
Lightweight Global and Local Contexts Guided Method Name
Recommendation with Prior Knowledge
Shangwen Wang

wangshangwen13@nudt.edu.cn
College of Computer Science, National University of

Defense Technology
Changsha, China

Ming Wen∗
mwenaa@hust.edu.cn

School of Cyber Science and Engineering, Huazhong
University of Science and Technology

Wuhan, China

Bo Lin
linbo19@nudt.edu.cn

College of Computer Science, National University of
Defense Technology
Changsha, China

Xiaoguang Mao
xgmao@nudt.edu.cn

College of Computer Science, National University of
Defense Technology
Changsha, China

ABSTRACT
The quality of method names is critical for the readability and
maintainability of source code. However, it is often challenging to
construct concise method names. To alleviate this problem, a num-
ber of approaches have been proposed to automatically recommend
high-quality names for methods. Despite being effective, existing
approaches meet their bottlenecks mainly in two aspects: (1) the
leveraged information is restricted to the target method itself; and
(2) lack of distinctions towards the contributions of tokens extracted
from different program contexts. Through a large-scale empirical
analysis on +12Mmethods from +14K real-world projects, we found
that (1) the tokens composing a method’s name can be frequently
observed in its callers/callees; and (2) tokens extracted from dif-
ferent specific contexts have diverse probabilities to compose the
target method’s name. Motivated by our findings, we propose, in
this paper, a context-guided method name recommender, which
mainly embodies two key ideas: (1) apart from the local context,
which is extracted from the target method itself, we also consider
the global context, which is extracted from other methods in the
project that have call relations with the target method, to include
more useful information; and (2) we utilize our empirical results
as the prior knowledge to guide the generation of method names
and also to restrict the number of tokens extracted from the global
contexts. We implemented the idea as Cognac and performed ex-
tensive experiments to assess its effectiveness. Results reveal that
Cognac can (1) perform better than existing approaches on the
method name recommendation task (e.g., it achieves an F-score of
63.2%, 60.8%, 66.3%, and 68.5%, respectively, on four widely-used
datasets, which all outperform existing techniques); and (2) achieve

∗Co-first and corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468567

higher performance than existing techniques on the method name
consistency checking task (e.g., its overall 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 reaches 76.6%,
outperforming the state-of-the-art MNire by 11.2%). Further results
reveal that the caller/callee information and the prior knowledge
all contribute significantly to the overall performance of Cognac.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software; Software evolution.

KEYWORDS
Method name recommendation, Deep learning, Code embedding.

ACM Reference Format:
Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao. 2021. Light-
weight Global and Local Contexts Guided Method Name Recommendation
with Prior Knowledge. In Proceedings of the 29th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.3468567

1 INTRODUCTION
The quality of identifier names plays critical roles in the readability
and maintainability of source code [21, 22, 27, 32, 37, 56, 66]. Due
to the huge amount of information contained towards the semantic
of diverse program elements (e.g., variables and classes), developers
often rely heavily on identifiers for program comprehension [23–
26, 45, 54, 55, 60]. Method names, as a special type of identifiers, are
especially important since they are the smallest named units of ag-
gregated behaviour and also the cornerstone of abstraction in most
conventional programming languages [38]. Nevertheless, in prac-
tice, developers often find it hard to name identifiers [46], and they
often write inconsistent names in programs due to various reasons
such as insufficient communication among development teams and
lack of understanding of project development histories [16, 36, 41].
Actually, constructing high quality method names is considered as
a challenging task, especially for inexperienced developers [38, 40].

It will cause many side effects if a method name does not match
its associated method body (i.e., an inconsistent method name).
Specifically, it can affect the readability and maintenance of the

https://doi.org/10.1145/3468264.3468567
https://doi.org/10.1145/3468264.3468567

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao

code [4, 14, 37], and hence induce potential software defects or
API misuses [20, 21, 65, 69]. For instance, Abebe et al. [4] found
that inconsistent method names can negatively influence software
maintenance activities. Besides, Butler et al. [20] also observed that
inappropriate names can significantly increase the number of code
quality issues detected by static checkers such as FindBugs [2]. To
alleviate this problem, various approaches have been proposed re-
cently to automatically recommend high-quality names given the
implementation of a method [5, 10, 51]. For instance, Code2vec [12]
represents source code using the paths that connect two leaf nodes
in the Abstract Syntax Tree (AST), and then recommends to reuse
the name of thosemethods who share similar syntax structures with
the target one (i.e., the method whose name is going to be inferred).
Existing studies [5, 10, 44, 46, 48, 51] deem that method names and
identifiers are composed of tokens, which are split from the name
based on the camel case and underscore naming conventions. For in-
stance, identifier “methodName” is composed of tokens “method”
and “name”. MNire then treats method name recommendation as
an abstract summarization task based on the seq2seq paradigm, and
generates the tokens to compose the method names using those
extracted from the implementation of the methods [51].

Despite their effectiveness, the major limitation concerning the
performance of existing techniques is that they only consider the in-
formation locally to recommend names. Specifically, they only con-
sider the implementation of a method to infer its method name [10,
12, 40]. However, a recent study shows that a large proportion
of the method name tokens cannot be observed from the inter-
faces and implementations of the methods [51]. In this study, we
find that such method name tokens can be often observed from
the callees of the target method. Besides, recent studies have also
shown that the information of program dependencies such as the
caller/callee relations can effectively serve for diverse software en-
gineering tasks [29, 43, 68, 70]. Therefore, it motivates us to investi-
gate whether the context information of method call relations can
be utilized to better infer appropriate method names. Incorporating
more information, however, will inevitably increase the number of
tokens feeding to a recommendation model. Consequently, it will
bring new challenges since the long sequence input might induce
more potential noises and may also reduce the generality of the
learnedmodel as revealed by recent studies [11, 59].We also observe
that those tokens constituting method names tend to occur more
frequently in certain contexts (e.g., parameters, return types and
other types of statements), which indicates that the contributions of
tokens under diverse program contexts to compose an appropriate
method name are different. Therefore, we are motivated to take
into consideration the context information of different tokens.

In pursuit of designing a more effective approach to recommend
appropriate method names, we first performed a large-scale em-
pirical study on +14K top-starred GitHub repositories with +12M
methods to validate our observations and motivations. We found
that the methods that have call relations with the target one can
provide abundant information to help infer method names. In detail,
the tokens of a caller’s method name can be found in its callee (ei-
ther the interface or the implementation) for 40.5% of the total cases.
We also found that the tokens extracted from different contexts
of a method have diverse probabilities to compose the name of a
method. For instance, tokens from the ReturnStatement generally

possess higher probabilities (e.g., nearly 20.0%) to compose the tar-
get method name than those from other types of statements. Such
empirical results confirmed our observations and intuitions.

Supported by our empirical findings, we propose a Context-
guided method name recommender, Cognac, which in general fol-
lows the seq2seq paradigm to infer method names utilizing program
entity names. In such a paradigm, the extracted program entity
tokens are rephrased into a short sequence of tokens which forms
the recommended method name. The reason why Cognac adopts
the seq2seq paradigm is that previous studies have shown the supe-
riorities of code tokens on name prediction [39, 51]. In particular,
Nguyen et al. have revealed that purely relying on the representa-
tion of code tokens yields better results than that of using the AST
or Program Dependence Graph (PDG) structures for method name
recommendation [51]. Although Cognac follows the seq2seq para-
digm as adopted by the state-of-the-art [51], it embodies two major
novel ideas. First, apart from the local context, which is extracted
from the target method itself, including program entity tokens and
the associated contexts, it also extracts tokens and their contextual
information from other methods that possess call relations with the
target method. Such information is denoted as the global context,
which can include tokens from a global perspective to help better
infer the name of the target method. Second, Cognac utilizes the
empirical results as the prior knowledge to better focus on the
critical tokens. Recall that our empirical study has revealed that the
probabilities of tokens under diverse specific contexts to compose
method names are different, and we denote such probabilities as
the prior knowledge in this study. The prior knowledge is utilized to
serve for two main purposes: to guide the method name generation
as well as to reduce the size of the input sequences. On one hand,
different from the state-of-the-art MNire [51], which completely
relies on the attention mechanism to decide which tokens to focus
on when generating the output token, we integrate the prior knowl-
edge with the learned attention weight (i.e., the probabilities of
each token from the attention mechanism) to focus on those tokens
with higher probabilities. On the other hand, we leverage the prior
knowledge to limit the number of tokens that are extracted from the
callers/callees, and thus our utilized global context is lightweight.
Specifically, we only accept the top ten tokens (such a number is
empirically determined through a pre-study experiment) from the
implementation of each callee prioritized by the prior knowledge.
We exclude the implementation of the caller methods from the input
in Cognac to avoid data leakage since the caller’s implementation
will definitely contain the target method name.

To evaluate the effectiveness of our approach for recommending
high-qualitymethod names, we trained and tested Cognac on totally
four different datasets, which are the Java-small, Java-med, and
Java-large from Alon et al. [10] and the one constructed by Nguyen
et al. [51], containing 11, 1K, 9.5K, and more than 10K Java projects
from GitHub respectively. We then compared it against totally 10
baseline approaches. Results show that Cognac outperforms all the
state-of-the-art approaches by at least 5.0%, 9.2%, 8.2%, and 7.7%
on the four datasets respectively w.r.t 𝐹 -𝑠𝑐𝑜𝑟𝑒 . Moreover, we also
applied Cognac to detect inconsistent method names via checking
the lexical similarity between the original method name and the
recommended one by Cognac, following the way as adopted by

Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Nguyen et al. [51]. Specifically, we utilized the dataset collected
by Liu et al. [46] which includes 2,805 inconsistent method name
cases mined from 430 Java projects. Results reveal that Cognac
outperforms the state-of-the-art MNire significantly (the overall
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 exceeds that of MNire by 11.2%). Furthermore, an ablation
study shows that all the design decisions (i.e., information from
the caller/callee methods as well as the guidance from the prior
knowledge) contribute to the performance of Cognac on both tasks,
among which the information from the callee methods is the most
significant one.

In summary, our study makes the following contributions:
• Empirical results: Our study deepens the understanding to-
wards the naturalness of method names w.r.t their correlations
with the caller/callee methods and their tendencies to be observed
among different contexts.

• Method name recommendationwith Cognac:We implement
a method name recommender that explores not only the local
context but also the global context in a lightweight strategy and
then generates the method name guided by our prior knowledge.

• Performance assessment: We perform extensive experiments
to assess the performance of Cognac. Results reveal that Cognac
achieves overall significantly better performance than the exist-
ing approaches on both the method name recommendation and
method name consistency checking tasks.

2 BACKGROUND AND RELATEDWORK
2.1 Definitions
Methods are declared and used under certain contexts. To ease our
representation, we define several concepts here which will be used
in the following contents of this study.
Implementation context: Given a method, all the program en-
tities in the method body are referred to as its implementation
context [51]. It includes all names and structures that are used to
implement the method.
Interface context: Given a method, the types of the input parame-
ters and the return type of this method are referred to as its interface
context [51]. Technically, it describes the method’s input and output.
Enclosing context:Given amethod, the name of the class in which
the method is defined is referred to as the enclosing context [51].
Such context provides the information of the general task/purpose
of the class where the method is implemented.
Call relation: Given two methods 𝑎 and 𝑏, if 𝑏 is triggered in
the implementation context of 𝑎, then the call relation 𝑎 → 𝑏 is
established where 𝑎 is the caller while 𝑏 is the callee [68].

2.2 Method Name Recommendation
Given the critical role of method names in the readability of source
code [17, 31], various techniques have been proposed to address the
method name recommendation (MNR) task, that is to automatically
generate high-quality method names. Existing techniques can be
broadly categorized into program structure dependent and inde-
pendent. We next introduce each of the state-of-the-art in detail.

2.2.1 Program Structure Dependent. Parsing programs from the
AST aspect can obtain the syntax structure information, and hence
is leveraged by various approaches in program analysis [28, 62,

64]. Mou et al. [50] proposed a tree-based convolutional neural
network (TBCNN) for programming language processing, in which
a convolution kernel is designed over programs’ ASTs to capture
the structure information. Recently, Bui et al. [19] fused capsule
networks with TBCNN to achieve higher learning accuracies based
on tree structure. Utilizing AST paths that link any two leaf nodes
in ASTs is an advanced program representation technique [11].
Code2vec [12] and Code2seq [10] represent a method body into a
distributed vector by aggregating the bag of AST paths with the
attention mechanism. They then recommend to reuse names of the
methods who share similar AST structures with the target method.

Besides utilizing the structure information from the AST, re-
searchers also propose to capture the data-flow and control-flow in-
formation and represent programs as PDG (i.e., ProgramDependency
Graph) to jointly model syntactic and semantic information [7],
which is named as Gated Graph Neural Network (GGNN). To miti-
gate the long-distance relationship problem within the sequence
encoder, Fernandes et al. [30] developed a framework to extend
existing sequence encoders with a graph neural network (sequence
GNN). Wang et al. [63] developed a novel graph neural architecture
(GINN), which, unlike the standard GNN, focuses exclusively on
intervals for mining the feature representation of a program and
operates on a hierarchy of intervals for scaling the learning to large
graphs. GREAT [35] is another model that combines long-distance
information with the structure information.

2.2.2 Program Structure Independent. Without the guidance from
program structures, researchers can also rely on the sequence of
method tokens to finish the MNR task. Allamanis et al. [5] intro-
duced a log-bilinear neural probabilistic language model for source
code which can embed each token into a high dimensional continu-
ous space and select the name that is most similar in this embedding
space to those of the function body. They later considered MNR as
an extreme summarization task where the method name is regarded
as the summary of the method body, and then introduced an atten-
tional neural network that employs convolution on the input code
tokens [8]. MNire [51] follows the seq2seq paradigm to generate the
tokens of method names using the sequence composed by tokens
from the implementation context, interface context, and enclosing
context of the target method. HeMa [40] is a heuristic-based MNR
approach that is specially designed for getter/setter functions and
delegations. We note that a study recently accepted [42] also utilizes
call relations to guide the method name generation. However, it
significantly differs from our approach with respect to the technical
design: Cognac is supported by the results of systematic empirical
studies. Particularly, thanks to the prior knowledge, we can repre-
sent all input tokens well with a single encoder. However, without
the distinction provided by our prior knowledge, the existing study
[42] needs to use totally four encoders to represent different con-
texts. Such a design leads to a much more complex model than
ours (we have calculated that in the encoder part, our model needs
to learn 0.8M parameters while such a number of [42] is 12.6M).
Consequently, [42] needs more data and time resources to train the
model. This is potentially the reason that [42] only evaluates on one
of the four MNR benchmarks utilized by us in this study. On the
contrary, our model is more generalizable, especially when there is
limited training data, which is critical in language models [18].

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao

1 public static List getMenuList() {
2 return loadConfig();
3 }

Listing 1: The getMenuList method in the Addressbook project.

2.3 Method Name Consistency Checking
Given that inappropriate method names may make programs hard
to understand [14, 15, 67] or even lead to program defects [3, 4, 13,
20, 53], researchers also try to solve the method name consistency
checking (MCC) problem, which is to automatically check whether
the method name is consistent with its implementation.

Høst and Østvold [38] exploited the Java language naming con-
vention for extracting rules of method names, which are further
used to identify naming bugs. Kim et al. [41] built a code dictionary
from the existing API documents and then detected inconsistent
names based on this dictionary. Allamanis et al. [6] proposed to
learn the domain-specific naming convention from local contexts
to enhance the stylistic consistency including identifier naming and
formatting. With the idea that similar code should be named with
similar names, Liu et al. [46] separately encoded method names
and method implementations. Then given a method named𝑚, they
considered two sets which are (1) the set of method names that are
close to𝑚 in the name vector space, and (2) the set of method names
whose implementations are close to that of𝑚 in the code vector
space. If the similarity of the two sets is lower than a threshold,𝑚
is considered as inconsistent. MNire [51] can also be applied to the
MCC task by checking the similarity between the recommended
name and the original name of the method.

2.4 Code Summarization
Apart from generating high quality names for methods, another
perspective to enhance the comprehensibility of programs is to au-
tomatically generate natural language descriptions for code [33, 58].
Such techniques have been shown to be feasible for solving pro-
gram comprehension problems in practice. For instance, Panichella
et al. [52] leveraged the coverage information to summarize test
cases, and the generated test summaries helped developers find
more bugs. A number of source code summarization works em-
phasize that limiting the consideration scope to the target method
itself is insufficient for generating good summaries. Specifically,
McBurney and McMillan [49] improved the effectiveness of code
summarization techniques by including the information about how
the target methods are invoked. Haque et al. [34] considered the
sibling methods within the same file with the target method and
used an attention mechanism to find words and concepts to utilize
in summaries. These works also motivate us to investigate if we
can perform the MNR task from a global perspective.

3 MOTIVATING EXAMPLES
In this section, we discuss our observations that motivate Cognac

on method name recommendations.
Observation 1. Tokens composing the target method’s name can

be frequently observed from its caller and callee methods. For in-
stance, in the method getMenuList (as shown in Listing 1) of the
Addressbook project,1 there is only one statement calling another

1https://github.com/vaadin/addressbook

1 public static List loadConfig() {
2 List list = new ArrayList();
3 List elementList = DomUtil.getRootElement()
4 for (Object obj : elementList) {
5 MenuItem menu = new MenuItem();
6 menu.setName();
7 list.add(menu);
8 }
9 Collections.sort(list);
10 return list;
11 }

Listing 2: The loadConfig method in the Addressbook project.

1 public List refreshTicks(Graphics2D g2,
2 AxisState state,
3 Rectangle2D dataArea,
4 RectangleEdge edge) {
5 List ticks = null;
6 if (RectangleEdge.isTopOrBottom(edge)) {
7 ticks = refreshTicksHorizontal(g2, dataArea, edge);
8 }
9 else if (RectangleEdge.isLeftOrRight(edge)) {
10 ticks = refreshTicksVertical(g2, dataArea, edge);
11 }
12 return ticks;
13 }

Listing 3: The refreshTicks method in the JFreeChart project.

method named loadConfig (as shown in Listing 2) within the
method implementation. Unfortunately, for the caller method (i.e.,
getMenuList), the tokens of the method name cannot be found in
its implementation, and insufficient information can be extracted
from the implementation context to help us infer the appropriate
name. The only useful information that we can find from itself
for guiding method name recommendation is its interface context,
that is, the return type (i.e., List) contains certain tokens of the
method name. On the contrary, abundant useful information can be
extracted from its callee (i.e., the loadConfig method). Specifically,
all three tokens composing the method name (i.e., get, menu, and
list2) appear in the implementation context of the callee method
loadConfig. Such results reveal that the information from the
methods that possess call relations with the target method (e.g.,
callee methods in this example but in general caller methods can
also be included) might provide extra information for us to suggest
more appropriate method names for the target method. However,
the majority of existing techniques [10, 12, 40] limit the research
scope to the target method itself. The only one that considers infor-
mation beyond the target method is MNire [51], which also takes
the class name into consideration. They thus missed the opportuni-
ties to leverage more useful information from a global perspective.

Observation 2. Tokens composing the target method’s name tend
to occur more frequently in specific types of contexts. For instance,
considering the method in Listing 3, which is from the JFreeChart
project,3 its function is to refresh the ticks given a rectangle. This
instance confirms the previous observation from Nguyen et al. [51]
(which also motivates this study) that names of program entities
in the implementation context usually carry certain meaning that
is related to the intention of the target method. Specifically, in
this method, the two tokens of the method name (i.e., refresh
and ticks) can both be found in the variables’ names or method

2please note that the analysis of method name tokens is case-insensitive in this paper
3https://github.com/jfree/jfreechart

https://github.com/vaadin/addressbook
https://github.com/jfree/jfreechart

Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

invocations in the method body (e.g., ticks and refreshTicks-
Horizontal). Nevertheless, we note that the probabilities of tokens
under diverse statement types to compose the method name are dif-
ferent. In this example, lines 6 and 9 are two IfStatements while
none of the 14 tokens in these two statements contain the tokens of
themethod name. On the contrary, although the ReturnStatement
in line 12 contains only one token, it exactly matches the tokens of
the method name. Such results indicate that for a specific program
entity, the probability of its name to compose the method name
may differ significantly according to its context (i.e., the type of the
statement where it locates). Therefore, if we use the entity names
to predict the tokens that compose the method name, incorporat-
ing the context information of each program entity can help us
better focus on those critical tokens that have higher probabilities
to compose the method name.

4 EMPIRICAL STUDY
4.1 Experiment Setup
Inspired by our observations, we further performed an empiri-
cal study to investigate whether such observations are pervasive
among large-scale open source projects. Specifically, we aim to
answer the following research questions:
RQ1: Can the tokens composing the name of a target method be
frequently observed in its caller/callee methods?
RQ2: Do the tokens composing the name of a target method tend
to occur more frequently in specific contexts than the others?

The answers to these questions provide empirical foundations on
(1) whether the information obtained from those caller/callee meth-
ods can help us better predict the method names; and (2) whether
the information of different program contexts, such as different
statement types, can be utilized to better predict the method names.
Such foundations are of great importance to our approach designs.

Data collection andprocessing. Following a previous study [51],
we chose to use the dataset of 14,317 well-maintained and long-
history Java projects on GitHub, which is collected by Allamanis
and Sutton [9]. This is a dataset of high-quality since all duplicated
projects have already been removed and all selected projects have
been forked by GitHub users by at least once. Unlike the previous
study [51], we only focused on the source code to reduce potential
bias in this study. That means any code from the test files will be ex-
cluded in our investigation. As a result, we totally parsed 12,979,389
methods in our experiment. For each investigated method, we col-
lected the method’s name and all the names of the entities w.r.t
the method’s implementation context and interface context. Finally,
all these names were split into tokens based on the camel case
and underscore naming conventions, and the obtained tokens were
transformed to their lowercase form, following the practices of
previous studies [5, 51]. To extract the global contexts, in our study,
we established call relations via analyzing the names within each
MethodInvocation AST node in the project. Note that we excluded
constructors from this empirical analysis as well as the evaluation
of our approach, following previous studies [12, 40]. The behind
intuition is that it is unlikely that developers do not know how to
name constructors.

Table 1: Critical frequencies of tokens from caller/callee.
Number Frequency

Unique caller 3,279,170 -
Unique callee 2,800,498 -
Call relations 7,034,508 -
Caller whose tokens in callee 2,847,864 40.5%
Callee whose tokens in caller 1,712,216 24.3%
Caller whose tokens in callee 2,847,864 -
Caller whose tokens in callee’s interface 1,789,945 62.9%
Caller whose tokens in callee’s implementation 2,460,554 86.4%
Caller whose tokens in callee’s interface uniquely 387,310 13.6%
Caller whose tokens in callee’s implementation uniquely 1,057,919 37.1%
Methods whose tokens cannot be found from itself 674,616 -
Methods whose tokens not in itself but in its caller 6,000 0.9%
Methods whose tokens not in itself but in its callee 56,808 8.4%

4.2 Frequencies of Tokens from Caller/Callee
Critical results from our investigation are illustrated in Table 1.
Totally, we found 7,034,508 call relations with 3,279,170 unique
callers and 2,800,498 unique callees (since a method can be involved
in multiple call relations). Such figures indicate that (1) on average
a method is involved in the call relation for more than once, which
indicates the pervasiveness of call relations in real-world programs
and (2) on average a caller method invokes more than two callees
(7,034,508/3,279,170).

From the perspective of a caller, we found that for all the call
relations, the tokens composing the caller’s method name, if any,
occur in the callee for 40.5% of the cases (2,847,864/7,034,508). Such
results indicate that there is a significant portion (i.e., around 40%)
of callers whose method name tokens can be found in the corre-
sponding callees. We also investigated in which part of the callee
(i.e., the implementation context or interface context) can we observe
such tokens. We found that for all the 2,847,864 call relations where
the tokens of the caller’s name occur in the callees, the tokens oc-
cur in the interface context of the callees for 1,789,945 cases (62.9%)
while in the implementation context of the callees for 2,460,554 cases
(86.4%). More in-depth analysis reveals that the method name to-
kens occur in the interface context of the callee uniquely (which
means tokens occur only in the interface context of the callee but not
in its implementation context) for 387,310 cases while the number
of the implementation context is 1,057,919. Such results reveal that
(1) the interface context of the callee method can provide abundant
information for inferring the caller’s name; and (2) the implemen-
tation context of the callee method can provide more predictive
information for its caller’s name than its interface context.

From the perspective of a callee, since we know that the method
name of the callee can definitely be found in the implementation
context of its callers (i.e., through method invocations which form
the caller/callee relation), we thus only focused on the interface
context of its callers. We found that for the 7,034,508 call relations,
the tokens composing the callee’s method name can be found in
the interface context of the callers for 1,712,216 (24.3%) of the cases.
Such results also indicate that the interface context of the caller can
provide abundant predictive information for its callee’s name.

We also investigated the unique contribution from caller/callee
methods. Totally we found 674,616methodswhere none of the name
tokens can be found locally (from the method’s implementation
context and interface context). Among them, 6,000 (0.9%) methods
can find at least one method name token in their callers’ interface
context and 56,808 (8.4%) methods can find at least one token in

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao

their callees. Such results indicate that call relations can uniquely
contribute to predicting appropriate method names even if the
method name tokens cannot be found locally.

[Finding-1] Themethod name tokens of considerable proportions
of callers/callees (40.5% and 24.3% respectively) can be found in their
corresponding callees/callers, which indicate that call relations can
contribute significantly to predicting method names. Besides, for
methods whose name tokens cannot be found locally, we can find the
tokens in their caller/callee methods for a non-negligible proportion
of cases (e.g., tokens can be found in callees for 8.4% of them).

4.3 Frequencies of Tokens under Different
Contexts

We investigated whether the tokens composing the name of the tar-
get method tend to occurmore frequently in specific contexts. In our
study, we analyzed the context from two granularities, which are
the coarse-grained context and fine-grained context. Coarse-grained
context denotes the six different sources where the tokens of the tar-
get method name can be potentially observed, including the target
method’s implementation context, interface context, and enclosing
context, the implementation context of its callees, the interface con-
text of its callees, and the interface context of its callers. Note that
we included the enclosing context of the target method in this anal-
ysis as well as in our approach since a previous study [51] shows
that tokens from this context can help infer the name of the tar-
get method. We omitted the implementation context of the target
method’s callers since they already contain the name of the target
method. Fine-grained context denotes, in this study, the specific type
of the statement where each token is extracted. For the interface
context, we further split it into two sub-categories based on where
the tokens are extracted, which are the ReturnType and Parame-
terType. Consequently, the detailed context can be represented as
a pair of elements, including the source type and the statement
type (e.g., ⟨ Target method implementation context , ReturnStatement
⟩, ⟨ Callee interface context , ReturnType ⟩). We recorded for each
target method (1) the number of tokens under each context and
(2) the number of tokens that compose the target method name
under each context. The final statistics are summed over the whole
dataset, and the probability of a certain type of context is calculated
as the number of tokens that compose the target method divided
by the total number of tokens under such a context. We utilize the
proportion such calculated to approximate the probability. Note
that beyond the statement type, there are also other granularities of
context information (e.g., the expression type [47]). We chose to use
the statement type in this study since the previous study [51] has
demonstrated that incorporating too fine-grained program infor-
mation may reduce the overall effectiveness in the task of method
name recommendation.

The results are displayed in Table 2. Be noted that, there are 22
statement types in the Eclipse document [1], while we only list in
this table those statements where we observed any method name to-
kens over the dataset. We noted that the probability of tokens under
different contexts to compose method names differs significantly.
The maximum value is obtained from the ReturnStatement from the
Target method implementation context with a probability of around

Table 2: Occurrence probability of tokens from different contexts.
Course-grained context Fined-grained context # Total # In method name Probability

Enclosing context ClassName 33,128,737 5,359,581 0.1618
Target method
interface context

ReturnType 13,019,316 1,781,975 0.1369
ParameterType 17,802,134 2,135,037 0.1199

Target method
implementation context

ExpressionStatement 243,783,458 28,579,120 0.1172
VariableDeclarationStatement 117,214,703 11,480,184 0.0979
AssertStatement 640,604 49,664 0.0775
WhileStatement 1,928,721 72,239 0.0375
IfStatement 54,839,999 3,694,167 0.0674
TryStatement 6,314,330 80,367 0.0127
ThrowStatement 11,390,948 620,498 0.0545
SwitchStatement 787,446 61,869 0.0786
SwitchCase 4,408,811 147,524 0.0335
ReturnStatement 46,543,537 8,945,790 0.1922
DoStatement 197,582 6,740 0.0341
ForStatement 10,456,460 647,361 0.0619
FieldDeclaration 172,232 7,677 0.0446
SynchronizedStatement 326,078 23,251 0.0713

Caller interface context
ReturnType 8,343,192 412,514 0.0494
ParameterType 13,629,995 557,310 0.0409

Callee interface context
ReturnType 5,703,564 442,658 0.0776
ParameterType 9,599,658 462,099 0.0481

Callee implementation
context

ExpressionStatement 107,011,128 5,698,020 0.0532
VariableDeclarationStatement 64,401,446 3,201,451 0.0497
AssertStatement 306,603 9,371 0.0306
WhileStatement 1,270,529 25,191 0.0198
IfStatement 39,903,421 1,329,074 0.0333
TryStatement 3,705,067 15,162 0.0041
ThrowStatement 7,717,208 229,736 0.0298
SwitchStatement 378,062 17,353 0.0459
SwitchCase 2,525,321 69,378 0.0275
ReturnStatement 32,419,149 2,048,736 0.0632
DoStatement 131,611 2,706 0.0206
ForStatement 6,741,176 247,414 0.0367
FieldDeclaration 74,361 1,318 0.0177
SynchronizedStatement 212,004 7,160 0.0338

one fifth while the minimum probability is from the TryStatement
from the Callee implementation context whose value is only 0.0041.
We note that both the coarse-grained context and fine-grained con-
text contribute to such differences. For instance, taking tokens from
the ReturnType contexts for consideration, the probability of those
tokens extracted from the Target method interface context is signifi-
cantly higher than those from the Caller interface context and Callee
interface context (0.13 vs. less than 0.1). From another perspective,
for tokens from the Target method implementation context, those
from the ReturnStatement are much more likely to compose the
method name than those from TryStatement (a probability of 0.19 vs.
0.01). Such results confirm our intuition in Section 3 that the tokens
from diverse contexts differ with each other w.r.t the possibility to
compose the name of the target method.

[Finding-2] The probability of a token to compose the target
method name differs significantly according to its contexts. The
maximum probability is nearly two orders of magnitude higher
than the minimum one.

5 METHODOLOGY
In this work, we propose Cognac, a deep learning based approach
to recommend high-quality names for a given method, guided by
the global and local context information with prior knowledge.
As a program structure independent approach, which does not re-
quire the AST or PDG of programs, the workflow of Cognac is
straightforward. Specifically, given a method, Cognac first extracts
the targeted tokens from its local contexts as well as its global
contexts. When extracting those tokens, Cognac also records the
specific contexts (e.g., the type of statements) where such tokens are
collected. Cognac then integrates those tokens as a sequence and
sends it into a pointer-generator network with the attention mech-
anism guided by the prior knowledge learned from our empirical
study. Finally, Cognac outputs another sequence of tokens which

Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

forms the recommended method names. The following introduces
Cognac in detail.

5.1 Key Ideas
In general, our approach adopts the abstractive summarization strat-
egy to generate the tokens of method names from the tokens of both
global and local contexts, following the state-of-the-art MNire [51].
Such a paradigm is to rephrase extracted program entity tokens
into a short sequence of tokens, which forms the method name to
be recommended. At each timestep, a learned attention weight is
used to decide which input tokens to focus on when generating
the next output token. Our approach, despite falling into such a
workflow, embodies the following two key ideas.

First, in addition to considering the program entity tokens and
the associated contexts extracted from the target method (which
are denoted as the local context), we propose to include tokens and
their contextual information from other methods that possess call
relations with the target one as the global context. Such a design
can utilize more useful information from other relevant methods
in the project that might contribute to inferring the name of the
target method. Second, we utilize the empirical results as the prior
knowledge to help us better focus on the critical tokens. Recall
that the probabilities of tokens under diverse contexts to compose
method names are different, which have been revealed by our large-
scale empirical analysis. Such probabilities are hence utilized as the
prior knowledge, which serves for two main purposes. On the one
hand, it is integrated with the learned attention weight to jointly
decide which input tokens to focus on under each timestep in the
network. We postulate that such prior knowledge could guide the
model to focus more on those critical tokens and thus improve the
effectiveness of the learned model (confirmed in Section 6.4). On
the other hand, we leverage the prior knowledge to limit the num-
ber of tokens that are extracted from the callers/callees, and thus
our utilized global context is lightweight. The behind intuition is
that one method can possess call relations with multiple methods
(cf. Section 4.2), therefore, the input token sequence would be too
long if taking all tokens from the implementations of caller/callee
methods into consideration. Such long sequence inputs may in-
troduce potential noises and reduce the generality of the learned
model according to previous studies [11, 59]. We have gained the
observation that the caller/callee methods’ interface context can
already provide sufficient information to infer the name of target
method (cf. Section 4.2). We therefore decide to consider the in-
terface context of the caller/callee methods as well as the top ten
tokens in the implementation context of each callee method with
the highest probabilities to compose method names (we omit the
implementation context of the caller methods to avoid data leak-
age as aforementioned). The number is set to ten empirically: we
performed a pre-study experiment using 5, 10, and 20 tokens from
the implementation context of each callee method separately and
found that selecting ten tokens achieves the optimum. We also tried
to keep all the tokens in each callee but observed inferior results
compared to that of using ten tokens (see Section 7.2). Note that
in general, tokens from the implementation context of the target
method possess higher probabilities to compose the method name
than those from the implementation context of its callee methods

(cf. Table 2). We therefore take all tokens from the implementation
context of the target method into consideration.

5.2 Source Extraction
Given amethod, the first step of Cognac is to extract token sequence
that will be used to infer the method name. We respectively extract
the entity names from the enclosing context, the interface context of
the callers, the interface context of the callees, the implementation
context of the callees, the interface context of the target method,
and its implementation context (resulting in totally six sources),
after which these names are broken into tokens based on the camel
cases and underscore naming conventions. Note that to restrict
the length of the input sequence, we limit the number of tokens
extracted from the implementation context of each callee method to
be ten. Such tokens are ranked by their probabilities to compose
the method name according to their detailed contexts (cf. Table 2)
and for tied tokens, they are further ranked by their orders in the
token sequence of the callee method.

For each token, we also assign it with an indicator according
to the detailed context where it is extracted, which could result in
totally 35 different indicators shown in Table 2 (e.g., ⟨ Enclosing con-
text , ClassName ⟩, ⟨ Callee implementation context , ReturnStatement
⟩). Such indicators will be utilized to provide the prior knowledge in
the attention mechanism in our model.

5.3 Pointer-Generator Network
A qualified method name generation model should possess two key
features: first, it should be able to generate out-of-vocabulary (OOV)
tokens in its output considering the uniqueness of specific methods;
second, it should be able to generate tokens that does not appear
in the input sequence since a non-negligible amount of method
name tokens cannot be found from our considered contexts [51].
Therefore, we adopt a novel pointer-generator network [57] in the
design of Cognac since it satisfies the two requirements. Figure 1
illustrates the overview of the model architecture. Due to page limit,
we only briefly introduce this model in the paper, and more details
could be referred to the existing work [57].
Context vector calculation. As shown in the bottom left part in
Figure 1, the inputs of Cognac are a token sequence where tokens
are extracted from both the global context and local context along
with the contextual indicator (i.e., the probability of the token
under such a context as revealed in the empirical study) for each
token. The encoder then embeds the tokens into a vector 𝑥 =

(𝑥1, 𝑥2, . . . , 𝑥𝑚) and then encodes them into a hidden representation
ℎ = (ℎ1, ℎ2, . . . , ℎ𝑚) through a single-layer bidirectional LSTM. At
the same time, the value of the context indicator of each input
token, which is listed in Table 2 according to the detailed context
of each input token, is recorded as 𝑣𝑐 = (𝑣𝑐1 , 𝑣𝑐2 , . . . , 𝑣𝑐𝑚). At each
timestep 𝑡 , the attention distribution over the whole input sequence
is calculated via summing up the learned distribution and the prior
knowledge recorded in 𝑣𝑐 :

𝑎𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑡) + 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑣𝑐) (1)
where 𝑒𝑡 is learned using the encoder hidden state and decoder
hidden state at this step while 𝑣𝑐 represents the prior knowledge
which is the probability of each input token to compose the method

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao

Figure 1: Architecture of Cognac.

name. Then the attention distribution is used to produce the context
vector ℎ∗𝑡 which can be regarded as the representation of what has
been read from the input at this step: ℎ∗𝑡 =

∑
𝑖 𝑎

𝑡
𝑖
ℎ𝑖 .

Output generation. The obtained context vector serves for two main
purposes. First, it is jointly learned with the encoder hidden state
and decoder hidden state to produce the generation probability
𝑝𝑔𝑒𝑛 ∈ [0, 1] at this step, which denotes the probability of gener-
ating tokens from the fixed vocabulary, which is the set of tokens
that can be observed in the training dataset. On the contrary, 1 -
𝑝𝑔𝑒𝑛 denotes the probability of copying a token directly from the
input sequence, which is to select a token from the input as the
output of the current timestep. Second, it is concatenated with the
decoder hidden state to learn the probability distribution over all
tokens in the fixed vocabulary (𝑃𝑡𝑜𝑘𝑒𝑛). Finally, the probability of
outputting the token𝑤 at this step is calculated as:

𝑃 (𝑤) = 𝑝𝑔𝑒𝑛𝑃𝑡𝑜𝑘𝑒𝑛 (𝑤) + (1 − 𝑝𝑔𝑒𝑛)
∑

𝑖:𝑤𝑖=𝑤

𝑎𝑡𝑖 (2)

where the first part denotes the probability of generating𝑤 from
the fixed vocabulary while the second part denotes the probability
of copying𝑤 from the input.
Loss calculation. During training, the overall loss for the whole
sequence is calculated as the average loss at each step, which is the
negative log likelihood of the oracle word𝑤𝑜

𝑡 for that step:

𝑙𝑜𝑠𝑠 =
1
𝑇

𝑇∑
𝑡=0

(−𝑙𝑜𝑔𝑃 (𝑤𝑜
𝑡)) (3)

6 EVALUATION
6.1 Research Questions
We seek to answer the following research questions to assess the
effectiveness of Cognac:

RQ3: How does Cognac perform on the method name recommen-
dation task compared with the state-of-the-art?
RQ4: How does Cognac perform on the method name consistency
checking task compared with the state-of-the-art?
RQ5: To what extent do diverse design decisions affect the perfor-
mance of Cognac on the above two tasks?

6.2 The MNR Task (RQ3)
6.2.1 Dataset. To evaluate the effectiveness of Cognac on the
method name recommendation task, we in total used four differ-
ent datasets. We first reused three widely-adopted datasets in the
community constructed by Alon et al. [10], which are named as
Java-small, Java-med, and Java-large, containing 11, 1K, and 9.5K
Java projects from GitHub respectively. To evaluate the effective-
ness of MNire, Nguyen et al. built another dataset containing more
than 10K Java projects [51]. Due to the unavailability of the source
code of MNire, we can only compare with its reported performance.
Therefore, in our study, we chose to reuse their dataset for fair com-
parison against the state-of-the-art MNire. Note that the MNire’s
dataset does not contain fixed training and testing data. We thus
randomly split all the projects in this dataset into 9,772 training
and 450 testing projects, following Nguyen et al. [51].

It should be noted that in all these datasets, the training and
test examples are shuffled by projects, to avoid the performance
enhancement caused by file-based shuffling [7, 10, 40].

6.2.2 Metrics. Following previous studies, we focused on Precision,
Recall, and F-score for measuring the performance of Cognac [12,
51]. In particular, for a specific method whose oracle name is 𝑜
while the recommended name is 𝑟 , its precision, recall, and 𝐹 -
𝑠𝑐𝑜𝑟𝑒 are calculated as: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑡𝑜𝑘𝑒𝑛 (𝑟)∩𝑡𝑜𝑘𝑒𝑛 (𝑜) |
|𝑡𝑜𝑘𝑒𝑛 (𝑟) | , 𝑟𝑒𝑐𝑎𝑙𝑙 =

|𝑡𝑜𝑘𝑒𝑛 (𝑟)∩𝑡𝑜𝑘𝑒𝑛 (𝑜) |
|𝑡𝑜𝑘𝑒𝑛 (𝑜) | , 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =

2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 , respectively,

where 𝑡𝑜𝑘𝑒𝑛(𝑥) returns the tokens in the name 𝑥 split by the camel
case and underscore naming conventions. Then the performances
on the whole dataset are computed as the average values of all the
methods in the dataset.

6.2.3 Results. The results of Cognac on the four datasets are listed
in Table 3 where we also present the results of ten state-of-the-art
approaches. We performed a thorough literature review to include
as many state-of-the-art approaches as possible for performance
comparison. We do not include Liger [61] since it is applied to C#
and Python languages and the source code is unavailable. Note that
we only list the results of other approaches on the datasets where
they have also been evaluated.

We found that the values achieved by Cognac w.r.t all the three
metrics are higher than those from the state-of-the-art on all the
four different datasets. Specifically, Cognac outperforms the state-
of-the-art w.r.t 𝐹 -𝑠𝑐𝑜𝑟𝑒 by at least 5.0% (63.2% vs. 60.2% from Se-
quence GINN), 9.2% (60.8% vs. 55.7% from TreeCaps), 8.2% (66.3% vs.
61.3% from TreeCaps), and 7.7% (68.5% vs. 63.6% fromMNire) on the
four datasets respectively. We noted that some existing approaches
can achieve similar performance w.r.t a specific metric compared
with Cognac (e.g., the precision of Code2seq and TreeCaps are close
to that of Cognac on the Java-med dataset). Nevertheless, Cognac
can achieve both high precision and high recall, which leads to an
overall significant better performance (i.e., 𝐹 -𝑠𝑐𝑜𝑟𝑒) than existing

Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Effectiveness of Cognac on the MNR task (in %).
Dataset Approach Pre. Rec. F-score

Java-small

Sequence GINN [63] 64.8 56.2 60.2
Sequence GNN [30] - - 51.3
GGNN [7] 40.3 35.3 36.9
Code2vec [12] 23.4 22.0 21.4
Code2seq [10] 50.4 35.4 42.6
TreeCaps [19] 52.6 41.4 46.8
GREAT [35] 47.3 40.0 43.6
TBCNN [50] 40.9 31.8 35.5
Cognac 67.1 59.7 63.2

Java-med

HeMa [40] 39.9 23.5 29.6
GGNN [7] 50.1 41.3 45.3
Code2vec [12] 36.4 27.9 31.9
Code2seq [10] 62.6 46.8 53.7
TreeCaps [19] 64.4 48.9 55.7
GREAT [35] 57.2 44.1 51.4
TBCNN [50] 45.2 41.4 43.2
Cognac 64.8 57.3 60.8

Java-large

GGNN [7] 50.2 44.3 46.2
Code2vec [12] 44.2 38.3 41.6
Code2seq [10] 63.3 54.0 59.0
TreeCaps [19] 66.9 56.3 61.3
GREAT [35] 61.4 55.9 58.3
TBCNN [50] 58.2 40.9 49.4
Cognac 71.4 61.9 66.3

MNire’s
MNire [51] 66.4 61.1 63.6
Cognac 70.2 66.8 68.5

Data of other approaches are extracted from the recent studies [19,
30, 40, 51, 63]. “-” denotes no relevant information.

approaches. A concrete example here is that when trained on the
MNire’s dataset, Cognac recommends listMenu for the method as
shown in Listing 1, achieving a 100% precision and a recall around
70%. Such a name is semantically similar to the developer-provided
one, which indicates the practical usefulness of Cognac. Such a
name, however, cannot be generated if the information from the
callee method is ignored, indicating the significance of our con-
cerned call relations.

A notable phenomenon is that the performances of Cognac on
those datasets with more projects (i.e., Java-large and the MNire’s
dataset) are better than those from the datasets with fewer projects
(i.e., Java-small and Java-med). Such results indicate that the suf-
ficiency and diversity of the training data can help enhance the
generality of the learned model.

Cognac outperforms the state-of-the-art approaches by at least 5.0%,
9.2%, 8.2%, and 7.7% on the four datasets respectively w.r.t F-score.
Moreover, its performances w.r.t different metrics all exceed those
from the existing state-of-the-art on all the datasets.

6.3 The MCC Task (RQ4)
6.3.1 Dataset. To evaluate the effectiveness of Cognac on the
method name consistency checking task, we used the dataset col-
lected by Liu et al. [46],which is also used to evaluate the state-of-
the-artMNire [51]. This dataset is collected from 430well-maintained
Java open-source projects from four communities, namely Apache,
Spring, Hibernate, and Google. For the training data, they select to-
tally 2,116,413 methods, excluding main methods and constructors.
For the testing data, they select totally 2,805 methods whose names

are inconsistent by parsing the commit history of each project
which satisfy the following two requirements: (1) the method name
should be changed in a commit without any modification on the
body code, which ensures the change is to fix the method name;
and (2) the method name and body code should become stable after
the change, which ensures the fixed version of the name is not
revealed to be buggy later on.

After training Cognac on the training data, we randomly split
the testing data into two classes (note that the testing data splitting
is also random in previous studies [46, 51]). For the inconsistent class
(𝐼𝐶), we used the buggy versions of the method names and labeled
them as inconsistent. For the consistent class (𝐶), we used the fixed
versions of the method names and labeled them as consistent.

6.3.2 Metrics. To apply Cognac on the MCC task, we adopted the
same strategy as MNire, which computes the similarity 𝑆𝑖𝑚(𝑟, 𝑜) be-
tween the recommended name 𝑟 and the original name 𝑜 (Note that
for the inconsistent class (𝐼𝐶), the original name 𝑜 is the buggy
method name, while for the consistent class (𝐶), it is the fixed
method name). Specifically, such a similarity is defined as the por-
tion of the tokens that are shared between 𝑟 and 𝑜 : 𝑆𝑖𝑚(𝑟, 𝑜) =

|𝑡𝑜𝑘𝑒𝑛 (𝑟)∩𝑡𝑜𝑘𝑒𝑛 (𝑜) |
(|𝑡𝑜𝑘𝑒𝑛 (𝑟) |+ |𝑡𝑜𝑘𝑒𝑛 (𝑜) |)/2 . The consistency of this method is then de-
termined using an empirically-decided threshold 𝑇 . In particular, if
𝑆𝑖𝑚(𝑟, 𝑜) ≤ 𝑇 , the method is considered as inconsistent, otherwise
it is classified as consistent.

To measure the performance on the MCC task, we used the same
metric as previous studies [46, 51], including precision, recall, and
𝐹 -𝑠𝑐𝑜𝑟𝑒 for both the 𝐼𝐶 and 𝐶 classes as well as the total 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.
The above metrics are computed based on the following numbers.
True Positive (TP): an inconsistent name in 𝐼𝐶 is identified as
inconsistent; False Positive (FP): a consistent name in 𝐶 is iden-
tified as inconsistent; True Negative (TN): a consistent name in
𝐶 is identified as consistent; False Negative (FN): an inconsistent
name in 𝐼𝐶 is identified as consistent. Therefore, for the 𝐼𝐶 class,
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑇𝑃 |
|𝑇𝑃 |+ |𝐹𝑃 | , and 𝑅𝑒𝑐𝑎𝑙𝑙 =

|𝑇𝑃 |
|𝑇𝑃 |+ |𝐹𝑁 | . For the 𝐶 class,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇𝑁 |

|𝑇𝑁 |+ |𝐹𝑁 | , and 𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇𝑁 |

|𝑇𝑁 |+ |𝐹𝑃 | . For both the 𝐼𝐶

and 𝐶 classes, the 𝐹 -𝑠𝑐𝑜𝑟𝑒 is calculated as 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 . The

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 on the whole dataset is defined as |𝑇𝑃 |+ |𝑇𝑁 |
|𝑇𝑃 |+ |𝐹𝑃 |+ |𝑇𝑁 |+ |𝐹𝑁 | .

Note that whether Cognac identifies a specific method name as con-
sistent or not depends on the similarity threshold𝑇 . In the previous
study [51], the authors vary the similarity threshold 𝑇 in the range
of (0.85, 1), and separately report the maximum values of 𝐹 -𝑠𝑐𝑜𝑟𝑒
on the 𝐼𝐶 and 𝐶 classes and the maximum 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦. However, we
never know a method name is consistent or not before the detec-
tion in practice. Therefore, we decide to set the 𝑇 as a fixed value.
Specifically, in our study, to determine the threshold, we chose the
value where the overall 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 reaches the maximum, which is
is 0.85 in this study.

6.3.3 Results. The results of Cognac and the existing state-of-the-
art are listed in Table 4. We noted that Cognac achieves the highest
overall 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, which outperforms MNire by 11.2% (76.6% vs.
68.9%). For the 𝐼𝐶 class, Cognac’s precision, recall and 𝐹 -𝑠𝑐𝑜𝑟𝑒 are
9.4%, 4.3%, and 7.3% higher than those of MNire respectively. Such
results reveal that compared with MNire, Cognac can detect more

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao

Table 4: Effectiveness of Cognac on the MCC task (in %).
Liu et al. [46] MNire [51] Cognac

IC
Precision 56.8 62.7 68.6
Recall 84.5 93.6 97.6
F-score 67.9 75.1 80.6

C
Precision 51.4 56.0 96.0
Recall 72.2 84.2 55.6
F-score 60.0 67.3 70.4

Accuracy 60.9 68.9 76.6

Table 5: Performance of variants of Cognac on the MNR task (in %).

Model
Dataset Java-small Java-med Java-large MNire’s

F ↓ F ↓ F ↓ F ↓
No caller information 60.1 4.8 57.5 5.4 62.9 5.2 65.0 5.1
No callee information 57.7 8.6 54.7 10.0 59.9 9.6 62.1 9.3
No prior knowledge 59.3 6.2 56.2 7.6 61.5 7.3 63.8 6.9
Cognac (original model) 63.2 60.8 66.3 68.5

↓ denotes performance degradation.

inconsistent method names and the method names that are labelled
as inconsistent are more likely to be the real inconsistent ones.

For the 𝐶 class, we observed that the precision of Cognac is
much higher than that of MNire (96.0% vs. 56.0%) while the recall
of Cognac is much lower than that of MNire (55.6% vs. 84.2%).
Such phenomenon could be caused by the fact that MNire adopts a
varying threshold 𝑇 . Specifically, for MNire, the threshold used for
the 𝐶 class is lower than that for the 𝐼𝐶 class, the consequence of
which is that more names are labelled as consistent (we recall that
a method name is labelled as consistent if the similarity exceeds
the threshold, hence, the lower the threshold is, the more names
will be labelled as consistent). Consequently, its recall w.r.t the 𝐶
class is high. On the contrary, we set a fixed value for 𝑇 , which
may prevent many method names from being labelled as consistent.
Nevertheless, Cognac still achieves the highest 𝐹 -𝑠𝑐𝑜𝑟𝑒 on this class,
which exceeds that of MNire by 4.6% (70.4% vs. 67.3%).

With a fixed threshold, Cognac still outperforms the state-of-the-art
approaches on the MCC task significantly. Specifically, its overall
accuracy exceeds that of MNire by 11.2%, and it outperforms MNire
by 7.3% w.r.t F-score for detecting inconsistent method names.

6.4 Ablation Study (RQ5)
6.4.1 Experiment Setting. We in this RQ investigated the influences
from three factors on the performance of Cognac, which are the
tokens from the caller/callee methods respectively and the prior
knowledge. Note that in the ablation study, the contribution of
the prior knowledge refers to its guidance on method name gen-
eration (see Equation 1). In the first two experiments, we omitted
tokens from the caller methods and callee methods respectively
in the input token sequence. In the last one, we omitted the prior
knowledge, which means we only used the learned matrix 𝑒𝑡 to
decide the attention distribution in Equation 1. We performed such
experiments on both the MNR task and MCC task.

6.4.2 Results. Results of the ablation study on the MNR task are
demonstrated in Table 5. Generally speaking, all our model deci-
sions make contributions to the final performance, more or less. For
instance, if we do not use the prior knowledge to guide the attention
weight putting on each input token, the overall performance w.r.t
𝐹 -𝑠𝑐𝑜𝑟𝑒 will be decreased by 6.2% ∼ 7.6% on the four datasets.

Table 6: Performance of variants of Cognac on the MCC task (in %).

Model
IC C

Accuracy ↓F ↓ F ↓
No caller information 79.2 1.7 65.7 6.7 74.1 3.3
No callee information 77.4 4.0 64.2 8.8 72.4 5.5
No prior knowledge 79.3 1.6 65.5 7.0 74.1 3.3
Cognac (original model) 80.6 70.4 76.6

↓ denotes performance degradation.

We noted that the information from the callee methods con-
tributes the most to the overall performance of Cognac among the
three factors, without which the 𝐹 -𝑠𝑐𝑜𝑟𝑒 will degrade the most
on all the four datasets. Specifically, if the tokens from the callee
methods are not included, the 𝐹 -𝑠𝑐𝑜𝑟𝑒 of Cognac will be decreased
by 10% on the Java-med dataset, which is the largest degradation
we witnessed in this ablation study. On the other hand, the contri-
bution from the caller methods is relatively small, without which
the degradation is only 4.8% ∼ 5.4% on the four datasets. Such re-
sults could be caused by the fact that we only include the interface
context of the caller methods (recall that we have excluded the
tokens of the implementation context from the callers to avoid data
leakage). However, the implementation context of the callee meth-
ods are included in our approach since there is no data leakage.
We also noted that the contribution from our prior knowledge is
non-negligible, without which the performances of Cognac could
not exceed those achieved by the existing approaches. For instance,
Cognac achieves an 𝐹 -𝑠𝑐𝑜𝑟𝑒 of 59.3% without the prior knowledge
on the Java-small dataset while the value of Sequence GINN is 60.2%.
This confirms our intuition that incorporating the context informa-
tion with prior knowledge can help our model better capture the
critical information and thus improve its effectiveness.

Similar trends can be observed from the results of the ablation
study on the MCC task, which are shown in Table 6. For the MCC
task, the callee information is still the major part that contributes
to the overall performance of Cognac without which the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
and the 𝐹 -𝑠𝑐𝑜𝑟𝑒𝑠 on the 𝐼𝐶 and 𝐶 classes will be decreased by
5.5%, 4.0% and 8.8% respectively. The prior knowledge still plays a
significant role. For instance, without the guidance from the prior
knowledge, the 𝐹 -𝑠𝑐𝑜𝑟𝑒 of Cognac on the 𝐶 class will reach only
65.5% (a reduction of 7.0%), lower than that of MNire (67.3%).

All the design decisions in Cognac contribute to its outstanding
performance, among which the information from the callee methods
is the most rewarding one. Specifically, if omitting the tokens from
the callee methods, Cognac will suffer from decreases of 8.6%, 10.0%,
9.6%, and 9.3% w.r.t 𝐹 -𝑠𝑐𝑜𝑟𝑒 on the four datasets on the MNR task
as well as a decrease of 5.5% w.r.t accuracy on the MCC task.

7 DISCUSSION
7.1 Performance Enhancement from the

Pointer-Generator Model
Note that the seq2seq model in the existing approach MNire is sim-
ple: it is only capable of generating tokens from the fixed vocabulary
while is unable to copy a token from the input. On the contrary,
our Cognac adopts a pointer-generator model which is capable
for both generating tokens from the fixed vocabulary and copying
from the input tokens. Nonetheless, the superiority of Cognac is

Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

majorly attributed by the caller/callee information and the utilized
prior knowledge. Specifically, we demonstrate this via the follow-
ing experiment. We implemented a simple seq2seq model which
still incorporates the prior knowledge (i.e., the way to calculate the
attention weight is identical to the original Cognac). The difference
between this model and the original Cognac is that in Equation 2
the 𝑝𝑔𝑒𝑛 always equals to 1, which means that it is incapable of
copying tokens from the input. We then trained and tested this
model on the MNire’s dataset. The experimental results show that
this model achieves an overall performance of 67.8% w.r.t 𝐹 -𝑠𝑐𝑜𝑟𝑒 ,
which is much higher than that fromMNire (63.6%) but only slightly
lower than that from the original Cognac (68.5%). This is reasonable
considering that the pointer-generator model is proposed to mainly
deal with the OOV tokens while the number of OOV tokens could
be rather limited if the training dataset is large enough (in our study,
it contains methods from 9,772 projects). Such results indicate that
Cognac outperforms the existing approaches mainly due to the
integrated caller/callee information and the prior knowledge. The
adopted pointer-generator model helps it reach the optimum.

7.2 Rationality of the Lightweight Strategy
In our approach, we utilize the global context in a lightweight man-
ner that is to limit the number of tokens extracted from the im-
plementation context of each callee method to be 10. The behind
intuition is that we have demonstrated through our empirical anal-
ysis that on average a caller calls more than two callees, and thus
the input token sequences for these methods could be rather long
if we consider all their implementations. Training on such long
input sequences could reduce the generality of the learned model as
revealed by the previous studies [11, 59]. To demonstrate the ratio-
nality of this decision, we performed another experiment where we
used all tokens from the implementation context of the callee meth-
ods in Cognac and then assessed its performances w.r.t the MNR
task. Results show that Cognac achieves 59.8%, 57.8%, 61.1%, and
64.2% respectively on the four different datasets for the MNR task
w.r.t 𝐹 -𝑠𝑐𝑜𝑟𝑒 , thus witnessing a degradation of 5.4%, 4.9%, 7.8%, 6.3%,
respectively. This could be explained as too much noisy data in the
input reduces the generality of Cognac. Such results reveal that the
performances of Cognac will be significantly compromised if the
information is utilized inappropriately, therefore, our lightweight
strategy to utilize the global context is reasonable.

7.3 Threats to Validity
A threat to validity is that we only focus on the Java programming
language (PL). Hence, all findings and evaluation results are re-
stricted to this domain. Being that said, the principle of Cognac
it not limited to one specific PL. It would be interesting to inves-
tigate the performance of Cognac on other PLs such as C# and
compare against other existing approaches like Liger [61]. How-
ever, it requires another large-scale empirical analysis to build the
prior knowledge, and thus we leave it as future work.

Another threat is that it is impossible to ensure that all of the
methods in our empirical dataset have consistent names. Conse-
quently, the constructed prior knowledge might be biased. To ad-
dress this threat, we choose to use a dataset composed of high-
quality and well-maintained open source projects [9]. Furthermore,

literature approaches always assume that most of the names from
top-ranked, high-quality projects are good [10, 12, 42, 51]. Such
an assumption can be backed up by the fact that during preparing
the dataset for the MCC task, only 2,805 among totally 2,116,413
methods (i.e., 0.13%) are found to be inconsistent. Moreover, such
noises are actually acceptable for learning-based techniques since
they are supposed to learn common features from the majority
instead of the minority. Therefore, even if names in our datasets
are not always of high-quality, their impacts are limited.

Besides, we choose to use the statistical metrics (e.g., precision
and recall) as adopted by previous studies [10, 12, 51] to evaluate
and compare the performance of Cognac. Unfortunately, whether
a recommended name is really helpful for developers in practice
remains unknown and is left as our future work.

7.4 Application Scenario
We briefly discuss the application scenario of Cognac. We recall
that the inputs of our approach are the class name, the interface
context of callers, the interface/implementation context of callees,
and the interface/implementation context of the target method.
That means we actually do not need to know how the target method
should be invoked since we excluded the implementation of callers.
Therefore, we do not need to arbitrarily name a method and then
run our approach to verify the name after implementation. On the
contrary, we can perform just-in-time name recommendation after
obtaining the implicit calling relations to acquire the global contexts,
which is also required by [42]. Therefore, the application scenarios
of Cognac are method-name-recommendation after obtaining the
calling relations and method-name-inconsistency-checking after a
whole project has been implemented.

8 CONCLUSION
We introduce Cognac, a deep learning based approach to recom-
mend high-quality method names. The key observations in this
paper obtained through a large-scale empirical analysis are: (1)
call relations can be utilized for better inferring method names;
and (2) tokens under diverse specific contexts generally possess
different probabilities to compose the method name. Therefore, we
implemented Cognac, which takes into consideration the caller/-
callee methods of the target one to incorporate more information
and utilizes the empirical results as prior knowledge to better fo-
cus on critical information. Evaluation results show that Cognac
can achieve significantly better results than the state-of-the-art on
both the tasks of method name recommendation and method name
consistency checking.
Artifacts: All data in this study are publicly available at:

https://github.com/ShangwenWang/Cognac.

ACKNOWLEDGMENTS
The authors greatly thank the anonymous reviewers for their con-
structive comments. This work is supported by the National Nat-
ural Science Foundation of China No.62002125, No.61872445, and
No.61672529.

https://github.com/ShangwenWang/Cognac

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Shangwen Wang, Ming Wen, Bo Lin, and Xiaoguang Mao

REFERENCES
[1] 2021. Eclipse Statement. https://help.eclipse.org/2020-12/index.jsp?topic=

%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%
2Fcore%2Fdom%2FStatement.html.

[2] 2021. Find Bugs in Java programs. http://findbugs.sourceforge.net/.
[3] Surafel LemmaAbebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol, and

Yann-Gael Gueheneuc. 2012. Can lexicon bad smells improve fault prediction?.
In 2012 19th Working Conference on Reverse Engineering. IEEE, 235–244.

[4] Surafel Lemma Abebe, Sonia Haiduc, Paolo Tonella, and Andrian Marcus. 2011.
The effect of lexicon bad smells on concept location in source code. In 2011 IEEE
11th International Working Conference on Source Code Analysis and Manipulation.
Ieee, 125–134.

[5] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting accurate method and class names. In Proceedings of the 10th Joint Meeting
on Foundations of Software Engineering. ACM, 38–49. https://doi.org/10.1145/
2786805.2786849

[6] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2014.
Learning natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 281–293.
https://doi.org/10.1145/2635868.2635883

[7] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learn-
ing to Represent Programs with Graphs. In Proceedings of the 6th International
Conference on Learning Representations. OpenReview.net.

[8] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional atten-
tion network for extreme summarization of source code. In Proceedings of the
33rd International Conference on Machine Learning. JMLR.org, 2091–2100.

[9] Miltiadis Allamanis and Charles Sutton. 2013. Mining source code repositories
at massive scale using language modeling. In 2013 10th Working Conference on
Mining Software Repositories (MSR). 207–216. https://doi.org/10.1109/MSR.2013.
6624029

[10] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating
Sequences from Structured Representations of Code. In Proceedings of the 7th
International Conference on Learning Representations. OpenReview.net.

[11] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-
based representation for predicting program properties. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 404–419. https://doi.org/10.1145/3192366.3192412

[12] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning
distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 40:1–40:29. https://doi.org/10.1145/3290353

[13] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.
2018. A systematic evaluation of static api-misuse detectors. IEEE Transactions
on Software Engineering 45, 12 (2018), 1170–1188.

[14] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-
guistic antipatterns: What they are and how developers perceive them. Empirical
Software Engineering 21, 1 (2016), 104–158.

[15] Venera Arnaoudova, Laleh M Eshkevari, Massimiliano Di Penta, Rocco Oliveto,
Giuliano Antoniol, and Yann-Gaël Guéhéneuc. 2014. Repent: Analyzing the
nature of identifier renamings. IEEE Transactions on Software Engineering 40, 5
(2014), 502–532.

[16] Venera Arnaoudova, Massimiliano Di Penta, Giuliano Antoniol, and Yann-Gaël
Guéhéneuc. 2013. A New Family of Software Anti-patterns: Linguistic Anti-
patterns. 2013 17th European Conference on Software Maintenance and Reengi-
neering, 187–196.

[17] Gabriele Bavota, Rocco Oliveto, MalcomGethers, Denys Poshyvanyk, and Andrea
De Lucia. 2013. Methodbook: Recommending move method refactorings via
relational topic models. IEEE Transactions on Software Engineering 40, 7 (2013),
671–694.

[18] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[19] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2021. TreeCaps: Tree-Based Capsule
Networks for Source Code Processing. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence.

[20] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2009. Relating
identifier naming flaws and code quality: An empirical study. In 2009 16thWorking
Conference on Reverse Engineering. IEEE, 31–35.

[21] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring
the influence of identifier names on code quality: An empirical study. In 2010 14th
European Conference on Software Maintenance and Reengineering. IEEE, 156–165.

[22] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2011. Improv-
ing the tokenisation of identifier names. In Proceedings of the 25th European
Conference on Object-Oriented Programming (ECOOP). Springer, 130–154.

[23] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2011. Mining java
class naming conventions. In 2011 27th IEEE International Conference on Software
Maintenance (ICSM). 93–102. https://doi.org/10.1109/ICSM.2011.6080776

[24] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2013. INVocD:
Identifier name vocabulary dataset. In 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 405–408.

[25] Florian Deissenboeck and Markus Pizka. 2006. Concise and consistent naming.
Software Quality Journal 14, 3 (2006), 261–282.

[26] Aryaz Eghbali andMichael Pradel. 2020. No Strings Attached: An Empirical Study
of String-related Software Bugs. 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 956–967.

[27] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.
The effect of poor source code lexicon and readability on developers’ cognitive
load. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC).

[28] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE International Conference on Automated Software
Engineering. ACM, 313–324. https://doi.org/10.1145/2642937.2642982

[29] Chunrong Fang, Zixi Liu, Yangyang Shi, Jingfang Huang, and Qingkai Shi. 2020.
Functional code clone detection with syntax and semantics fusion learning. In
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis.

[30] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Structured
Neural Summarization. In Proceedings of the 7th International Conference on
Learning Representations. OpenReview.net.

[31] Malcom Gethers, Trevor Savage, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. 2011. CodeTopics: which topic am I coding
now?. In Proceedings of the 33rd International Conference on Software Engineering.
1034–1036.

[32] Latifa Guerrouj, Zeinab Kermansaravi, Venera Arnaoudova, Benjamin CM Fung,
Foutse Khomh, Giuliano Antoniol, and Yann-Gaël Guéhéneuc. 2017. Investigating
the relation between lexical smells and change-and fault-proneness: an empirical
study. Software Quality Journal 25, 3 (2017), 641–670.

[33] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the
use of automated text summarization techniques for summarizing source code.
In 2010 17th Working Conference on Reverse Engineering. IEEE, 35–44.

[34] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. 2020. Im-
proved automatic summarization of subroutines via attention to file context. In
Proceedings of the 17th International Conference on Mining Software Repositories.
300–310.

[35] Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and
David Bieber. 2020. Global Relational Models of Source Code. In Proceedings of the
8th International Conference on Learning Representations (ICLR). OpenReview.net.

[36] Yoshiki Higo and Shinji Kusumoto. 2012. How often do unintended inconsis-
tencies happen? Deriving modification patterns and detecting overlooked code
fragments. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 222–231.

[37] Johannes C. Hofmeister, J. Siegmund, and Daniel V. Holt. 2017. Shorter identifier
names take longer to comprehend. Empirical Software Engineering 24 (2017),
417–443.

[38] Einar W. Høst and Bjarte M. Østvold. 2009. Debugging Method Names. In
Proceedings of the 23rd European Conference on Object-Oriented Programming
(ECOOP). 294–317.

[39] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment Gener-
ation. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC).

[40] Lin Jiang, Hui Liu, and He Jiang. 2019. Machine Learning Based Recommen-
dation of Method Names: How Far are We. In 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). 602–614. https:
//doi.org/10.1109/ASE.2019.00062

[41] Suntae Kim and Dongsun Kim. 2016. Automatic identifier inconsistency detection
using code dictionary. Empirical Software Engineering 21, 2 (2016), 565–604.

[42] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2021. A Context-based Automated
Approach forMethod Name Consistency Checking and Suggestion. In Proceedings
of the 43rd International Conference on Software Engineering.

[43] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. 2019. Improving bug
detection via context-based code representation learning and attention-based
neural networks. Proceedings of the ACM on Programming Languages 3, OOPSLA
(2019), 162:1–162:30. https://doi.org/10.1145/3360588

[44] Bo Lin, Shangwen Wang, Kui Liu, Xiaoguang Mao, and Tegawendé F. Bissyandé.
2021. Automated Comment Update: How Far are We?. In The 29th IEEE/ACM
International Conference on Program Comprehension (ICPC). 36–46.

[45] Hui Liu, Qiurong Liu, Cristian-Alexandru Staicu, Michael Pradel, and Yue Luo.
2016. Nomen est Omen: Exploring and Exploiting Similarities between Argument
and Parameter Names. In 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). 1063–1073.

[46] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young Kim, Kisub Kim, Anil
Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor
inconsistent method names. In Proceedings of the 41st International Conference on
Software Engineering. IEEE, 1–12. https://doi.org/10.1109/ICSE.2019.00019

https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FStatement.html
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FStatement.html
https://help.eclipse.org/2020-12/index.jsp?topic=%2Forg.eclipse.jdt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fcore%2Fdom%2FStatement.html
http://findbugs.sourceforge.net/
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2786805.2786849
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1145/3192366.3192412
https://doi.org/10.1145/3290353
https://doi.org/10.1109/ICSM.2011.6080776
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/ASE.2019.00062
https://doi.org/10.1109/ASE.2019.00062
https://doi.org/10.1145/3360588
https://doi.org/10.1109/ICSE.2019.00019

Lightweight Global and Local Contexts Guided Method Name Recommendation with Prior Knowledge ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[47] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F Bissyandé, and Yves
Le Traon. 2018. A closer look at real-world patches. In Proceedings of the 34th
International Conference on Software Maintenance and Evolution. IEEE, 275–286.
https://doi.org/10.1109/ICSME.2018.00037

[48] Antonio Mastropaolo, Simone Scalabrino, Nathan Cooper, David Nader Palacio,
Denys Poshyvanyk, Rocco Oliveto, and Gabriele Bavota. 2021. Studying the
Usage of Text-To-Text Transfer Transformer to Support Code-Related Tasks. In
Proceedings of the 43rd International Conference on Software Engineering.

[49] Paul W McBurney and Collin McMillan. 2014. Automatic documentation gen-
eration via source code summarization of method context. In Proceedings of the
22nd International Conference on Program Comprehension. 279–290.

[50] Lili Mou, Ge Li, Lu Zhang, TaoWang, and Zhi Jin. 2016. Convolutional neural net-
works over tree structures for programming language processing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 30.

[51] Son Nguyen, Hung Phan, Trinh Le, and Tien N. Nguyen. 2020. Suggesting Natural
Method Names to Check Name Consistencies. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 1372–1384.

[52] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C Gall. 2016. The impact of test case summaries on bug fixing performance:
An empirical investigation. In Proceedings of the 38th International Conference on
Software Engineering. 547–558.

[53] Michael Pradel and Koushik Sen. 2018. DeepBugs: A Learning Approach to
Name-Based Bug Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 147
(2018), 25 pages. https://doi.org/10.1145/3276517

[54] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys Poshy-
vanyk. 2018. A comprehensive model for code readability. Journal of Software:
Evolution and Process 30, 6 (2018).

[55] Simone Scalabrino, Christopher Vendome, and Denys Poshyvanyk. 2019. Au-
tomatically assessing code understandability. IEEE Transactions on Software
Engineering (2019).

[56] Andrea Schankin, A. Berger, Daniel V. Holt, Johannes C. Hofmeister, T. Riedel, and
M. Beigl. 2018. Descriptive Compound Identifier Names Improve Source Code
Comprehension. In 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC).

[57] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get To The Point:
Summarization with Pointer-Generator Networks. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics. 1073–1083.

[58] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. 43–52.

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Processing Systems. 6000–6010.
[60] Yaza Wainakh, Moiz Rauf, and Michael Pradel. 2021. IdBench: Evaluating Seman-

tic Representations of Identifier Names in Source Code. In Proceedings of the 43rd
International Conference on Software Engineering.

[61] Ke Wang and Zhendong Su. 2020. Blended, Precise Semantic Program Em-
beddings. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation. Association for Computing Machinery,
121–134. https://doi.org/10.1145/3385412.3385999

[62] Shangwen Wang, Ming Wen, Bo Lin, Hongjun Wu, Yihao Qin, Deqing Zou,
Xiaoguang Mao, and Hai Jin. 2020. Automated Patch Correctness Assessment:
How Far are We?. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. ACM, 968–980. https://doi.org/10.1145/
3324884.3416590

[63] Yu Wang, Ke Wang, Fengjuan Gao, and Linzhang Wang. 2020. Learning Semantic
Program Embeddings with Graph Interval Neural Network. Proc. ACM Program.
Lang. 4, OOPSLA, Article 137 (2020), 27 pages. https://doi.org/10.1145/3428205

[64] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-aware patch generation for better automated program repair. In Pro-
ceedings of the 40th International Conference on Software Engineering. ACM, 1–11.
https://doi.org/10.1145/3180155.3180233

[65] MingWen, Yepang Liu, RongxinWu, Xuan Xie, Shing-Chi Cheung, and Zhendong
Su. 2019. Exposing Library API Misuses Via Mutation Analysis. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). 866–877. https:
//doi.org/10.1109/ICSE.2019.00093

[66] MingWen, RongxinWu, and Shing-Chi Cheung. 2016. Locus: Locating bugs from
software changes. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). 262–273.

[67] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 87–98.

[68] Yinxing Xue, Mingliang Ma, Yun Lin, Yulei Sui, Jiaming Ye, and Tianyong Peng.
2020. Cross-Contract Static Analysis for Detecting Practical Reentrancy Vulnera-
bilities in Smart Contracts. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1029–1040.

[69] Zhaoxu Zhang, Hengcheng Zhu, Ming Wen, Yida Tao, Yepang Liu, and Yingfei
Xiong. 2020. How Do Python Framework APIs Evolve? An Exploratory Study. In
2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). 81–92. https://doi.org/10.1109/SANER48275.2020.9054800

[70] Gang Zhao and Jeff Huang. 2018. DeepSim: deep learning code functional simi-
larity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing.

https://doi.org/10.1109/ICSME.2018.00037
https://doi.org/10.1145/3276517
https://doi.org/10.1145/3385412.3385999
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/3324884.3416590
https://doi.org/10.1145/3428205
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1109/ICSE.2019.00093
https://doi.org/10.1109/SANER48275.2020.9054800

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Definitions
	2.2 Method Name Recommendation
	2.3 Method Name Consistency Checking
	2.4 Code Summarization

	3 Motivating Examples
	4 Empirical Study
	4.1 Experiment Setup
	4.2 Frequencies of Tokens from Caller/Callee
	4.3 Frequencies of Tokens under Different Contexts

	5 Methodology
	5.1 Key Ideas
	5.2 Source Extraction
	5.3 Pointer-Generator Network

	6 Evaluation
	6.1 Research Questions
	6.2 The MNR Task (RQ3)
	6.3 The MCC Task (RQ4)
	6.4 Ablation Study (RQ5)

	7 Discussion
	7.1 Performance Enhancement from the Pointer-Generator Model
	7.2 Rationality of the Lightweight Strategy
	7.3 Threats to Validity
	7.4 Application Scenario

	8 Conclusion
	Acknowledgments
	References

