale publicly-available code repositories can be learned

and obtained by PTMCs, which can be further leveraged on down-

stream tasks such as vulnerability detection, clone detection and

code summarization [2, 3, 14]. Unfortunately, recent studies have

shown that similar to conventional deep learning models in the do-

mains of computer vision and natural language processing, PTMCs

can also generate totally different results given two semantically-

identical input programs, one of which (a.k.a. the adversarial ex-
ample) is generated by performing certain semantic-preserving

transformations to the other [7, 13, 17, 20, 34, 38, 40, 43]. This

is devastating considering that PTMCs have been deployed to a

wide range of mission-critical applications such as vulnerability

detection [34, 39]. Specifically, an attacker may easily generate an

https://doi.org/10.1145/3611643.3616356
https://doi.org/10.1145/3611643.3616356

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang and Hai Jin

adversarial example that retains the vulnerability while misleading

the PTMC to label it as “non-vulnerable”.

One potential way to alleviate such a threat is adversarial re-

training, where the models under attack are continuously trained

with generated adversarial examples to enhance the robustness [34,

36]. Therefore, over the years, a number of adversarial attack ap-

proaches have been proposed aiming to automatically generate

adversarial examples [7, 13, 17, 20, 34, 38, 40, 43]. Existing adver-

sarial attack approaches differ in terms of various design aspects.

First, at a high level, the semantic-preserving transformation can

be performed at both the token level (e.g., by identifier substitu-

tion [17]) and statement level (e.g., by adding dead code [36]).

Second, even if certain approaches are designed at the same granu-

larity (e.g., identifier substitution), there also exist multiple choices

when determining how and what identifiers to be replaced: by

random selection [38] or via pre-defined heuristics [34]. Such de-

sign aspects may significantly affect the effectiveness of the attack

approaches. For instance, Yang et al. [34] showed that certain pre-

defined heuristics could outperform random selection on generating

new identifier names.

Although huge efforts have been made towards advancing ad-

versarial attacks targeting for PTMCs, the effectiveness of existing

techniques has not been systematically evaluated and compared.

Little is known to their advantages and disadvantages. There is

thus an urgent need for a comprehensive empirical study compar-

ing and analyzing the effectiveness of the state-of-the-art (SOTA)

adversarial attacks targeting PTMCs. In particular, how is the ef-

fectiveness and efficiency of the SOTA approaches with respect

to various PTMCs? How well do different approaches generalize

across various code intelligence tasks? Most importantly, how is

the quality of the adversarial samples generated by different ap-

proaches? If the quality is extremely low, the practical usefulness

can be compromised since they can be easily perceived by develop-

ers. Additionally, it is unclear how the context of code perturbations

affects the effectiveness of current attack approaches. Understand-

ing such problems is important for guiding future related research.

To fill this gap, in this study, we performed an extensive study on

existing SOTA adversarial attack approaches against PTMCs. Specif-

ically, we utilize five SOTA adversarial attack approaches to attack

three widely-used PTMCs (e.g., CodeBERT [3], CodeGPT [14], and

PLBART [2]). Our evaluation was performed on three well-studied

code intelligence tasks, including one generation task (i.e., code

summarization) and two understanding tasks (i.e., vulnerability

detection and code clone detection). Through extensive evaluations

and comparisons, our study made several interesting findings: (1)

PTMCs can be easily attacked under all the three tasks and they are

relatively less robust on the generation tasks compared with un-

derstanding tasks; (2) there is a trade-off between the effectiveness

and the efficiency for the adversarial attacks: the attack approach

with the highest success rate usually queries PTMCs for the most

times; (3) The quality of adversarial examples is heavily influenced

by the identifier substitution strategy. Identifiers predicted with

context-aware information produce the highest quality samples

that are very similar to the original code, followed by a cosine

similarity-based substitution strategy. On the other hand, random

substitution leads to the lowest quality adversarial samples; and

(4) replacing identifiers under different types of statements have

diverse chances to generate adversarial examples successfully while

such chances differ significantly with respect to the generation and

understanding tasks.

Based on our findings, we design an efficient yet effective attack

approach called BeamAttack for code adversarial attack. BeamAt-

tack separates identifiers into several groups based on the state-

ments they belong to. It then iteratively selects identifiers in a

prioritized manner, selecting those that are most likely to result

in successful attacks, as summarized by our empirical evaluation.

BeamAttack reduces attack cost by dividing identifiers into smaller

sub-groups and prioritizing them based on the likelihood of success-

ful attacks, rather than searching the entire identifier space. It can

also reduce the risk of getting stuck in local optima, as opposed to

searching each individual identifier similar to WIR [38]. The results

on a total of six datasets demonstrate that our approach achieves

higher attack success rates with less queries than ALERT while

can preserve the naturalness of the generated adversarial examples

(i.e., the generated examples bear a high resemblance to the code

written by humans).

To summarize, we make the following major contributions.

• Originality. To our best knowledge, we performed the first ex-

tensive study on existing SOTA adversarial attacks approaches

towards PTMCs under well-studied code intelligence tasks.

• Extensive Study. We systematically compared five state-of-the-

art adversarial attack approaches from three perspectives: ef-

fectiveness, efficiency, and the quality of generated examples.

Our evaluation reveals the strengths and weaknesses of existing

approaches, highlights useful insights, thus paving the way for

future researches in this field.

• Improvement. Based on our empirical findings, we exploited

the differences among diverse program contexts with respect to

the chances of successfully generating adversarial examples and

designed a simple yet effective attack approach. Our approach

has demonstrated promising results via extensive evaluation.

• Open science. We have released all the artefacts of our study,

including the source code and experiment results, which is at

https://github.com/CGCL-codes/Attack_PTMC.

2 BACKGROUND
2.1 Pre-Trained Models of Code
PTMC can learn universal language representations on the large

corpus and can avoid training a newmodel from scratch [6, 19]. The

pre-training paradigm usually consists of two stages: pre-training

and fine-tuning. In the pre-training stage, it captures generic lan-

guage knowledge by employing self-supervised learning on a large

unlabeled corpus. In the fine-tuning stage, the trained model can

be fine-tuned for different downstream tasks. PTMC can be divided

into three categories based on their architectures: encoder-only,

decoder-only, and encoder-decoder models [38]. Encoder-only pre-

trained models can support both the understanding and generation

tasks, and the most wildly used ones are CodeBERT [3] and Graph-

CodeBERT [5]. Decoder-only models are good at generation tasks

like code completion while the adopted unidirectional architectures

are less effective on understanding tasks such as clone detection [4].

CodeGPT [14] is a well-known model based on Transformer be-

longing to this category. Encoder-decoder models are proposed

https://github.com/CGCL-codes/Attack_PTMC

An Extensive Study on Adversarial Attack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

aiming to tackle both the understanding and generation tasks, and

PLBART [2] as well as CodeT5 [33] are typical ones of such models.

2.2 Adversarial Attack on PL
2.2.1 PL Processing Tasks. Following prior works [14, 38], we

briefly introduce three typical PL processing tasks, which involve

the understanding task and generation task.

Clone Detection. It is a program understanding task aiming to

detect whether two source code snippets are identical or similar.

Vulnerability Detection. It is another program understanding

task whose purpose is to determine if a given code snippet contains

vulnerabilities or not.

Code Summarization. It is a generation task, which aims to gen-

erate natural language texts that describe the functionality of a

given code snippet.

2.2.2 Definitions. We give two definitions respectively for the un-

derstanding task and generation task. For the understanding task, a

classifier 𝑓 : X → Y is expected to predict the ground-truth label

𝑦𝑡𝑟𝑢𝑡ℎ ∈ Y for a given code snippet 𝑥 ∈ X. The goal of adversarial
attack is to add slight perturbations on 𝑥 to generate adversarial

examples 𝑥𝑎𝑑𝑣 that can mislead 𝑓 . Specifically, an adversarial code

example should satisfy the following three requirements: (1) Adver-

sarial example should mislead the model: 𝑓 (𝑥𝑎𝑑𝑣) ≠ 𝑓 (𝑥) = 𝑦𝑡𝑟𝑢𝑡ℎ .

(2) Adversarial perturbations should ensure the code is still syntac-

tically correct. That is, perturbations should conform to the syntax

rules of the programming language. For example, for the C language,

the identifiers can only contain letters, numbers, and underscores.

(3) 𝑥𝑎𝑑𝑣 should be semantically equivalent to 𝑥 (i.e., have exactly

the same functionalities and generate the same results given a same

input). For the generation task, we take the code summarization as

an example. The model 𝑓 : X → Y aims to maximize 𝑃 (𝑦𝑡𝑟𝑢𝑡ℎ | 𝑥)
where a given code snippet 𝑥 ∈ X and the ground-truth summary

𝑦𝑡𝑟𝑢𝑡ℎ ∈ Y. Since the output 𝑦 of summarization models contains

many possibilities, we cannot employ the first requirement in the

understanding task to directly determine whether the attack is suc-

cessful. The existing work [43] utilizes the decrease on the BLEU

score to evaluate the performance of attack approaches. In this

paper, we follow the existing study [38] to consider an attack suc-

cessful when the BLEU score between adversarial summary and

the reference summary is 0, which indicates that the adversarial

summary does not match the reference summary at all. Similarly,

adversarial examples in generation tasks should also meet the re-

quirements (2) and (3) as defined in the understanding tasks.

3 STUDY DESIGN
In this Section, we introduce the design of our empirical study,

including the selected pre-trained models, adversarial attack ap-

proaches, and benchmark datasets. We then introduce our designed

research questions and the corresponding experimental settings.

3.1 Subjects and Datasets
3.1.1 Target Models. Section 2.1 presents the SOTA PTMCs to date.

For each category of PTMCs, we choose one model for evaluation as

the previous report [38] indicates that they achieve very close per-

formance. Meanwhile, there is no PTMCmodel that can achieve the

optimum performance across different tasks and datasets (e.g., for

encoder-only model, CodeBERT is better than GraphCodeBERT in

vulnerability detection while vice versa in clone detection. Simi-

larly, for the encoder-decoder model, CodeT5 outperforms PLBART

in vulnerability detection while vice versa in clone detection [38]).

Therefore, we select the most popular and widely-used one (indi-

cated by the number of citations) for each category. In particular,

we select CodeBERT [3], CodeGPT [14], and PLBART [2] in our

study from each category.

3.1.2 Adversarial Attack Approaches. Table 1 summarizes state-

of-the-art adversarial attack approaches published in the major

conferences and journals. The approaches selected in this study are

all black-box approaches since (1) white-box attacks often require

to access the information of model structures and parameters which

might not be easily obtained in practice, and thus attackers typi-

cally can only access the provided APIs to query the model; and (2)

white-box attacks tend to be model-specific in that different models

employ different structures, and thus an attack approach against a

specific model cannot generalize well to other ones. However, in

this study, we aim to evaluate the selected attack approach against

different models under various applications. Among the listed black-

box attacks, we exclude the approach proposed by Nguyen et al. [16]

because it performs fake API insertion at the class level while the

dataset selected to evaluate the three tasks in this study are all at

the function level. Among the remaining eight black-box attacks,

four different attacks [34, 38, 40, 43] can be directly reproduced and

are thus selected as our study subjects. As for the remaining four

approaches [7, 13, 17, 20], they perform semantic-preserving trans-

formations at the statement level (e.g., by inserting dead code or

transforming for loop into while loop). Because such approaches

usually contain common and similar transformation strategies, we

summarize widely-used strategies and integrate them into one ap-

proach. We briefly introduce the selected five approaches below.

MHM [40]. MHM performs iterative identifier substitution based

on Metropolis-Hastings (M-H) sampling [15]. This attack has two

main hyperparameters, the maximum number of iterations and the

number of candidate identifiers per iteration. The larger the value,

the higher chance the attack will be successful. Unfortunately, it

will be less efficient at the same time. We set these two parameters

to 100 and 30 respectively, following the original paper [40].

ACCENT [43]. ACCENT first selects K candidates for each identi-

fier based on the cosine distance, and then selects the best identifier

and candidate based on the change in scores before and after substi-

tuting the identifiers. This approach has twomain hyperparameters,

the number of candidate identifiers K and the number of the iden-

tifiers max that can be replaced. For a fair comparison with other

attacks, we set k to 30, and canceled the parameter max which

means we do not limit the number of replaced identifiers.

WIR-Random [38]. WIR-Random utilizes Word Importance Rank

(WIR) to determine the substitution sequence of identifiers, which

ranks each identifier according to the difference in the probabilities

generated by the model before and after renaming the identifier

to “UNK”. Then, WIR-Random sequentially replaces the sorted

identifiers by randomly selecting candidates. For fair comparison

with MHM, we also limit the number of candidate identifiers to 30.

ALERT [34]. ALERT utilizes context-aware identifier prediction

for substitution. In particular, in terms of the identifier selection

strategy, ALERT adopts two methods, the greedy algorithm and

genetic algorithm. We set the relevant hyperparameters following

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang and Hai Jin

Table 1: Summary of existing adversarial attack approaches
(in ascending order by the publication year)

Approach Venue

White/

Black
Task Perturbation

DAMP [36] OOPSLA’20 White

Functionality Classification

Code Completion

Random Substitution

Dead-Code Insertion

MHM [43] AAAI’20 Black Functionality Classification Random Substitution

Srikant et al. [26] ICLR’21 White Functionality Classification

Random Substitution

Dead-Code Insertion

Rabin et al. [20] IST’21

White &

Black
Method Name Prediction

Random Substitution

Style Transformation

Pour et al. [17] ICST’21 Black

Method Name Prediction

Code Captioning

Code Search

Code Summarization

Random Substitution

Style Transformation

Nguyen et al. [16] ASE’21 Black API Recommender Fake APIs Insertion

AVERLOC [7] SANER’22 Black Code Summarization

Random Substitution

Style Transformation

ACCENT [43] TOSEM’22 Black Code Summarization Based on Cosine Distance

ALERT [34] ICSE’22 Black

Authorship Attribution

Clone Detection

Vulnerability Detection

Context Prediction

RoPGen [13] ICSE’22 Black Authorship Attribution Style Transformation

CARROT [39] TOSEM’22 White

Functionality Classification

Clone Detection

Vulnerability Detection

Random Substitution

WIR-Random [38] ISSTA’22 Black

Vulnerability Detection

Code Summarization
Random Substitution

the original paper, including the number of candidate identifiers

(i.e., 30) and the maximum number of iterations (the larger one

between 5 × 𝑁𝑢𝑚𝑖 and 10, where 𝑁𝑢𝑚𝑖 denotes the number of

identifiers in the code).

StyleTransfer [7, 13, 17, 20]. The idea of StyleTransfer is to per-

form certain transformations that do not alter the semantics of the

program. In this attack, we select some common transformation

strategies from existing studies including (1) randomly adding a

log statement; (2) replacing while and for loops with each other;

(3) exchanging two independent statements; (4) reordering a binary

condition; (5) exchanging switch to if; (6) randomly adding a

try-catch block; (7) randomly adding a piece of dead code; (8)

switching the value of a boolean variable and propagates this

change. Then, we apply transformations to generate N candidate

examples and use them to attack the model. N is set to 500 in this

study to avoid the huge overhead in the attack process.

3.1.3 Datasets. To ensure the comprehensiveness of our under-

standing towards the effectiveness of existing attacks, we study

three tasks: vulnerability detection, clone detection for understand-

ing tasks, and code summarization for generation tasks. We select

representative benchmarks to evaluate them. For clone detection,

BigCloneBench [27] is a widely used clone detection benchmark

that contains four main types of intra-project and inter-project

clones. To better evaluate the adversarial attacks, we adopt the fil-

tered dataset proposed by Yang et al. [34]. Their filtering strategies

include removing unlabeled data, balancing the two labels (clones

and non-clones), and making the data at a computationally friendly

scale. As a result, our dataset includes 90,102 examples for train-

ing and 4,000 examples for validation and testing, respectively. For

vulnerability detection, the Open Web Application Security Project

(OWASP) Benchmark
1
is a Java test suite designed to evaluate vul-

nerability detection tools, and it is widely used in vulnerability

detection tasks [9, 23, 25]. We adopt version 1.1 of this benchmark,

which contains more data and is suitable for training models. As a

result, the dataset includes 13,041 examples for training and 4,000

1
https://owasp.org/www-project-benchmark

examples for validation and testing, respectively. For code sum-

marization, CodeSearchNet [11] is a widely used dataset for code

summarization, which includes data from six programming lan-

guages. We follow existing works [14, 38] and use the filtered Java

sub-datasets for code summarization, which results in 164,923 ex-

amples for training, 5,183 for validation and 10,955 for testing.

3.2 Evaluation Metrics
We adopt the following metrics for evaluation.

Accurary. It is the proportion of correctly predicted instances in

the test set, which is used in the task of vulnerability detection.

Precision, Recall and F1 Score. These three metrics are used for

evaluating clone detection. Precision (P) is the proportion of cloned

pairs correctly predicted as cloned to all pairs predicted as cloned.

Recall (R) is the proportion of cloned pairs correctly predicted as

cloned to all known real cloned pairs. F1 is the harmonic mean of

precision and recall and it is calculated as: 𝐹1 = 2 ∗ (𝑃 ∗ 𝑅)/(𝑃 + 𝑅).
BLEU-4. BLEU is widely used to evaluate the textual similarity

between the text generated in generative systems and the ground-

truth. BLEU-4 [30, 38] is a variant of BLEU, where the 4 indicates

that four consecutive words (4-gram) are used as the matching unit.

We fine-tune PTMCs following existing works [14, 38], and Ta-

ble 2 lists the reproduced results. The results are consistent with the

previously reported ones in the original paper, which indicates that

the models in our experiments have been adequately fine-tuned.

Table 2: Evaluation results on pre-trained models of code
Task VD CD CS

Metrics Acc Precision Recall F1 BLEU-4

CodeBERT 98.70 96.42 96.32 96.32 18.75

CodeGPT 97.45 96.55 96.52 96.52 15.36

PLBART 99.52 96.83 96.83 96.82 17.60

VD: Vulnerability Detection; CD: Clone Detection; CS: Code Summarization

3.3 Research Questions
The goal of this study is to systematically evaluate and compare

the performance of the SOTA adversarial attack methods against

various PTMC under different PL tasks, including their effective-

ness and efficiency. More importantly, we are also curious to know

the code qualities of the generated adversarial examples since it is

reported that the quality of the generated examples is of significant

importance [34]. To our best knowledge, it is also the first large-

scale investigation towards the quality of the adversarial examples.

Besides, we also investigate whether the context of perturbed iden-

tifiers will affect the performance of existing adversarial attack

approaches. We introduce our target RQs in detail as follows:

RQ1: (Attacking performance) How do existing adversarial
attack approaches perform against different PTMCs under
various tasks? In this RQ, we attempt to thoroughly compare the

SOTA adversarial attack approaches based on two criteria [37, 39].

C1: Effectiveness. We compare the effectiveness of adversarial

attacks according to the Attack Success Rate (ASR), which is the

percentage of code snippets on which an attack approach can suc-

cessfully generate adversarial examples, given a code dataset. A

higher ASR indicates a more effective attack.

C2: Efficiency.We compare the efficiency of adversarial attacks

according to two metrics: (1) Average Model Queries (AMQ). AMQ

denotes the number of queries to the attacked model during the

https://owasp.org/www-project-benchmark

An Extensive Study on Adversarial Attack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

generation of adversarial examples, which is positively related to

the attack running time. Too many model queries will be abnormal

and suspicious for the attacked party. (2) Average Running Time
(ART). ART is an overall metric of the efficiency of the attack

method. It is not only related to the number of model queries, but

also to the perturbation strategy. For example, the genetic algorithm

is more time-consuming than the greedy algorithm [8].

RQ2: (Adversarial code quality) What is the quality of ad-
versarial examples generated by adversarial attacks? Natural-
ness is crucial in adversarial example generation [34], as highlighted

by ACCENT [43]: people will easily argue that if the replaced identi-

fiers are significantly different from the original ones, the summary

should be different. Therefore, they use cosine similarity to con-

strain adversarial examples. According to the existing works on the

evaluation of perturbation towards text [32, 41] and code [34, 43],

there are two main aspects concerning the quality of the gener-

ated examples. First, the number of tokens that are replaced should

be as small as possible. Second, the adversarial tokens need to be

as similar as the original ones in terms of their semantics. In this

study, we evaluate the former with Identifier Change Rate (ICR) and
Token Change Rate (TCR), and the latter with Average Code Simi-
larity (ACS) and Average Edit Distance (AED), following existing
studies [32, 34, 41, 43]. The calculation of these four metrics are as

follows. (1) For 𝑘 adversarial examples, if there are in total𝑚𝑖 iden-

tifiers in the 𝑖𝑡ℎ code snippet and 𝑛𝑖 identifiers have been changed

in the adversarial examples, then ICR is evaluated as

∑𝑘
1
𝑛𝑖/

∑𝑘
1
𝑚𝑖 ;

(2) Beyond the identifiers, the source code may contain other code

tokens such as keywords, operators, etc. TCR is the ratio of the

changed tokens in the adversarial example to the total number of

tokens in the entire code. (3) We use the cosine similarity to reflect

the code similarity before and after the perturbations are performed.

In particular, ACS is computed based on the embeddings that vec-

torized from the source code by CodeBERT; (4) AED reflects the

character-level token differences, which is the number of times a

token needs to be edited at the character level in order to transform

into another. In general, a high-quality adversarial example should

preserve lower ICR, AED and TCR while the ACS should be higher.

RQ3: (Context of perturbed identifiers) How do the con-
texts of the perturbed identifiers affect the adversarial at-
tacking performance? Existing adversarial perturbations tend

to treat all identifiers equally, which leads to a large search space

and might also compromise the attacking efficiency. To reduce the

search overhead, we aim to explore the impact of the contexts of

different identifiers on the attacking results in this RQ. In particular,

we regard the statements where the identifiers reside as contexts

and investigate whether perturbing identifiers residing at different

contexts will affect the attacking effectiveness. In this study, we

select the top five statements that are commonly used in code [18]

for investigation, which are Return, If, Throw, Try and For state-

ments. In addition to these types of statements, we also investigate

the impact of merely modifying method names and the parameters

to verify whether the models are vulnerable to such changes.We
refer to them as Method in the following. We use ASR to observe

the impact. Particularly, we choose two attacks with the highest

ASR, which are MHM andWIR-Random. Finally, We use CodeBERT

as the target model because it is the most studied PTMC to date.

3.4 Settings of Attacks
We use the trained models as introduced in Section 3.1.1 as the at-

tack targets and adapt the original code of the five attack approaches

in this study. In particular, we only made limited modifications on

the code, specifically focusing on the data loading and a few param-

eters (e.g., the candidate identifiers as mentioned in Section 3.1.2),

to serve for the need of processing our selected datasets. We use all

the test set as the target instances (i.e., in total 4,000) for attacks on

vulnerability detection and clone detection. For the code summa-

rization task, we randomly select 4,000 examples from the test set

as instances used for attacks to align with the number of the target

instances used in the other two tasks. Meanwhile, it is beneficial

for our study to explore the differences between the robustness

of models for different tasks under the same scale of adversarial

attacks. When evaluating the attack approaches based on identifier

substitution, we skip source programs without identifiers. Besides,

we also skip the instances that are classified incorrectly by the

model to mitigate the effect of model performance. Such settings

are commonly used in adversarial attacks [34, 40]. Although we

exclude a small proportion of instances, our study is large-scale.

In particular, we performed attacks on more than 150,000 target

programs with over 100 million queries to various PTMC models.

4 EMPIRICAL RESULTS
In this section, we present the results of our empirical studies.

4.1 Attack Performance (RQ1)
4.1.1 Effectiveness. We performed experiments on the five attack

approaches and measure their Attack Success Rate (ASR), and the

results are shown in Table 3. Generally, all the three target models

can be easily attacked under the three different tasks. In particular,

MHM can achieve the highest ASR (i.e., 57.83%) averaged over all

the experiments, followed by WIR-Random (i.e., 38.77%). Based on

the results, we made the following observations.

First, random substitution is more effective than the other pertur-
bation strategies. Specifically, both MHM and WIR-Random adopts

the strategy of random substitution while ALERT perturbs identi-

fiers based on context-aware prediction. Consequently, MHM and

WIR-Random outperform ALERT by 184.60% and 90.80%, respec-

tively. Meanwhile, such outperformance can be observed for all

the three tasks, which reflects that random substitution is the most

effective strategy to mislead pre-trained models. On the contrary,

StyleTransfer is less effective. We conjecture the behind reason is

that existing trained clone detection models are more robust to

various code transformation strategies. For example, the cloning

method summarized by Walker et al. [29] includes adding/deleting
code snippets and reordering statements, which is very similar to

the strategies as adopted by StyleTransfer. Therefore, the clone

detection model can learn sufficient code transformation features

on a large number of such code clone pairs, thus being robust to

StyleTransfer.

Second, the models are more robust against adversarial attacks
under the understanding tasks than the generation tasks. In par-

ticular, we observe that the ASR of the five attacks on the code

summarization model is higher than that of the clone detection and

vulnerability detection. The average ASRs of clone detection and

vulnerability detection are 24.39% and 22.62%, much lower than

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang and Hai Jin

Table 3: Attack success rate on pre-trained models of code
Attack Approach MHM ACCENT ALERT WIR StyleTransfer Avg

CD

CodeBERT 47.13 21.58 14.48 35.00 0.42 23.72

CodeGPT 43.90 23.55 6.59 35.43 0.27 21.95

PLBART 45.89 51.64 9.10 30.23 0.68 27.51

VD

CodeBERT 57.12 31.10 4.23 18.17 21.97 26.52

CodeGPT 29.68 24.95 4.75 13.11 9.04 16.31

PLBART 25.09 35.07 17.28 22.23 25.58 25.05

CS

CodeBERT 93.80 64.85 48.58 79.84 29.97 63.41

CodeGPT 87.11 21.17 23.50 52.90 6.71 38.28

PLBART 90.76 53.73 54.37 62.00 14.45 55.06

Average Number 57.83 36.40 20.32 38.77 12.12

CD:Clone Detection; VD:Vulnerability Detection; CS:Code Summarization

that of code summarization, which is 52.25%. Among them, MHM

achieves an ASR over 90% on the three code summarization models

on average, which shows that these models can be easily attacked

under the task of code summarization, and output completely irrel-

evant summarises compared to their original outputs.

Third, for the different pre-trained models, we find that CodeGPT
is more resistant to various attacks. CodeGPT achieves the lowest

ASR in 11/15 of the experiments (five attacks for three tasks). The

average ASR over the three tasks of the five attacks on CodeGPT is

25.51% as shown in the last column of Table 3, which is lower than

that of CodeBERT by 37.88% and PLBART by 35.87%.

Finding 1: Pre-trained models with excellent performance can

be easily misled by various adversarial attacks. In particular,

random strategies are more effective; models for the genera-

tion tasks are less robust compared to understanding tasks; and

CodeGPT is in general more resistant to various attacks.

4.1.2 Efficiency. Table 4 shows the results with respect to AMQ

and ART. Via analyzing these two metrics in conjunction with ASR,

we make the following observations.

First, the efficiency of different attacks varies greatly. The average
AMQ of ALERT and MHM are 1,945.69 and 1,613.90 respectively,

while that of WIR-Random and ACCENT is only 212.98 and 159.87.

Such differences are caused by the characteristics of the attack

approaches themselves. In particular, MHM employs a large num-

ber of iterations while StyleTransfer only transfers the target code

for a limited number of times to maintain the naturalness of the

code. Besides, ALERT uses a genetic algorithm with multiple itera-

tions, which tends to repeatedly replace the same identifier, while

WIR-Random and ACCENT only replace identifiers sequentially

according to the their importance calculated by the algorithm, and

they will not repeat replacing identifiers. For the same attack, the

efficiency varies on different tasks as well. Specifically, the average

AMQ of the five attack approaches on the three PTMCs is 1,078.80

and 1,181.77 on clone detection and vulnerability detection, but this

value is 366.26 on code summarization. Further analysis reveals that

it is caused by the low robustness of code summarization models

(Finding 1). The high ASR of the attack approaches on code sum-

marization models means that attacks can terminate early without

performing all iterations or visiting all replaceable variables.

Second, the number of model queries is positively correlated with
the attack successful rate in general. Figure 1 depicts the correlation
between AMQ and ASR. As it reveals, attacks with a higher ASR

often require a larger number of AMQ. For example, the MHMwith

the highest ASR has an average AMQ of 1,613.90 across all models,

102 103

AMQ (in log scale)
0

20

40

AS
R

(a) CD

102 103

AMQ (in log scale)

20

40

AS
R

(b) VD

101 102

AMQ (in log scale)

20

40

60

80

AS
R

(c) CS

100

ART (in log scale)

0

10

20

30

40

50

AS
R

(d) CD

100

ART (in log scale)

10
20
30
40
50

AS
R

(e) VD

10 1 100

ART (in log scale)

20

40

60

80

AS
R

(f) CS
Figure 1: The correlation between AMQ&ART and ASR.

while the corresponding values of ACCENT and StyleTransfer with

a lower ASR are 159.87 and 445.59 respectively. However, the run-

ning time (ART) is not necessarily positively correlated with ASR.

Specifically, although StyleTransfer queries themodels for less times

than MHM (445.59 vs 1,613.90 on average), it takes much longer

time for StyleTransfer to process the queries than MHM (14.72 mins

vs 4.39). As a result, the metric ART is not positively correlated

with ASR as shown in Figure 1. It is because an attack approach

often contains additional time consumption besides querying the

model. For instance, StyleTransfer usually spends a lot of time on

code transformation.

(a) CD (b) VD (c) CS

(d) CD (e) VD (f) CS
Figure 2: The correlation between AMQ&ART and the num-
ber of identifiers in the target program.

0 5 10 15 20 25
Identifier

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

succ fail

(a) CD

0 5 10 15 20
Identifier

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

succ fail

(b) VD

0 5 10 15 20
Identifier

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

succ fail

(c) CS
Figure 3: The correlation between ASR and the number of
identifiers in the target program.

Third, the efficiency of various attack is affected by the total number
of identifiers that can be extracted from the program. As shown
in Figure 2, AMQ and ART always increase with the number of

identifiers, and this trend holds for all three tasks. Such a trend

arises from the fact that the number of replaceable identifiers plays

the fundamental role in attack approaches. Specifically, both ALERT

and WIR utilize the greedy algorithm to iterate over all identifiers.

Therefore, in the worst case, where the attack fails, its theoretical

number of queries is the product of the number of identifiers and the

An Extensive Study on Adversarial Attack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 4: Average Model Queries (AMQ) and Average Running Time (ART) on attacking CodeBERT, CodeGPT and PLBART

Attack Approach

Average Model Queries (AMQ) Average Running Time (ART) (min)

MHM ACCENT ALERT WIR-Random StyleTransfer MHM ACCENT ALERT WIR-Random StyleTransfer

Clone

Detection

CodeBERT 1,884.43 196.09 2,263.53 247.65 498.12 5.69 2.95 4.49 0.63 9.25
CodeGPT 2,040.39 206.35 2,596.18 250.58 498.83 6.94 3.13 5.89 0.27 14.09
PLBART 2,040.01 157.03 2,549.49 256.27 496.97 7.79 2.36 8.39 0.33 18.35

Vulnerability

Detection

CodeBERT 1,877.43 235.83 2,718.57 276.30 397.33 1.75 5.09 2.02 0.24 20.00
CodeGPT 2,497.18 228.29 2,798.29 282.98 459.41 2.72 5.33 1.55 0.23 21.42
PLBART 2,446.50 256.31 2,592.32 277.02 382.72 3.37 4.66 3.65 0.27 20.07

Code

Summarization

CodeBERT 395.01 36.49 565.63 90.31 368.71 1.38 0.21 2.30 0.61 7.19
CodeGPT 756.67 76.15 938.39 126.64 469.58 8.29 0.80 8.78 1.83 11.80
PLBART 587.51 46.27 488.82 109.07 438.67 1.62 0.26 1.70 0.30 10.34

Average Number 1,613.90 159.87 1,945.69 212.98 445.59 4.39 2.75 4.31 0.52 14.72

number of potential candidates. We further explore the correlation

between the number of identifiers in the target program and the

attack successful rate, and the results in Figure 3 show that more

identifiers can in general lead to higher attack successful rates.

Finding 2: There is a trade-off between the effectiveness and

efficiency for adversarial attacks. Attacking with higher suc-

cessful rates often requires a larger number of model queries.

Besides, the efficiency of attack is also affected by the number

of identifiers in the target program.

4.2 Adversarial Code Quality (RQ2)
The above research question demonstrates the effectiveness and

efficiency of adversarial attacks against different PTMCs under

various tasks. However, with the recent focus on the naturalness of

the generated adversarial examples [34], a question naturally raises:

which attack generates adversarial examples of higher qualities?

Via analyzing the results of ICR, TCR, ACS and AED are shown in

Figure 4, we make the following observations.

First, none of the attacks can achieve the optimal performance on
the three tasks in terms of naturalness. Specifically, ALERT achieves

the best in terms of ICR, ACS and AED on average, while ACCENT

is the optimal on average against TCR. The results are also different

on various tasks. For instance, ALERT outperforms ACCENT on

average against ICR, ACS and AED on clone detection and vulnera-

bility detection, but vice versa on code summarization. In general,

both ACCENT and ALERT outperform MHM and WIR-Random in

terms of average ACS and AED on all tasks since they both consider

the naturalness of adversarial examples when replacing identifiers.

Second, effective attacks in general generate less natural adver-
sarial examples. The adversarial examples generated by MHM and

WIR-Random with the highest ASR have the lowest ACS to the

original code and the largest ICR, TCR and AED, indicating that

their adversarial code quality is generally lower. This raises the

question towards the usefulness of MHM andWIR-Random in prac-

tice since the existing study [34] points out that the adversarial

example should not only cheat the model but also be natural to hu-

man judges. Conversely, the adversarial code generated by ALERT

and ACCENT perform best on both ACS and AED, indicating that

these adversarial code are more similar to the original code. Such

results also confirm that the adversarial code are more natural than

random replacement as claimed by ALERT and ACCENT. A po-

tential reason for the high attack successful rate of MHM is that

less natural perturbations may lead to Out-of-Distribution (OOD)

CD VD CS
0

10

20

30

40

50

IC
R

MHM
ACCENT

ALERT
WIR-Random

(a) ICR-CodeBERT

CD VD CS
0

10

20

30

40

50

IC
R

MHM
ACCENT

ALERT
WIR-Random

(b) ICR-CodeGPT

CD VD CS
0

10

20

30

40

50

IC
R

MHM
ACCENT

ALERT
WIR-Random

(c) ICR-PLBART

CD VD CS
0

1

2

3

4

5

6

TC
R

MHM
ACCENT

ALERT
WIR-Random

(d) TCR-CodeBERT

CD VD CS
0

1

2

3

4

5

6

TC
R

MHM
ACCENT

ALERT
WIR-Random

(e) TCR-CodeGPT

CD VD CS
0

1

2

3

4

5

6

TC
R

MHM
ACCENT

ALERT
WIR-Random

(f) TCR-PLBART

CD VD CS
0.90

0.92

0.94

0.96

0.98

1.00

AC
S

MHM
ACCENT

ALERT
WIR-Random

(g) ACS-CodeBERT

CD VD CS
0.90

0.92

0.94

0.96

0.98

1.00

AC
S

MHM
ACCENT

ALERT
WIR-Random

(h) ACS-CodeGPT

CD VD CS
0.90

0.92

0.94

0.96

0.98

1.00

AC
S

MHM
ACCENT

ALERT
WIR-Random

(i) ACS-PLBART

CD VD CS
0

50

100

150

200

250

AE
D

MHM
ACCENT

ALERT
WIR-Random

(j) AED-CodeBERT

CD VD CS
0

50

100

150

200

250

AE
D

MHM
ACCENT

ALERT
WIR-Random

(k) AED-CodeGPT

CD VD CS
0

50

100

150

200

250

AE
D

MHM
ACCENT

ALERT
WIR-Random

(l) AED-PLBART
Figure 4: Comparison of ICR, TCR, ACS and AED on attack-
ing CodeBERT, CodeGPT and PLBART. The lower ICR, AED
and TCR with the higher ACS indicate better performance.

examples. Such examples could easily lead to the success of adver-

sarial attacks because the models may not perform well on data

with different distributions [22].

Third, the adversarial examples generated by attacking CodeGPT
are less similar to the original program than the other pre-trained
models. Specifically, when the target model is CodeGPT for all

attacks, the average ACS is 0.9701, which is lower than 0.9716 and

0.9715 of CodeBERT and PLBART, and the average AED is 127.15,

which is higher than 112.72 and 110.35 of CodeBERT and PLBART.

Such differences are all significant as revealed by theMann-Whitney

U test [21] (𝑝-value<0.05). This result also confirms Finding 1, that

is, CodeGPT is more resistant to various attacks. Since ASR is

negatively correlated with naturalness, the attack algorithm has

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang and Hai Jin

Table 5: Attack success rate for replacing identifiers under different contexts

Position

Clone Detection Vulnerability Detection Code Summarization

Total

MHM WIR-Random

Total

MHM WIR-Random

Total

MHM WIR-Random

n=1 n=3 n=1 n=3 n=1 n=3 n=1 n=3 n=1 n=3 n=1 n=3

Method 4,000 11.01 17.90 1.92 9.91 4,000 11.16 19.81 2.36 5.70 4,000 61.32 88.81 46.84 80.81
Return 1,650 11.08 11.26 1.83 2.08 2,659 10.60 10.60 2.49 2.49 2,303 26.81 29.77 14.22 18.25

If 2,574 15.07 23.37 3.00 11.42 2,773 12.38 21.07 2.33 5.47 2,446 24.81 32.40 13.72 22.33

Throw 899 10.81 13.39 1.23 3.07 2,337 7.37 7.37 1.58 1.58 462 25.21 27.12 12.33 14.25

Try 2,858 13.78 23.89 2.30 12.77 2,501 8.41 15.24 1.93 4.33 603 22.87 30.77 11.13 20.85

For 741 16.11 26.05 3.08 14.29 398 10.98 18.40 2.97 5.64 398 26.73 35.14 15.32 29.13

to choose the suboptimal word with a longer distance among the

candidate identifiers to achieve the purpose of misleading CodeGPT.

Finding 3: There is a trade-off between effectiveness and nat-

uralness for adversarial attacks. Specifically, effective attacks

generate less natural adversarial examples. In general, substitu-

tion strategies such as context-aware identifier prediction and

replacement based on cosine similarity can generate examples

of higher qualities than that of random substitution.

4.3 Contexts of Perturbed Identifiers (RQ3)
The exploration of the above two research questions demonstrates

that there are two factors affecting the effectiveness of adversarial

attack, the search algorithm and the identifier substitution strategy.

However, they both concentrate on how to change the programs,

while another important perspective for adversarial attack is de-

termining what identifiers should be changed. In this RQ, we in-

vestigate if perturbing identifiers under different contexts can cast

significant impact on the attacking effectiveness. Via analyzing the

results as shown in Table 5, we make the following observations.

A large number of instances can be successfully attacked even if
only one identifier is replaced. Specifically, we limit the replaced

identifiers to 1 and 3 and the results show that existing techniques

can still attack various models successfully, and the ASR increases

as such a threshold increases. For different attack approaches, MHM

is consistent with previous experiments in that ASR is higher than

WIR-Random in all cases. In this paper, we explore the impact

of identifiers in different statements on the models’ performance.

Next, we take MHM as an example to make such explorations since

the ASR of MHM and WIR-Random on different statements share

similar trend. To ease for presentation, we refer to the different

statements by their name, such as For.
The results show that the attacking effectiveness is sensitive to

the identifiers under various types of statements, and such sensitiv-
ity diverges under different tasks. Specifically, in clone detection,

replacing identifiers in For, If, and Try is more likely to result in a

successful attack. For instance, when n=3, the ASR of these three

statements all exceed 20%, and the highest is 26.05% of For. The
perturbations to Method, Throw and Return achieve relatively low

ASRs (less than 20%), the lowest of which is 11.26% of Return. In
vulnerability detection, the first three most effective statements are

If, Method, and For. When n=3, the ASR of these three statements

are close to 20%, and the highest is 21.07% of If. Throw has the low-

est impact with the ASR is 7.37%. In code summarization, Method
dominates the attack effectiveness with an extremely high ASR of

88.81%, which is significantly higher than those of the other state-

ments. Specifically, the ASRs of the remaining types of statements

are all below 50%. Among them, Throw has the lowest impact on

the code summarization model, with its ASR reaching 27.12%. We

further performed a case study to analyze and understand why

prioritizing statements can significantly affect the performance of

adversarial attacks (see Section 6.1).

Finding 4: The context of the identifiers (e.g., where the identi-
fiers reside) can affect the attacking effectiveness significantly,

which suggests that the perturbation strategies should consider

the context of identifiers aiming for better attacks.

5 NEW APPROACH
Our empirical investigation reveals two main challenges for ad-

versarial attack against PTMC, which are the trade-off between

effectiveness and efficiency (Finding 2) as well as that between

effectiveness and naturalness (Finding 3). Both the two challenges

may compromise the practical usefulness of existing adversarial

attacks. Aiming to alleviate the second challenge, the state-of-the

art approach, ALERT [34], adopts a context-aware identifier substi-

tution strategy to improve adversarial code naturalness. However,

our experiment reveals that both the effectiveness and efficiency

of ALERT still are still limited. For instance, it only achieves an

average ASR of 20.32% on the three tasks.

Our tool aims to enhance both the effectiveness and efficiency

while guaranteeing the naturalness, and the novelty of which is

mainly embodied in the following two aspects. First, Finding 4

shows that perturbations on different types of statements can

achieve varying success rates on existing attack techniques. As

such, we propose to incorporate such prior knowledge to prioritize

identifier selection, thus enhancing the effectiveness and efficiency

of the attack. This attack strategy, which incorporates code features,

is different from all the previous works, including the SOTA ALERT.

Second, Finding 2 reveals that the effectiveness and efficiency of

existing attacks are still limited. The reasons are as follows. MHM

mainly uses a random method to replace identifiers one by one

along the sequence of identifiers that can be replaced while this

strategy requires a large number of queries to mislead the model.

Meanwhile, ALERT, ACCENT and WIR-Random replace identifiers

sequentially. Once the top candidates fall into local optimal solu-

tions, it is difficult for them to find the global optimal solution since

they do not repeatedly process the replaced identifiers. To alleviate

such problems, we propose to use beam search [12] to focus on

all the identifiers in a statement, which can simultaneously search

from multiple sequences and replace multiple identifiers.

5.1 Approach Design
Algorithm 1 shows the workflow of BeamAttack. It first obtains

the set of identifiers in different statements S and the number of

statement types T (Line 2). The priority of different statements is

An Extensive Study on Adversarial Attack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

summarized by our prior knowledge as shown in Table 5. For in-

stance, the prioritized statement types for the clone detection task

is: For, If, Try, Method, Throw, Return, and Others. BeamAt-

tack then performs beam search over different types of statements

sequentially to generate new samples. For the first iteration, the

replaced code is the source program 𝑝 (Line 3). For subsequent

iterations, the replaced code are the 𝑘 perturbed codes returned

by function BeamSearch (Section 5.1.1) in the previous iteration.

The sequence to be replaced (which is denoted as 𝑆𝑒𝑞) is initial-

ized to all the identifiers in the entire statement (Line 5). We apply

BeamSearch multiple times until the last category of statements

is searched or an adversarial example is successfully generated.

Note that we record the replaced identifiers after each BeamSearch
(Line 7). Finally, BeamAttack performs the last BeamSearch with

the recorded replaced identifier as 𝑆𝑒𝑞 (Line 8). This step is to allevi-

ate the limitation that beam search will not process those identifiers

that have already been replaced. Since an identifier can only be

replaced by a unique candidate in the adversarial example, some

suboptimal candidates are discarded during the search, and they

may become optimal after subsequent identifiers are replaced.

5.1.1 BeamSearch. The maximum iteration in the search is set to

be the product of 𝑆𝑒𝑞’s length and the weight of the statement type

(Line 6). In particular, we set the weight of the most important

statement type to 1, and the other weights are set proportionally

according to the prior knowledge in Table 5. In each iteration in

BeamSearch, we apply Perturb (Section 5.1.2) on all the identi-

fiers from the current type of statements. After that, BeamSearch
selects the k best ones in the current generation and the previous

generation to serve for the next iteration. Note that the search

process will stop if the current iteration fails to generate new quali-

fied candidates. Since the number of identifiers is proportional to

the maximum number of iterations of BeamSearch, it will directly
affect the efficiency of BeamAttack. As shown in Figure 3, the num-

ber of identifiers differs for the three tasks. To balance the attack

success rate and efficiency, we set k to 2, 3 and 5 in clone detection,

vulnerability detection and code summarization, respectively.

5.1.2 Perturb. Perturb first uses CodeBERT to generate the 30

most similar candidates for an identifier following the four attacks

investigated in our study. This similarity is based on the cosine sim-

ilarity between the embeddings from CodeBERT-MLM following

ALERT, which is trained with the objective of masked language

modeling. These candidates are generated in real-time for each

Perturb. Since some identifiers are changed during the attack, the

top 30 candidates for the identifier to be replaced will also change

accordingly. Then, Perturb chooses the identifier in the candidate

list that reduces the current probability of true label the most for

replacement to guarantee the naturalness. If the drop in probability

changes the model’s predicted label or makes the code summary

completely independent of the ground truth (i.e., BLEU = 0), we con-

sider the attack successful and output the adversarial example and

the replaced identifier. Otherwise, Perturb returns the perturbed

code, original identifier, replaced identifier and the probability for

the corresponding replacement.

5.2 Evaluation
5.2.1 Evaluation Datasets. To evaluate our method thoroughly, we

first evaluate it on the dataset as listed in Section 3.1.3. Furthermore,

Algorithm 1: The Main Workflow of BeamAttack

Input: source program 𝑝 , beam size 𝑘 , statement weight 𝑆𝑊
Output: adversarial example 𝑎𝑑𝑣

1 𝑟 𝑣 = [] # replaced variable

2 𝑆,𝑇 = GetStatements(p) /* S is the set of identifiers in different

statements, T is the number of statement types */

3 P0 = {𝑝, 𝑆 [0]}
4 for 𝑡 = 0→ 𝑇 do
5 𝑆𝑒𝑞𝑡 = 𝑆 [𝑡]
6 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 = 𝐿𝑒𝑛𝑔𝑡ℎ (𝑆𝑒𝑞𝑡) ∗ 𝑆𝑊 [𝑡] P𝑡+1 ← BeamSearch(P𝑡 ,𝑚𝑎𝑥_𝑖𝑡𝑒𝑟)
7 𝑟 𝑣.append(P𝑡+1 . 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

8 BeamSearch({𝐶𝑜𝑑𝑒𝑇 , 𝑟 𝑣 }, 𝐿𝑒𝑛𝑔𝑡ℎ (𝑟 𝑣)) Function
BeamSearch(P𝑡 = {𝐶𝑜𝑑𝑒𝑡 , 𝑆𝑒𝑞𝑡 },𝑚𝑎𝑥_𝑖𝑡𝑒𝑟)

9 while not exceed𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
10 P𝑐𝑜𝑝𝑦 ← P𝑡
11 for𝐶𝑜𝑑𝑒𝑡

𝑖
in P𝑡 do

12 for 𝑆𝑒𝑞𝑡
𝑗
in P𝑡 do

13 P𝑡+1
𝑖
← Perturb (𝐶𝑜𝑑𝑒𝑡

𝑖
, 𝑆𝑒𝑞𝑡

𝑗
)

14 P𝑡 ← Selection(P𝑡 ∪ P𝑡+1, 𝑘)
15 if P𝑡 == P𝑐𝑜𝑝𝑦 then
16 return P𝑡

17 return P𝑡

to demonstrate its generalizability, we perform additional evalua-

tions on three other datasets. For clone detection, we use the filtered

Google Code Jam (GCJ) [31, 42] dataset consisting of 90,102 exam-

ples for training and 4,000 for validation and testing respectively.

For vulnerability detection, we use the Juliet Test Suite
2
, which

is another widely used open source security benchmark [25, 35]

besides OWASP. In particular, we utilize the Java sub-dataset and ex-

clude instances with identical function bodies, and finally obtain the

training, validation, and testing sets consisting of 23,636, 2,954, and

2,954 examples respectively. For code summarization, we use TL-

CodeSum (TLC) [10], which is widely used as a benchmark [1, 24].

Similar to Juliet, we filter out duplicate examples and obtain the

training, validation, and testing sets consisting of 69,633, 8,700, and

6,445 examples respectively. We also tried to reproduce the results

on these datasets, and the results reflect that our fine-tuned models

can also achieve similar performance.

5.2.2 Evaluation Results. We evaluate BeamAttak and ALERT on

18 sets of experiments (3 pre-trained models × 3 tasks × 2 datasets)

as they both use the context-aware identifier prediction as the

substitution strategy to guarantee the naturalness of adversarial

examples. The evaluation results are summarized in Table 6, and

we can observe that BeamAttck consistently achieves higher attack

success rates on all experiments. On average, BeamAttack outper-

forms ALERT by 20.85% in terms of ASR, showing that it is more

effective in achieving successful attacks. With respect to the attack

efficiency, BeamAttack outperforms ALERT on 15/18 experiments.

In addition, the average AMQ of BeamAttack is 1,690.12, which

is 11.98% less than that of ALERT (1,920.18 on average). This indi-

cates that our method, which relies on the statement importance to

search for adversarial examples, is more efficient. Since BeamAttack

replaces identifiers based on context-aware identifier prediction,

the adversarial examples generated by it is of higher qualities with

lower perturbation rates. Specifically, the average ICR of BeamAt-

tack is 8.49, which is lower than that of ALERT (11.32 on average).

Meanwhile, the average ICR and TCR of BeamAttack on the 18

2
https://samate.nist.gov/SARD/test-suites

https://samate.nist.gov/SARD/test-suites

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang and Hai Jin

Table 6: Performance comparison between BeamAttack and ALERT.

Attack Results

Clone Detection-BCB Vulnerability Detection-OWASP Code Summarization-CSN

ASR↑ AMQ↓ ART↓ ICR↓ TCR↓ ACS↑ AED↓ ASR↑ AMQ↓ ART↓ ICR↓ TCR↓ ACS↑ AED↓ ASR↑ AMQ↓ ART↓ ICR↓ TCR↓ ACS↑ AED↓
CodeBERT

BeamAttack 22.43 1,992.97 2.69 9.06 1.49 0.9872 66.45 5.04 1,956.58 2.94 2.90 0.43 0.9815 94.06 51.46 371.82 1.53 15.05 1.80 0.9951 15.91
ALERT 14.48 2,263.53 4.49 8.77 1.00 0.9837 78.35 4.23 2,718.57 2.02 2.79 0.34 0.9868 77.72 48.58 565.63 2.30 23.68 2.61 0.9907 23.63

CodeGPT
BeamAttack 12.09 2,364.90 3.40 7.42 1.18 0.9800 106.91 6.11 1,904.41 3.02 3.50 0.56 0.9784 104.26 23.86 400.26 4.32 7.20 0.84 0.9948 15.71

ALERT 6.59 2,596.18 5.89 4.72 0.57 0.9862 96.48 4.75 2,798.29 1.55 3.03 0.39 0.9829 89.23 23.50 938.39 8.78 13.37 1.52 0.9879 29.01

PLBART
BeamAttack 13.14 2,327.70 5.75 6.02 0.99 0.9856 76.76 19.17 1,742.51 3.40 7.05 1.15 0.9861 65.79 58.29 361.22 1.19 18.21 2.26 0.9948 16.29

ALERT 9.10 2,549.49 8.39 6.26 0.69 0.9832 79.94 17.28 2,592.32 3.65 9.67 1.23 0.9844 73.10 54.37 488.82 1.70 29.55 3.36 0.9891 25.90

Attack Results Clone Detection-GCJ Vulnerability Detection-Juliet Code Summarization-TLC

CodeBERT
BeamAttack 11.84 4,702.12 6.38 4.52 1.02 0.9795 82.00 0.17 1,176.07 0.95 0.10 0.01 0.9868 85.40 44.23 602.48 4.90 13.35 2.07 0.9924 21.52

ALERT 6.85 4,008.96 2.86 4.13 0.80 0.9739 95.19 0.14 1,872.35 1.78 0.05 0.00 0.9837 30.50 31.87 516.50 6.54 14.13 1.98 0.9877 26.63

CodeGPT
BeamAttack 25.72 3,147.57 5.73 6.60 1.65 0.9861 55.97 0.85 1,554.57 1.21 0.75 0.10 0.9877 139.88 58.58 255.56 1.69 13.42 1.76 0.9948 13.70

ALERT 20.42 3,170.36 2.77 8.70 1.53 0.9813 72.60 0.27 1,847.87 1.92 0.22 0.02 0.9889 92.00 52.66 603.25 6.44 19.90 2.52 0.9904 20.31

PLBART
BeamAttack 47.32 3,446.06 4.96 13.45 3.31 0.9851 75.85 1.09 1,747.10 2.53 0.56 0.07 0.9913 74.62 67.29 368.27 2.40 17.78 2.44 0.9945 15.15

ALERT 36.67 2,537.58 3.20 19.54 3.71 0.9794 98.24 0.78 1,973.91 2.28 0.45 0.04 0.9953 56.48 55.27 521.31 6.22 23.79 3.37 0.9889 23.36

Note: Bold numbers indicate the better performance for the given metric. The cell with lightgray background denotes the outperformance is significant (𝑝 < 0.05).

1 public static void main(String args[]) {
2 Scanner scanner = new Scanner(new
3 FileReader(inFile));
4 int T = scanner.nextInt();
5 FileWriter fw=new FileWriter(outFile);
6 for (int t = 1; t <= T; ++t) {
7 int r = scanner.nextInt();
8 int c = scanner.nextInt();
9 int w = scanner.nextInt();
10 fw.write(String.format("%d:%s",
11 t,solve(r,c,w)));
12 }
13 }
14 private static int solve(int r,int c,int w){
15 int res=((c-1)/w+1)*(r-1)+w+(c-1)/w;
16 return res; }

1 public static void main(String[] args){
2 BufferedReader br = new BufferedReader(
3 new InputStreamReader(System.in));
4 String str = br.readLine();
5 while ((str = br.readLine()) != null) {
6 String[] temp = str.split(" ");
7 int r = Integer.parseInt(temp[0]);
8 int c = Integer.parseInt(temp[1]);
9 int w = Integer.parseInt(temp[2]);
10 int ans = 0;
11 if (c % w == 0) {
12 ans = ((c / w) + w - 1) * r;
13 } else {
14 ans = ((c / w) + w) * r; }
15 }
16 }

1 Cookie[] cookies=request.getCookies();
2 String param = null;
3 boolean foundit = false;
4 if (cookies != null) {
5 for (Cookie cookie:cookies) {
6 if (cookie.getName().equals("foo")){
7 param = cookie.getValue();
8 foundit = true; }}
9 if (!foundit) { param = ""; }
10 } else {
11 param = "";
12 }
13 String bar = new Test().doSomething(param);
14 java.io.FileOutputStream fos = new java.io.
15 FileOutputStream(org.owasp.benchmark.
16 helpers.Utils.testfileDir + bar,false);

(a) Clone Detection: the first version of index
#1216 from dataset GCJ

1 public static void main(String args[]) {
2 Scanner scanner = new Scanner(new
3 FileReader(inFile));
4 int T = scanner.nextInt();
5 FileWriter fw=new FileWriter(outFile);
6 for (int t = 1; t <= T; ++t) {
7 int r = scanner.nextInt();
8 int c = scanner.nextInt();
9 int w = scanner.nextInt();
10 fw.write(String.format("%d:%s",
11 t,solve(r,c,w)));
12 }
13 }
14 private static int solve(int r,int c,int w){
15 int res=((c-1)/w+1)*(r-1)+w+(c-1)/w;
16 return res; }

1 public static void main(String[] args){
2 BufferedReader br = new BufferedReader(
3 new InputStreamReader(System.in));
4 String str = br.readLine();
5 while ((str = br.readLine()) != null) {
6 String[] temp = str.split(" ");
7 int r = Integer.parseInt(temp[0]);
8 int c = Integer.parseInt(temp[1]);
9 int w = Integer.parseInt(temp[2]);
10 int ans = 0;
11 if (c % w == 0) {
12 ans = ((c / w) + w - 1) * r;
13 } else {
14 ans = ((c / w) + w) * r; }
15 }
16 }

1 Cookie[] cookies=request.getCookies();
2 String param = null;
3 boolean foundit = false;
4 if (cookies != null) {
5 for (Cookie cookie:cookies) {
6 if (cookie.getName().equals("foo")){
7 param = cookie.getValue();
8 foundit = true; }}
9 if (!foundit) { param = ""; }
10 } else {
11 param = "";
12 }
13 String bar = new Test().doSomething(param);
14 java.io.FileOutputStream fos = new java.io.
15 FileOutputStream(org.owasp.benchmark.
16 helpers.Utils.testfileDir + bar,false);

(b) Clone Detection: the cloned version of in-
dex #1216 from dataset GCJ

1 public static void main(String args[]) {
2 Scanner scanner = new Scanner(new
3 FileReader(inFile));
4 int T = scanner.nextInt();
5 FileWriter fw=new FileWriter(outFile);
6 for (int t = 1; t <= T; ++t) {
7 int r = scanner.nextInt();
8 int c = scanner.nextInt();
9 int w = scanner.nextInt();
10 fw.write(String.format("%d:%s",
11 t,solve(r,c,w)));
12 }
13 }
14 private static int solve(int r,int c,int w){
15 int res=((c-1)/w+1)*(r-1)+w+(c-1)/w;
16 return res; }

1 public static void main(String[] args){
2 BufferedReader br = new BufferedReader(
3 new InputStreamReader(System.in));
4 String str = br.readLine();
5 while ((str = br.readLine()) != null) {
6 String[] temp = str.split(" ");
7 int r = Integer.parseInt(temp[0]);
8 int c = Integer.parseInt(temp[1]);
9 int w = Integer.parseInt(temp[2]);
10 int ans = 0;
11 if (c % w == 0) {
12 ans = ((c / w) + w - 1) * r;
13 } else {
14 ans = ((c / w) + w) * r; }
15 }
16 }

1 Cookie[] cookies=request.getCookies();
2 String param = null;
3 boolean foundit = false;
4 if (cookies != null) {
5 for (Cookie cookie:cookies) {
6 if (cookie.getName().equals("foo")){
7 param = cookie.getValue();
8 foundit = true; }}
9 if (!foundit) { param = ""; }
10 } else {
11 param = "";
12 }
13 String bar = new Test().doSomething(param);
14 java.io.FileOutputStream fos = new java.io.
15 FileOutputStream(org.owasp.benchmark.
16 helpers.Utils.testfileDir + bar,false);

(c) Vulnerability Detection: Index #26 from
dataset OWASP

Figure 5: Case study on clone detection and vulnerability detection.

experiments are 8.16 and 1.29, which are lower than ALERT (10.71

and 1.43, respectively). The average ACS of BeamAttack is 0.9871,

which outperforms ALERT (0.9861). BeamAttack only performs

worse than ALERT on AED (62.57 vs. 60.54).

To verify whether the performance differences are statistically

significant, we apply the one-sided Mann-Whitney U tests [21] to

each experiment. Significant differences (𝑝-value<0.05) are marked

with asterisks in Table 6. The results show that our method outper-

forms ALERT on 69.05% of the cases (i.e., 87/126, 18 experiments *

7 metrics). Among these cases, 78 (accounting for 89.66%) demon-

strate significant differences, strongly verifying that our method

not only surpasses ALERT on most evaluation metrics, but also

achieves significant outperformance. Although ALERT performs

relatively better in the remaining 39 cases, we note the difference

between BeamAttack and ALERT is significant for only 22 cases.

6 DISCUSSION
6.1 Case Study
In this section, we perform an additional case study to qualita-

tively compare BeamAttack with ALERT to understand their dis-

tinctions and why does prioritizing statements can significantly

affect the performance of adversarial attacks. We illustrate based

on Figure 5 on clone detection and vulnerability detection. The

cloned code corresponding to Figure 5a transforms for loop into

while and refactors the solve function, as shown in Figure 5b.

Figure 5c from the OWASP dataset contains a Path Traversal vul-
nerability on lines 14-16. The vulnerability exists due to the lack

of input validation for the variable bar which receives data from

the cookie (i.e., param). Such validation and filtering are often

performed by using the if statement, which highlights the impor-

tance of if in influencing the predictions for vulnerability detection

models. These two cases can reflect our finding in RQ3 that the state-
ments have the most significant impact on adversarial attacks against
clone detection and vulnerability detection are For and If, respec-
tively. Specifically, during the attack process, the first set of identi-

fiers extracted by BeamAttack are: [For: [fw, r, c, t, T, w,
scanner]] and [If: [cookie, foundit, i, cookies, bar, param
]] respectively since it prioritizes those statements based on prior

knowledge. The successful attack substitutions are [w↦→j, c↦→k,
fw ↦→ww] and [cookies↦→Cooks, param ↦→ram, bar↦→ban, i ↦→vi,
foundit ↦→foundait, doSomething↦→runNothing] respectively.
It can be seen that successful attacks can be achieved by only replac-

ing part of the identifiers in the For and If statements. In contrast,

the sequences replaced by ALERT are: [c, fw, w, res, r, inFile,
outFile, t, T, scanner] and [bar, param, response, foundit,
fos, i] respectively. We note that ALERT does not accurately re-

place the identifiers required to achieve the attack. For example, it

replaced irrelevant identifiers inFile and outFile in clone detec-

tion, and also missed the identifier cookies that is highly relevant

to the vulnerability. The above analysis explains the distinction

between ALERT and BeamAttack as well as why ALERT is less

effective.

In addition to the difference in prioritizing identifier substitu-

tion, it is worth noting that we also utilize beam search to attack,

which allows more sequences for identifier substitutions within

the same statement. For instance, in Figure 5c, ALERT replaces

identifiers strictly according to a fixed order, meaning only param
can come after bar. In contrast, after replacing bar, BeamAttack

can choose foundit, param, or i as the next replaceable identifier,

which mitigates the risk of getting stuck in local solutions.

An Extensive Study on Adversarial Attack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

6.2 Implications
For model robustness, we find that existing PTMCs are susceptible

to adversarial attacks (Finding 1), which presents a considerable

challenge to their robustness. Therefore, we strongly advocate that

researchers need to place equal, if not greater, emphasis on improv-

ing model robustness while striving to improve model performance.

Practical strategies such as adversarial training or data augmenta-

tion can be employed to enhance robustness. These methods can

equip models with the resilience required to counter adversarial

perturbations and improve their overall reliability.

For adversarial attack approach, considering the trend of large

language models (LLMs) towards being closed-source and charge-

able, attacks through massive queries may become extremely costly

or even infeasible. Therefore, a further exploration of the rela-

tionship between code identifiers and model prediction results is

necessary to derive a more accurate sequence for identifier replace-

ment. Additionally, we can leverage the SOTA language generation

techniques, such as ChatGPT, to replace identifiers and enhance the

naturalness of adversarial examples. Finally, considering the effec-

tiveness of statement prioritization, future methods should focus

on a more in-depth analysis of code structure, such as employing

comprehensive semantic analysis to devise more effective attacks.

7 THREATS TO VALIDITY
Internal validity: Parameter settings such as the number of itera-

tions can lead to different results. We adopt the following strategy

to mitigate this threat. When the parameters can be set uniformly,

we set the parameters consistently with the five attacks, such as the

number of candidates for the identifier. When the parameters are

specific to a attack approach, we follow the settings in the original

paper exactly to achieve fair comparisons. Another internal valid-

ity threat is the potential bugs in our implementation. To reduce

such threats, we have carefully checked our implementations and

also open sourced all the materials and code to the community for

further checks.

External validity: External validity is threatened by the general-

izability of tasks, datasets and models. For tasks, the selected ones

have been extensively studied in existing works on adversarial at-

tacks [34, 43]. For datasets, we not only use the CodeXGLUE bench-

mark studied in many original papers on PTMCs and adversarial

attacks, but also include a new dataset, the OWASP benchmark, to

evaluate the general applicability of the attack methods. For the

target models, we mitigate this threat by selecting the most popular

PTMCs with relatively high performances.

8 RELATEDWORK
Black box attack methods have been extensively discussed in Sec-

tion 3.1.2, and we introduce other white box attack methods in this

section. Specifically, Yefet et al. [36] proposed DAMP, which utilizes

the gradient information of the target model to find replacement

identifiers in the opposite direction of the gradient descent. Mean-

while, they use one-hot vector to encode code, aiming at obtaining

candidates by perturbing the vector and then mapping them back

to tokens. However, such an approach is unable to constrain the

candidates so that it may obtain irrelevant identifiers similar to

random substitutions. Srikant et al. [26] turned the adversarial at-

tack into an optimization problem, and identified two aspects in

the adversarial attack: which parts of the program to transform,

and what transformations to use. They correspond to the search

strategy and replacement strategy respectively as we mentioned

above. Then, they use projected gradient descent (PGD) based joint
optimization (JO) solver to obtain the optimal transform location

and transform method. Zhang et al. [39] proposed CARROT, which

incorporates gradient information into transform operations to

guide the search process more effectively. Although retrieving gra-

dients during transform operations may take more time, it can

effectively reduce search iterations. The above white box attacks

are not very practical as the latest SOTA models, such as ChatGPT,

are increasingly becoming closed-source. These models are typi-

cally deployed remotely and offer services through API interfaces,

making it difficult to access their internal structure and parameters.

There is no comprehensive evaluations towards adversarial at-

tack of PTMCs currently, and the study that is most similar to ours

is that of Zeng et al. [38]. However, they mainly focus on evaluating

the effectiveness of PTMCswhile the adversarial attack methods are

not fully studied. Specifically, they evaluated several attack meth-

ods adapted from the field of natural language processing (NLP),

and focus on comparison in terms of ASR. In contrast, our study

specifically focuses on attacks designed for SE applications, and we

have additionally evaluated attack efficiency and the quality of the

generated adversarial examples. Moreover, the attack method they

proposed simply combines WIR and random replacement without

incorporating the unique characteristics of programming languages

and code intelligence tasks, which is a common shortfall for most

existing studies on adversarial code attacks. In this work, for the

first time, we generate adversarial examples by perturbing source

code based on the contextual information of identifiers.

9 CONCLUSION
This study thoroughly evaluates the performance, efficiency, and ro-

bustness of adversarial attacks on Pre-trained Transformer Models

for Code (PTMCs). Results showed that PTMCs are easily suscepti-

ble to adversarial perturbations, with varying levels of robustness

among different tasks. The code summarization model was found

to be the most vulnerable. Additionally, high-performing attack

methods often come with significant computational overhead. The

importance of different statements was also analyzed, revealing

varying levels of sensitivity among different context identifiers

to counterattacks. Based on such findings, we proposed a new ap-

proach, BeamAttack, which improves the effectiveness of attacks by

21.30% and efficiency by 14.62% compared to the existing approach

ALERT using the same identifier substitution strategy.

10 DATA AVAILABILITY
The data, source code and the results of this paper is available at:

https://github.com/CGCL-codes/Attack_PTMC.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers for their valuable com-

ments. This work was supported by the National Natural Science

Foundation of China (Grant No. 62002125), the Young Elite Scien-

tists Sponsorship Program by CAST (Grant No. 2021QNRC001) as

well as theHubei Province Key Project under Grant No. 2023BAA024.

https://github.com/CGCL-codes/Attack_PTMC

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Xiaohu Du, Ming Wen, Zichao Wei, Shangwen Wang and Hai Jin

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A Transformer-based Approach for Source Code Summarization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and

Joel R. Tetreault (Eds.). Association for Computational Linguistics, 4998–5007.

https://doi.org/10.18653/v1/2020.acl-main.449

[2] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021.

Unified Pre-training for Program Understanding and Generation. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek

Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,

and Yichao Zhou (Eds.). Association for Computational Linguistics, 2655–2668.

https://doi.org/10.18653/v1/2021.naacl-main.211

[3] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:

A Pre-Trained Model for Programming and Natural Languages. In Findings of
the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020 (Findings of ACL, Vol. EMNLP 2020), Trevor Cohn, Yulan He, and

Yang Liu (Eds.). Association for Computational Linguistics, 1536–1547. https:

//doi.org/10.18653/v1/2020.findings-emnlp.139

[4] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.

UniXcoder: Unified Cross-Modal Pre-training for Code Representation. In Pro-
ceedings of the 60th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, Smaranda

Muresan, Preslav Nakov, and Aline Villavicencio (Eds.). Association for Compu-

tational Linguistics, 7212–7225. https://doi.org/10.18653/v1/2022.acl-long.499

[5] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long

Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun

Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,

and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with

Data Flow. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/

forum?id=jLoC4ez43PZ

[6] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong

Qiu, Yuan Yao, Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin,

Yanyan Lan, Yang Liu, Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie

Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin Zhao, and Jun Zhu. 2021. Pre-

trained models: Past, present and future. AI Open 2 (2021), 225–250. https:

//doi.org/10.1016/j.aiopen.2021.08.002

[7] Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh

Jha, and Thomas W. Reps. 2022. Semantic Robustness of Models of Source Code.

In IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE, 526–537. https://doi.

org/10.1109/SANER53432.2022.00070

[8] Christopher Herbig. 2002. Genetic Algorithms vs. Greedy Algorithms in the

Optimization of Course Scheduling. J. Comput. Sci. Coll. 17, 5 (apr 2002), 90–94.
https://dl.acm.org/doi/pdf/10.5555/775009.775028

[9] Katherine Hough, Gebrehiwet B. Welearegai, Christian Hammer, and Jonathan

Bell. 2020. Revealing injection vulnerabilities by leveraging existing tests. In ICSE
’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27
June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 284–296.

https://doi.org/10.1145/3377811.3380326

[10] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing

Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 2269–2275. https:

//doi.org/10.24963/ijcai.2018/314

[11] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic

Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http://arxiv.org/abs/

1909.09436

[12] Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, and Charles Elkan.

2013. Beam search algorithms for multilabel learning. Mach. Learn. 92, 1 (2013),
65–89. https://doi.org/10.1007/s10994-013-5371-6

[13] Zhen Li, Qian (Guenevere) Chen, Chen Chen, Yayi Zou, and Shouhuai Xu. 2022.

RoPGen: Towards Robust Code Authorship Attribution via Automatic Coding

Style Transformation. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1906–1918.

https://doi.org/10.1145/3510003.3510181

[14] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-

sio Blanco, Colin B. Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li,

Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming

Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie

Liu. 2021. CodeXGLUE: A Machine Learning Benchmark Dataset for Code

Understanding and Generation. In Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and

Benchmarks 2021, December 2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung

(Eds.). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/

c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html

[15] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H

Teller, and Edward Teller. 1953. Equation of state calculations by fast computing

machines. The journal of chemical physics 21, 6 (1953), 1087–1092. https://doi.

org/10.1063/1.1699114

[16] Phuong T. Nguyen, Claudio Di Sipio, Juri Di Rocco, Massimiliano Di Penta, and

Davide Di Ruscio. 2021. Adversarial Attacks to API Recommender Systems: Time

to Wake Up and Smell the Coffee𝑓 . In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021. IEEE, 253–265. https://doi.org/10.1109/ASE51524.2021.9678946

[17] Maryam Vahdat Pour, Zhuo Li, Lei Ma, and Hadi Hemmati. 2021. A Search-Based

Testing Framework for Deep Neural Networks of Source Code Embedding. In

14th IEEE Conference on Software Testing, Verification and Validation, ICST 2021,
Porto de Galinhas, Brazil, April 12-16, 2021. IEEE, 36–46. https://doi.org/10.1109/

ICST49551.2021.00016

[18] Dong Qiu, Bixin Li, Earl T. Barr, and Zhendong Su. 2017. Understanding the

syntactic rule usage in java. J. Syst. Softw. 123 (2017), 160–172. https://doi.org/

10.1016/j.jss.2016.10.017

[19] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing

Huang. 2020. Pre-trained Models for Natural Language Processing: A Survey.

CoRR abs/2003.08271 (2020). arXiv:2003.08271 https://arxiv.org/abs/2003.08271

[20] Md. Rafiqul Islam Rabin, Nghi D. Q. Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and

Mohammad Amin Alipour. 2021. On the generalizability of Neural Program

Models with respect to semantic-preserving program transformations. Inf. Softw.
Technol. 135 (2021), 106552. https://doi.org/10.1016/j.infsof.2021.106552

[21] Graeme D. Ruxton. 2006. The unequal variance t-test is an underused alternative

to Student’s t-test and the Mann–Whitney U test. Behavioral Ecology 17, 4 (05

2006), 688–690. https://doi.org/10.1093/beheco/ark016

[22] Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Moham-

mad Hossein Rohban, and Mohammad Sabokrou. 2022. A Unified Survey

on Anomaly, Novelty, Open-Set, and Out of-Distribution Detection: Solutions

and Future Challenges. Transactions on Machine Learning Research (2022).

https://openreview.net/forum?id=aRtjVZvbpK

[23] Imen Sayar, Alexandre Bartel, Eric Bodden, and Yves Le Traon. 2023. An In-depth

Study of Java Deserialization Remote-Code Execution Exploits and Vulnerabilities.

ACM Trans. Softw. Eng. Methodol. 32, 1 (2023), 25:1–25:45. https://doi.org/10.

1145/3554732

[24] Ensheng Shi, Yanlin Wang, Lun Du, Junjie Chen, Shi Han, Hongyu Zhang, Dong-

mei Zhang, and Hongbin Sun. 2022. On the Evaluation of Neural Code Sum-

marization. In 44th IEEE/ACM 44th International Conference on Software En-
gineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 1597–1608.

https://doi.org/10.1145/3510003.3510060

[25] Fausto Spoto, Elisa Burato, Michael D. Ernst, Pietro Ferrara, Alberto Lovato,

Damiano Macedonio, and Ciprian Spiridon. 2019. Static Identification of Injection

Attacks in Java. ACM Trans. Program. Lang. Syst. 41, 3 (2019), 18:1–18:58. https:

//doi.org/10.1145/3332371

[26] Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan,

Gaoyuan Zhang, and Una-May O’Reilly. 2021. Generating Adversarial Com-

puter Programs using Optimized Obfuscations. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. https://openreview.net/forum?id=PH5PH9ZO_4

[27] Jeffrey Svajlenko, Judith F. Islam, Iman Keivanloo, Chanchal Kumar Roy, and

Mohammad Mamun Mia. 2014. Towards a Big Data Curated Benchmark of

Inter-project Code Clones. In 30th IEEE International Conference on Software
Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014.
IEEE Computer Society, 476–480. https://doi.org/10.1109/ICSME.2014.77

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is

All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy

Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman

Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[29] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-Source Tools and

Benchmarks for Code-Clone Detection: Past, Present, and Future Trends. SIGAPP
Appl. Comput. Rev. 19, 4 (jan 2020), 28–39. https://doi.org/10.1145/3381307.

3381310

[30] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,

and Michael R. Lyu. 2022. No more fine-tuning? an experimental evaluation

of prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2022, Singapore, Singapore, November 14-18, 2022,
Abhik Roychoudhury, Cristian Cadar, and Miryung Kim (Eds.). ACM, 382–394.

https://doi.org/10.1145/3540250.3549113

https://doi.org/10.18653/v1/2020.acl-main.449
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1016/j.aiopen.2021.08.002
https://doi.org/10.1109/SANER53432.2022.00070
https://doi.org/10.1109/SANER53432.2022.00070
https://dl.acm.org/doi/pdf/10.5555/775009.775028
https://doi.org/10.1145/3377811.3380326
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.1007/s10994-013-5371-6
https://doi.org/10.1145/3510003.3510181
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1109/ASE51524.2021.9678946
https://doi.org/10.1109/ICST49551.2021.00016
https://doi.org/10.1109/ICST49551.2021.00016
https://doi.org/10.1016/j.jss.2016.10.017
https://doi.org/10.1016/j.jss.2016.10.017
https://arxiv.org/abs/2003.08271
https://doi.org/10.1016/j.infsof.2021.106552
https://doi.org/10.1093/beheco/ark016
https://openreview.net/forum?id=aRtjVZvbpK
https://doi.org/10.1145/3554732
https://doi.org/10.1145/3554732
https://doi.org/10.1145/3510003.3510060
https://doi.org/10.1145/3332371
https://doi.org/10.1145/3332371
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1109/ICSME.2014.77
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3381307.3381310
https://doi.org/10.1145/3540250.3549113

An Extensive Study on Adversarial Attack against Pre-trained Models of Code ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[31] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting Code Clones

with Graph Neural Network and Flow-Augmented Abstract Syntax Tree. In 27th
IEEE International Conference on Software Analysis, Evolution and Reengineer-
ing, SANER 2020, London, ON, Canada, February 18-21, 2020, Kostas Kontogian-
nis, Foutse Khomh, Alexander Chatzigeorgiou, Marios-Eleftherios Fokaefs, and

Minghui Zhou (Eds.). IEEE, 261–271. https://doi.org/10.1109/SANER48275.2020.

9054857

[32] Wenqi Wang, Run Wang, Lina Wang, Zhibo Wang, and Aoshuang Ye. 2023.

Towards a Robust Deep Neural Network Against Adversarial Texts: A Survey.

IEEE Trans. Knowl. Data Eng. 35, 3 (2023), 3159–3179. https://doi.org/10.1109/

TKDE.2021.3117608

[33] Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:

Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-

standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, Marie-Francine Moens, Xuanjing

Huang, Lucia Specia, and ScottWen-tau Yih (Eds.). Association for Computational

Linguistics, 8696–8708. https://doi.org/10.18653/v1/2021.emnlp-main.685

[34] Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022. Natural Attack for Pre-

trained Models of Code. In 44th IEEE/ACM 44th International Conference on
Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,

1482–1493. https://doi.org/10.1145/3510003.3510146

[35] Jiayi Ye, Chao Zhang, and Xinhui Han. 2014. POSTER: UAFChecker: Scalable

Static Detection of Use-After-Free Vulnerabilities. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ,
USA, November 3-7, 2014, Gail-Joon Ahn, Moti Yung, and Ninghui Li (Eds.). ACM,

1529–1531. https://doi.org/10.1145/2660267.2662394

[36] Noam Yefet, Uri Alon, and Eran Yahav. 2020. Adversarial examples for models

of code. Proc. ACM Program. Lang. 4, OOPSLA (2020), 162:1–162:30. https:

//doi.org/10.1145/3428230

[37] Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma, Bairu Hou,

Yuan Zang, Zhiyuan Liu, and Maosong Sun. 2021. OpenAttack: An Open-source

Textual Adversarial Attack Toolkit. In Proceedings of the Joint Conference of
the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing, ACL
2021 - System Demonstrations, Online, August 1-6, 2021, Heng Ji, Jong C. Park,

and Rui Xia (Eds.). Association for Computational Linguistics, 363–371. https:

//doi.org/10.18653/v1/2021.acl-demo.43

[38] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and

Lingming Zhang. 2022. An extensive study on pre-trained models for pro-

gram understanding and generation. In ISSTA ’22: 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, Virtual Event, South Korea,
July 18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.). ACM, 39–51.

https://doi.org/10.1145/3533767.3534390

[39] Huangzhao Zhang, Zhiyi Fu, Ge Li, Lei Ma, Zhehao Zhao, Hua’an Yang, Yizhe Sun,

Yang Liu, and Zhi Jin. 2022. Towards Robustness of Deep Program Processing

Models - Detection, Estimation, and Enhancement. ACM Trans. Softw. Eng.
Methodol. 31, 3 (2022), 50:1–50:40. https://doi.org/10.1145/3511887

[40] Huangzhao Zhang, Zhuo Li, Ge Li, Lei Ma, Yang Liu, and Zhi Jin. 2020. Generating

Adversarial Examples for Holding Robustness of Source Code Processing Models.

In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 1169–1176.
https://ojs.aaai.org/index.php/AAAI/article/view/5469

[41] Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. 2020.

Adversarial Attacks on Deep-learning Models in Natural Language Processing:

A Survey. ACM Trans. Intell. Syst. Technol. 11, 3 (2020), 24:1–24:41. https:

//doi.org/10.1145/3374217

[42] Gang Zhao and Jeff Huang. 2018. DeepSim: deep learning code functional simi-

larity. In Proceedings of the 2018 ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T.
Leavens, Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 141–151.

https://doi.org/10.1145/3236024.3236068

[43] Yu Zhou, Xiaoqing Zhang, Juanjuan Shen, Tingting Han, Taolue Chen, and

Harald C. Gall. 2022. Adversarial Robustness of Deep Code Comment Generation.

ACM Trans. Softw. Eng. Methodol. 31, 4 (2022), 60:1–60:30. https://doi.org/10.

1145/3501256

Received 2023-03-02; accepted 2023-07-27

https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/SANER48275.2020.9054857
https://doi.org/10.1109/TKDE.2021.3117608
https://doi.org/10.1109/TKDE.2021.3117608
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1145/2660267.2662394
https://doi.org/10.1145/3428230
https://doi.org/10.1145/3428230
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.18653/v1/2021.acl-demo.43
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3511887
https://ojs.aaai.org/index.php/AAAI/article/view/5469
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3374217
https://doi.org/10.1145/3236024.3236068
https://doi.org/10.1145/3501256
https://doi.org/10.1145/3501256

	Abstract
	1 Introduction
	2 Background
	2.1 Pre-Trained Models of Code
	2.2 Adversarial Attack on PL

	3 Study Design
	3.1 Subjects and Datasets
	3.2 Evaluation Metrics
	3.3 Research Questions
	3.4 Settings of Attacks

	4 Empirical Results
	4.1 Attack Performance (RQ1)
	4.2 Adversarial Code Quality (RQ2)
	4.3 Contexts of Perturbed Identifiers (RQ3)

	5 New Approach
	5.1 Approach Design
	5.2 Evaluation

	6 Discussion
	6.1 Case Study
	6.2 Implications

	7 Threats to Validity
	8 Related work
	9 Conclusion
	10 Data Availability
	Acknowledgments
	References

