
978-1-7281-2968-6/19/$31.00 ©2019 IEEE

How Different Is It Between Machine-Generated and
Developer-Provided Patches?

An Empirical Study on the Correct Patches Generated by Automated Program Repair Techniques
Shangwen Wang

National University of Defense Technology
Changsha, China

wangshangwen13@nudt.edu.cn

Ming Wen
The Hong Kong University of Science and Technology

Hong Kong, China
mwenaa@cse.ust.hk

Liqian Chen
National University of Defense Technology

Changsha, China
lqchen@nudt.edu.cn

Xin Yi
National University of Defense Technology

Changsha, China
yixin09@nudt.edu.cn

Xiaoguang Mao
National University of Defense Technology

Changsha, China
xgmao@nudt.edu.cn

Abstract—Background: Over the years, Automated Program

Repair (APR) has attracted much attention from both academia
and industry since it can reduce the costs in fixing bugs. Howev-
er, how to assess the patch correctness remains to be an open
challenge. Two widely adopted ways to approach this challenge,
including manually checking and validating using automated
generated tests, are biased (i.e., suffering from subjectivity and
low precision respectively). Aim: To address this concern, we
propose to conduct an empirical study towards understanding
the correct patches that are generated by existing state-of-the-art
APR techniques, aiming at providing guidelines for future as-
sessment of patches. Method: To this end, we first present a Lit-
erature Review (LR) on the reported correct patches generated
by recent techniques on the Defects4J benchmark and collect 177
correct patches after a process of sanity check. We investigate
how these machine-generated correct patches achieve semantic
equivalence, but syntactic difference compared with developer-
provided ones, how these patches distribute in different projects
and APR techniques, and how the characteristics of a bug affect
the patches generated for it. Results: Our main findings include:
1) we do not need to fix bugs exactly like how developers do since
we observe that 25.4% (45/177) of the correct patches generated
by APR techniques are syntactically different from developer-
provided ones; 2) the distribution of machine-generated correct
patches diverges for the aspects of Defects4J projects and APR
techniques; and 3) APR techniques tend to generate patches that
are different from those by developers for bugs with large patch
sizes. Conclusion: Our study not only verifies the conclusions
from previous studies but also highlights implications for future
study towards assessing patch correctness.

Keywords—Automated Program Repair; Defects4J; patch
correctness assessment.

I. INTRODUCTION

Automated Program Repair (APR) techniques, which are
proposed to reduce the onerous burden of debugging [1] and
increase software quality, are of tremendous value. APR tech-
niques can be generally divided into two families including
search-based [2-5] (also known as generate-and-validate) and
synthesize-based [6-9] approaches, classified by how they gen-
erate candidate patches and traverse the search space.

The basic pipeline that most of APR systems follow con-
tains three steps: fault localization, patch generation, and patch
validation. In the first step, the APR system identifies suspi-
cious code entities in a given program as the potential fault
locations. Usually, it receives a list of statements ranked by the

suspicious values calculated by Fault Localization (FL) tech-
niques [10-13]. In the second step, given a fault location, the
APR system tries to generate candidate patches by modifying
the program. Then, in the last step, the APR system assesses
whether the generated patch is correct, i.e., whether it fixes the
defect. If the patch does not pass the validation, the second and
third steps will be repeated until a valid patch is found or a
predefined limitation is reached, e.g., the execution time. Over
the years, many studies have been conducted with the aim to
better identify the fault location [10-19], advance the patch
generation process [2-9, 20-29], and enhance the assessment of
patch correctness [30-34]. The scope of this paper belongs to
the last one.

Traditionally, test cases are used as the criteria for judging
if a generated patch is correct: a patch is considered as correct
if it passes all the test cases [2, 3, 35]. However, this method is
biased and inefficient as pointed out by the study [36] that the
test suites in real world systems are usually weak such that
most of the patches that pass all tests are incorrect. This prob-
lem, which is often referred to as patch overfitting [31, 32, 34],
motivates the need of new methodologies for patch correctness
assessment. To address this concern, recent works mainly fol-
low two methods for evaluating patch correctness. One is uti-
lizing an independent test suite generated by automatic test
generation tools to verify the patch correctness [24, 31, 34, 37].
Following this method, a patch is labeled as correct if it passes
both the original associated test suites and the newly generated
ones. However, a recent study has shown that independent test
suite is not suitable for being used to evaluate the patch cor-
rectness alone [30] since it achieves low precision in discerning
incorrect patches. The other method is author annotation, i.e.,
authors of APR techniques manually check the correctness of
patches generated by their own tools [20-23, 25-28]. Following
this method, a patch is labeled as correct if the authors consider
it semantic equivalent to the developer-provided patch. Alt-
hough this method achieves high effectiveness [30], it still fac-
es the challenge of being subjective [21, 30] (also known as
author bias).

In this paper, we conduct an empirical study on the correct
patches that have already been generated by the state-of-the-art
APR techniques, aiming at providing guidelines for author
annotation in the future to reduce the bias of this process. We
collect totally 177 patches generated by 10 state-of-the-art APR
techniques evaluated on the benchmark Defects4J [38], all of
which have been labeled as correct by both the APR tools’ au-
thors and our sanity check via manual investigation. Specifical-

ly, we seek to answer the following three research questions in
this study:

RQ1: How do machine-generated correct patches differ
from developer-provided ones?

RQ2: How do different types of patches distribute?
RQ3: Do APR tools tend to generate correct patches but

different from the developer-provided ones for bugs with cer-
tain characteristics?

A patch is generated based on the buggy location identified
by fault localization techniques (i.e., denoted as edit point in
this study) with certain code modifications. Based on this, the
differences between patches can be distinguished in terms of
two aspects, edits points and code modifications. To answer
RQ1, we compare the collected patches with developer-
provided ones and classify them into four types based on the
aforementioned two aspects. We further investigate how the
patches that are syntactically different from developer-provided
ones achieve semantic equivalence. In RQ2, we investigate the
distribution of patches from two aspects (i.e., different De-
fects4J projects and APR techniques) and observe that fault
localization is critical for generating correct patches for bugs in
three projects of Defects4J. In RQ3, we aim at investigating
whether correlations exist between bug characteristics and the
likelihood of APR tools to generate different patches from the
developer-provided ones. By further analyzing the results and
answers to these research questions, we distill several implica-
tions for future study towards the assessment of patch correct-
ness, e.g., synthesize-based techniques such as Nopol are prone
to generate different patches from the ground truth (i.e., the
developer-provided patch).

We summarize our contributions in this study as below:
 We are the first to systematically study the correct

patches that have been generated by APR techniques.
We investigate how the patches that are different from
the developer-provided ones achieve syntactic differ-
ence but semantic equivalence.

 We investigate the distribution of these patches from
two aspects (i.e., Defects4J projects and APR tech-
niques) and observe that the distribution of correct
patches diverges for both of the two aspects.

 We study the correlation between the characteristics
of a bug and the patches generated for the bug. The
results reveal that correct patches different from the
ground truth are more likely to be generated for bugs
with large patch sizes.

The rest of the paper is organized as follows. Section II pre-
sents the background on various APR techniques and existing
methods used for patch correctness assessment. We describe
our study design in Section III. The results and analyses are
presented in Section IV. Section V discusses implications of
our findings and threats to validity. Section VI introduces relat-
ed work. We conclude and describe future work in Section VII.

II. BACKGROUND

In this section, we present background information about
our study.

A. APR Techniques

GenProg [2] is one of the first APR techniques that sparks
the interests in APR. Given a buggy program and a set of tests,

at least one of which is failing, it generates a population of re-
pair candidates by using a number of mutation operators, such
as statement deletion, insertion, and replacement. It then uses
genetic programming to evolve the buggy program until a can-
didate program passing all the tests is found or a predefined
time budget is reached. RSRepair [3] uses random search in-
stead of genetic programming to traverse the search space of
candidate solutions. It limits its patches to a single edit. Exper-
imental results show that RSRepair is more efficient than Gen-
Prog in terms of time and test case evaluations [3]. AE [39]
introduces a deterministic repair algorithm based on the in-
sights that tests and candidates can be selected based on execu-
tion histories. This algorithm reduces the search space by an
order of magnitude compared with GenProg. Kali [32] is a
naive APR technique, which only deletes functionality. Alt-
hough being simple, this technique has been shown to be as
effective and efficient as GenProg, RSRepair, and AE [32].

The aforementioned techniques are all designed for C lan-
guage. Recently, substantial APR techniques are designed for
Java language. PAR [40] is a prominent APR technique which
is based on a set of predefined human-provided patch templates.
This technique has been shown to be able to fix the majority of
its benchmark defects with only two templates (i.e., Null Point-
er Checker and Condition Expression Adder/Remover/Replacer)
[41]. Nopol [42] is an automatic repair tool focusing on branch
conditions. It identifies branch statement directions that can
pass negative test cases and then uses Satisfiability Modulo
Theory (SMT) solvers to generate patches for the branch con-
dition. ACS [20] also focuses on synthesizing patches for bug-
gy if-conditions. Unlike Nopol, ACS attempts to rank the fix
candidates using various ranking heuristics. JFix [9] adopts
symbolic execution to infer specifications serving for patch
synthesis. SimFix [28] takes the intersection of existing patches
and source code into consideration to reduce the search space.
CapGen [25] utilizes context information to prioritize patches.
Empirically, its precision can reach 84% on four projects of
Defects4J [25]. ssFix [21] leverages existing code that is syn-
tax-related (i.e., structurally similar and conceptually related)
to the context of a bug to produce patches for its repair. JAID
[22] is designed based on detailed, state-based dynamic pro-
gram analyses since grounding the repair generation and vali-
dation processes on rich state abstractions mitigates the overfit-
ting problem. Elixir [27] can effectively synthesize patches
from a repair space rich in method invocation expressions, by
using a machine-learned model to rank the space of concrete
repairs. AVATAR [29] is a pattern-based patch generation
technique. It exploits fix patterns of static analysis violations as
ingredients for generating candidate patches.

B. Validation of APR-Generated Patches

Traditionally, the test cases associated with the buggy pro-
gram under repair are used as the criteria for judging the cor-
rectness of APR techniques generated patches. GenProg,
RSRepair, and AE reported to produce many correct patches
under the assumption that a patch that passes the original test
suite is regarded as correct. However, it has been shown in
recent studies [32, 36] that this assumption does not hold true
in practice due to the potential overfitting between the generat-
ed patches and the test suites.

Motivated by the above concern, recent studies employ new
methods to assess patch correctness. One is to utilize inde-

pendent test suites generated by automatic generation tools.
For example, Smith et al. [31] use general-purpose automatic
test generation tool such as KLEE [43] to generate test suites
for C language. For Java language, Xin et al. [34] propose Dif-
fTGen, a test generation tool specially designed to generate
tests that can identify incorrect patches generated by APR
techniques. DiffTGen attempts to generate test cases that cover
the syntactic and semantic differences between the generated
patch and the developer-provided patch. A patch is labeled as
incorrect if there exists a test case that exposes the differences
in outputs of the programs. Another way is named author an-
notation, in which authors of the APR techniques manually
check the generated patches and assess their correctness. This
method is widely adopted by recent studies [20-23, 25-28].

However, a recent study [30] revealed that utilizing inde-
pendent test suite can only detect a small part of incorrect
patches when being used alone and author annotation suffers
from subjectivity although it achieves high precision. Therefore,
deeper analysis is desired to investigate the process of as-
sessing patch correctness, especially, to understand how correct
patches generated by APR techniques can achieve semantic
equivalence while syntactic difference compared with those
provided by developers. This study aims at bridging this gap.

III. STUDY DESIGN

In this section, we describe the details of our study design
from three aspects: data selection, data filtering, and our re-
search questions, respectively.

A. Data Selection

Our objective is to characterize and understand the correct
patches (i.e., semantic equivalent compared with patches made
by developers) that have been generated by existing studies,
through which to provide guidance for future research towards
author annotation of correct patches. To this end, we first pre-
sent a Literature Review (LR) on the reported correct patches
generated by recent techniques. We select Defects4J as our
database since it is a widely used benchmark [20-29, 44, 45].
This benchmark contains 395 bugs extracted from six open
source projects (i.e., JFreechart, Closure compiler, Apache
commons-lang, Apache commons-math, Mockito, and Joda-
Time). In particular, we study patches generated by 10 popular
APR techniques (ACS [20], ssFix [21], JAID [22], CapGen
[25], Elixir [27], SimFix [28], AVATAR [29], Nopol [42, 45],
jGenProg [45], and jKali [45]). All these patches are labeled as
correct after author annotation. Note that there are some other
APR techniques for Java language, e.g., JFix [9] and NPEFix
[46]. We exclude them from this study since they have not
been evaluated on Defects4J. There are also some techniques
that have been evaluated on Defects4J, e.g., SOFix [23] and
SketchFix [26]. They are excluded since the generated patches
are not publicly available. A recently proposed technique,
ProbabilisticModel [24], uses a held-out test suite to assess
patch correctness. However, as pointed out by the study [30]
that using independent test suite alone is inefficient, the patches
labeled as correct can potentially be incorrect. We thus exclude
those patches generated by this technique from our study to
avoid potential bias to our results. We also exclude the tool
Cardumen [47] since the correctness of the generated patches is
not labeled in the original evaluation of the tool. AVATAR

provides three sets of patches generated under different as-
sumptions of fault localization. The first one assumes that the
perfect location, i.e., the faulty code elements, is known. The
second one assumes the faulty method name is known and the
third one makes no assumption on fault location. In this study,
we take the first set of patches into consideration since
AVATAR produces 34 correct patches under this assumption,
more than those produced under the other two assumptions. We
adopt such a heuristic with the aim to include more correct
patches in our empirical study. The authors of AVATAR [29]
introduced the concept named Partially Fixed which means a
patch passes part of the failing test cases but not all of them.
After a manual check, we find that six of the patches reported
by AVATAR are, in fact, composed of several partially fixed
patches. These partially fixed patches fix a multi-location bug
collectively. Traditionally, a valid patch must contain all the
necessary modifications required to repair the bug [2, 3, 39].
We thus do not take these partially fixed patches into consider-
ation since they do not satisfy this requirement. After this step,
we collect totally 185 patches.

B. Sanity Check of Data

The correctness of the collected 185 patches are annotated
by the original authors of the APR tools. However, author an-
notation, as pointed by a recent study [30], is subjective and
might produce false positives (incorrect patches but annotated
as correct by the authors accidently). Specifically, Nopol gen-
erates a patch annotated as correct by the authors for Math#73
[45], however, this patch is proved to be incorrect in the study
[30]. Therefore, it motivates us to have a sanity check manually
over these collected patches to guarantee their correctness. A
recent study [30] checked the correctness of 11 patches in our
dataset and detects two false positives. In our study, we choose
to adopt their conclusions and filter these two patches. For the
left 174 patches, we further perform a sanity check to label
their correctness aiming at filtering the potential false positives.

To perform our sanity check, we interview 27 undergradu-
ate students in our college to judge whether patches generated
by APR tools are semantically equivalent to the ground truth
human patches. These students are in their third year and have
completed several programming courses on Java. Although
they are not experts, they possess the cognition about object-
oriented programming and can easily understand Java program.
We divide these students into nine groups and each patch is
labeled by three participants, making each participant judge 19
or 20 patches in total. The design follows an existing study [30].
Specifically, for each patch, we provide the participants with
the corresponding buggy program, the ground truth patch, an
APR tool generated patch, the corresponding test files, and the
detailed information about the failing test case. Based on this
information, participants are asked to evaluate the correctness
of the patch and they can choose one of the following options:
“Yes”, “No”, or “I don’t know”. Each participant is required to
finish the whole task in 2 hours and they can provide some
comments about their decisions if they like. The results are
shown in Table I. The number of patches in which all partici-
pants agree on each patch’s label is 153 (87.9% of all patches),
of which 151 patches are labeled as correct and 2 are labeled as
incorrect. For 20 out of 174 patches (11.5% of all patches),
there is a majority decision (i.e., not all participants but most
participants agree on one label), out of which 16 and 4 patches

TABLE I. RESULTS OF PARTICIPANT ANNOTATIONS

 All Agree Majority Agree Total

Correct 151 16 167

Incorrect 2 4 6

Total 153 20 173

TABLE II. DATASET OF COLLECTED PATCHES

Tool Chart Closure Lang Math Mockito Time Total

CapGen 5 0 7 14 0 0 26

SimFix 4 6 8 14 0 1 33

Nopol 1 0 2 1 0 0 4

jGenProg 0 0 0 4 0 0 4

jKali 0 0 0 1 0 0 1

JAID 4 9 5 7 0 0 25

Elixir 4 0 8 12 0 2 26

AVATAR 5 7 4 6 2 2 26

ssFix 2 1 5 7 0 0 15

ACS 2 0 3 11 0 1 17

Total 27 23 42 77 2 6 177

are identified as correct and incorrect, respectively. We thus
filter the 6 patches that are labeled as incorrect by two or three
participants. For the remaining one patch which does not pos-
sess a majority decision, the authors decide to label it as correct
after a discussion. Finally, 177 valid patches are collected as
our study subject. The detailed information of our dataset is
illustrated in Table II.

C. Research Questions

In this study, we aim at investigating the following three re-
search questions.

RQ1 How do machine-generated correct patches differ
from developer-provided ones? Machine-generated patches
differ from each other mainly in two aspects: the edit point and
the code modification. The edit point refers to the modified
location while the code modification usually refers to the atom-
ic operations conducted based on certain fixing ingredients.
Fixing ingredients are those existing code elements reused in
code modifications to generate patches [25]. Usually, there are
three kinds of atomic operations: insertion, deletion, and re-
placement [2]. In this research question, we aim to study the
differences between machine-generated correct patches and
developer-provided patches from these two perspectives. In
particular, two modifications are regarded as the same if both
the atomic operation and the concerned fixing ingredients are
the same. As a result, we manually divide our collected patches
into the following four types according to these two aspects:
Same Location Same Modification (SLSM) means the two
patches are the same; Same Location Different Modification
(SLDM) means machine-generated patch operates different
modification at the same edit point compared with developer-
provided one; Different Location Same Modification (DLSM)
means the identical modification is performed at a different
place in machine-generated patch; and Different Location Dif-
ferent Modification (DLDM) means different code modifica-
tions are performed in different locations.

RQ2 How do different types of patches distribute? Our aim
is to provide guidance for future author annotation. It is of
great value for this study if we observe that a certain type of
patches is generated by a certain type of APR techniques or in
a certain project in Defects4J. Thus, we further study the distri-
bution of different types of patches. Specifically, we measure
distributions in terms of two perspectives (i.e., Defect4J pro-
jects and APR techniques).

RQ3 Do APR tools tend to generate correct patches but
different from the developer-provided ones for bugs with cer-
tain characteristics? We study two aspects of characteristics
for bugs. One aspect is fixing complexity. We use metrics that
have been analyzed in previous studies [44, 48] such as patch
size and number of modified files for assessment. Our intuition
is that if a bug is complex (i.e., the developer-provided patch is
complex), APR techniques are likely to generate patches that
are different from its ground truth since there might be multiple
ways to correctly fix such a bug if it concerns multiple code
elements. The other aspect is test adequacy of the buggy class.
We use line coverage and branch coverage to measure it as
existing studies do [49, 50]. Our intuition is that the test quality
measured by line and branch coverages is related with the type
of correct patches generated for this bug since existing studies
have shown that the correctness (i.e., plausible, overfitting, or
correct) of APR generated patches has strong correlation with
the test quality [32, 34, 36]. If a certain characteristic can lead
APR techniques to generate correct patches different from the
ground truth, we can provide guidance for assessing the cor-
rectness of the patches generated for bugs with this feature.

IV. RESULTS AND ANALYSES

In this section, we present the answers to our three research
questions.

A. RQ1: Patch Differences

According to whether the edit location or the code modifi-
cation is the same as the developer-provided patch, a machine-
generated patch can be classified into four types: SLSM,
SLDM, DLSM, and DLDM. We introduce the case for each
type in the following.

1) SLSM
This type indicates that the machine-generated correct

patch is identical to the developer-provided one. This type of
patches is common, e.g., many APR techniques like SimFix
and CapGen generate SLSM patches for bug Chart#1. Totally,
there are 132 SLSM patches in our dataset.

2) SLDM
Fig. 1 shows the patch for Closure#115 generated by Sim-

Fix. In the developer-provided patch for this bug, lines 731-733
are deleted directly. In the machine-generated patch, it changes
the condition in the if-statement in line 731. Note that if the
program can execute to line 731, the parameter cArg must be
non-empty. Thus, the condition in line 731 cannot be satisfied,
which means the operation in line 732 will never be executed.
This is semantically equivalent to directly deleting these state-
ments and thus is a case of SLDM.

Totally, there are 33 SLDM patches. To investigate the dif-
ferences between machine-generated correct patches and de-
veloper-provided ones, we review the Diff views to character-
ize their different operations over code elements. The develop-

Fig. 1. The patch for Closure#115 generated by SimFix.

er-provided patch is used as the oracle and we check what
changes the machine-generated patch makes such that it
achieves semantic equivalence. This comparison is different
from previous study [48] where the authors make correspond-
ence between original buggy program (rather than APR gener-
ated patch) and its developer-provided patch. The results are
shown in Table III. The naming rule is referred to the previous
study [48] where the authors named the repair actions of patch-
es in Defects4J. The column Category represents different
types of code elements such as Assignment and Variable. The
column Operation displays detailed operations which are com-
posed by code elements and the corresponding actions like
addition and removal. For example, the patch for Closure#115
generated by SimFix which is shown in Fig. 1 uses a condi-
tional branch to finish the deletion operation in developer-
provided patch. The generated patch contains an extra condi-
tional branch, thus, the different operations between these two
patches are classified into conditional branch addition. The
third column shows the number of machined-generated patches
under this kind of operation. In the last column, we list a sam-
ple of machine-generated patch for each operation by illustrat-
ing the APR technique followed by the bug ID.

The majority of SLDM patches involve code elements re-
lated to conditional block (21/33). Machine-generated correct
patches may add or remove a conditional branch or change (i.e.,
modify, expand, or reduce) the content in the conditional ex-
pression compared to developer-provided patches. Machine-
generated correct patches may also perform operations on
method calls such as adding method calls or calling different
methods. Modifying assignments or variables may help to
achieve semantic equivalence but their frequencies of occur-
rence are rather low. Note that the category Statement does not
appear in the study [48]. In our observation, this category con-
tains three samples of incomplete statement removal which
means the machine-generated patch deletes some but not all the
statements deleted by developer-provided patch.

3) DLSM
Fig. 2 shows the patch for Math#53 generated by CapGen.

In the machine-generated patch, it inserts an if-statement and
the corresponding operations as the developer-provided one
does. The difference is that the insertion point in this patch is at
the beginning of this function while in developer-provided one,
it is under line 8. Note that the method call in line 8 only
checks if the object rhs is null and throws an exception if it is.
Thus, the order of these two statements does not influence the
program. This is a case of DLSM.

During our study, we observe 2 DLSM patches in total. To
further observe where the operations in machine-generated
patches are conducted, we investigate from two scopes. Same
Method means the two edit points in the machine-generated
and developer-provided patches are in the same method while
Same Class means the two edit points are not in the same
method but in the same class. Results in Table IV show that all
the edit points of these two DLSM patches are in the same
methods as those of the corresponding developer-provided pat-

TABLE III. DETAILS OF DIFFERENCES BETWEEN SLDM PATCHES AND
DEVELOPER-PROVIDED PATCHES

Category Operation #patches Sample

Conditional

Conditional Expression Modification 5 JAID-Lang#33

Conditional Expression Expansion 3 SimFix-Math#63

Conditional Expression Reduction 1 Nopol-Lang#58

Conditional Branch Removal 4 ssFix-Lang#33

Conditional Branch Addition 8 SimFix-Closure#115

Method Call
Method Call Addition 3 Elixir-Time#15

Method Call Replacement 4 CapGen-Lang#57

Assignment Assignment Modification 1 ssFix-Math#80

Variable Variable Modification 1 JAID-Chart#24

Statement Incomplete Statement Removal 3 JAID-Closure#40

Fig. 2. The patch for Math#53 generated by CapGen.

TABLE IV. DETAILS OF DIFFERENCES BETWEEN DLSM PATCHES AND
DEVELOPER-PROVIDED PATCHES

Same Method Same Class

#Patches 2 0

ches.
4) DLDM
In Fig. 3, we illustrate the developer-provided and machine-

generated correct patches for Chart#3 generated by SimFix.
The developer-provided one assigns two attributes of the

object named copy under the function named createCopy. In
the following statements of this function, copy will call another
function named add, where the modification of SimFix-
generated patch occurs. The machine-generated patch calls
another function named findBoundsByIteration in the function
add. In the function findBoundsByIteration, there are two
statements assigning the same values to the attributes of the
object as the developer-provided patch does. Note that there is
a conditional statement under the end of machine-generated
patch. If the program executes to this point without throwing
an exception, the parameter added is always true, which means
the method updateBoundsForAddedItem will be called and it is
exactly what the loop in the method findBoundsByIteration
does. The method updateBoundsForAddedItem does not
change the object item, thus, the machine-generated correct
patch is semantic equivalent to the developer-provided one,
being a case of DLDM.

To further illustrate the differences between DLDM patches
and their corresponding developer-provided ones, we investi-
gate from the aforementioned two aspects: the code operation
and the edit point. We summarize the situations in Table V.
Totally, ten patches are recognized as DLDM in our study,
seven of which conduct operations in the same methods as their
corresponding developer-provided patches. The different code
operations are all about conditional block and method call,
which is consistent with the results in Table III where these two
types account for the majority. From our results, patches con-
tain different edit points from the developer-provided ones
(DLSM and DLDM patches) perform code modifications at le-

a) Developer-provided patch

b) Machine-generated patch

c) The function named findBoundsByIteration

Fig. 3. Patches for Chart#3.

TABLE V. DETAILS OF DIFFERENCES BETWEEN DLDM PATCHES AND
DEVELOPER-PROVIDED PATCHES

Category Operation Same Method Same Class

Conditional

Conditional Expression Modification 3 0

Conditional Expression Reduction 1 0

Conditional Branch Addition 2 0

Method Call
Method Call Addition 1 1

Method Call Replacement 0 2

TABLE VI. STATISTICS OF EDIT POINT DISTANCES OF DLDM PATCHES

 Min Median Mean Max

Edit Point Distance 1 24 87.5 430

ast in the same class. To measure the distance between the edit
points of machine-generated and developer-provided patches,
we define the concept of edit point distance, which is the num-
ber of lines between the two points in the program. For the two
DLSM patches, the edit point distances are both 1 while the
statistics of the edit point distances of DLDM patches are illus-
trated in Table VI. The minimum in Table VI occurs in the
patch for Chart#26 generated by JAID. It adds another condi-
tional statement at one line before the edit point in the ground
truth. The median and mean of edit point distances of DLDM
patches can reach tens of lines of code. The maximum occurs
in the patch for Chart#3 generated by SimFix as shown in Fig.
3. SimFix generates a patch which performs method call addi-
tion operation under another method in the same class, making
the edit point distance up to 430. To recap, the edit point dis-
tances of DLDM patches are much larger then those of DLSM
patches.

Totally, we observe 132 SLSM patches, 33 SLDM patches,
2 DLSM patches, and 10 DLDM patches, from which two
findings can be concluded. First, 74.6% (132/177) of the patch-
es belong to SLSM type, which means that a large part of the
correct patches are identical to the developer-provided ones.

This indicates the great progress of the repair ability of APR
techniques developed in recent years. A previous study [32]
shows that a large part of patches generated by GenProg,
RSRepair, and AE are semantically equivalent to functionality
deletions, while we find that a large part of the patches gener-
ated by recent APR techniques are the same as developer-
provided ones. Second, although a large amount of the patches
are the same as developer-provided ones, there are still over
25% patches being different from the ground truth. This shows
that APR techniques do not need to generate patches exactly
like how the developers do. Among these patches, more than
95% (43/45) are SLDM or DLDM patches, which means they
perform different code modifications compared with develop-
er-provided patches. Our finding indicates that we do not need
to be afraid of generating code different from the ground truth,
reflecting the view of Monperrus in [41].

B. Patch Distribution

In this research question, we investigate the distribution of
different types of patches from two perspectives (Defects4J
projects and APR techniques). Specifically, we investigate how
many different types of patches are generated by existing APR
techniques for bugs in each project and how many different
types of patches are generated by each APR technique. Our
aim is to observe the characteristics of correct patches from a
more detailed perspective, e.g., if a certain type of correct
patches is only generated by a particular APR technique or for
bugs in a particular project. Table VII and Table VIII show
such distributions respectively.

In Table VII, the first column indicates the six projects in
the Defects4J benchmark. The following four columns indicate
the number of different types of correct patches that have al-
ready been generated for bugs from each project. The last col-
umn indicates the total amount of correct patches generated for
bugs from each project. In Table VIII, the first column indi-
cates the ten APR techniques considered by our study. The
following four columns indicate the number of different types
of correct patches generated by each technique. The last col-
umn indicates the total number of correct patches generated by
each technique. Please note that the numbers shown in the last
column in Table VIII may differ from the numbers of correct-
ly-fixed bugs shown in the corresponding original papers. That
is because a tool may generate multiple correct patches for a
certain bug and we take all these patches into consideration.
For example, CapGen correctly fixes 22 bugs but generates
multiple correct patches for 4 bugs. Thus, the corresponding
number shown in Table VIII is 28. From the results, we can
observe the following findings.

From the perspective of Defects4J projects. From Table
VII, 85.7% (66/77) of the patches generated for project Math
are SLSM patches, which is the highest among the six projects.
DLSM patches are generated only in two projects (i.e., Chart
and Math) and DLDM patches are generated only in three pro-
jects (Chart, Lang, and Math). Besides, fault localization is crit-

RQ1. APR-generated correct patches can be classified
into four types based on their edit points and code modifi-
cations, while most of them (around 75%) are identical to
their ground truth (i.e., SLSM patches).

TABLE VII. PATCH DISTRIBUTION FROM DEFECTS4J PROJECTS
PERSPECTIVE

Project #SLSM #SLDM #DLSM #DLDM Total

Chart 22 1 1 3 27

Closure 17 6 0 0 23

Lang 24 12 0 6 42

Math 66 9 1 1 77

Mockito 0 2 0 0 2

Time 3 3 0 0 6

Total 132 33 2 10 177

TABLE VIII. PATCH DISTRIBUTION FROM APR TECHNIQUES PERSPECTIVE

Technique #SLSM #SLDM #DLSM #DLDM Total

CapGen 22 2 2 0 26

SimFix 23 6 0 4 33

AVATAR 18 8 0 0 26

Nopol 0 1 0 3 4

jGenProg 4 0 0 0 4

jKali 1 0 0 0 1

JAID 14 9 0 2 25

Elixir 22 4 0 0 26

ACS 16 0 0 1 17

ssFix 12 3 0 0 15

Total 132 33 2 10 177

ical for fixing bugs in Closure, Mockito, and Time, since all the
correct patches are generated based on the correct buggy loca-
tion (i.e., only SLSM and SLDM patches have been generated).

From the perspective of APR technique. From Table VIII,
DLSM patches are generated only by CapGen. This is probably
because CapGen searches over all potential buggy points to
generate patches. The tools jGenProg and jKali can only gener-
ate SLSM patches while CapGen, SimFix, and JAID can gen-
erate three kinds of patches. The DLDM patches can be gener-
ated by only four techniques (i.e., SimFix, Nopol, JAID, and
ACS).

The projects with a small number of patches. While each
of the other four projects contains more than 20 patches, the
number of patches for Mockito and Time is only 8. This is,
however, caused by different reasons. For Mockito, it is due to
the neglect of developers of APR techniques during the evalua-
tion [44]. This phenomenon calls for a more comprehensive
evaluation for APR techniques as the authors in [44] argued.
On the contrary, all the recent APR techniques have been eval-
uated on the Time project due to the statistics in the study [44].
It is potentially caused by the low repair ability of the state-of-
the-art APR techniques. Thus, it calls for more actions towards
repairing bugs in Time.

C. Bug Characteristics

In this research question, we aim to investigate whether
APR tools tend to generate correct patches but different from
the developer-provided ones for bugs with certain characteris-
tics. Specifically, we investigate this question from two aspects,
which are patch complexity and test adequacy inspired by the
following existing studies [44, 51-57].

 Substantial studies have been proposed to characterize
patch complexity. A study of Linux Kernel patching process
[51] measures locality of patches through three indicators (i.e.,
files, hunks, and lines). Another previous study [52] annotates
the Defects4J bugs with patch size and number of modified
files to compute the complexity. A more recent study [44] has
performed detailed analysis of patch characteristics in Mockito
project from Defects4J. We choose the four indicators as they
did. It is widely known that there are three types of code
changes: addition, deletion, and modification. Addition and
deletion appear as lines of codes are added or deleted consecu-
tively or separately in source code. Modification appears as
sequences of removed lines are straightly followed by added
lines or vice-versa. The patch size is the sum of the number of
lines of these three types of code changes in the patch. Com-
posed by the combination of addition, deletion, and modifica-
tion of lines, a chunk is a sequence of continuous changes in a
file. The number of chunks of a patch can provide insights on
how a patch is spread through the source code and further give
information about how complex the patch is: the more chunks
means the more buggy points in the program, and thus the
more complexly for fixing this bug. Similarly, the number of
modified files and the number of modified methods are also
two important indicators. The larger they are, the more pro-
gram elements are involved in the patch, and the more complex
the patch is. These four indicators have been shown to repre-
sent patch complexity well [44, 52, 53].

Statement coverage and branch coverage are widely-used in
debugging tasks to represent the test adequacy [54-57]. Specif-
ically, statement coverage is used to calculate and measure the
number of statements in the source code which have been exe-
cuted while branch coverage is used to calculate and measure
the number of reachable branches in the Control Flow Graph of
the program which have been executed.

We conduct the statistics on the six characteristics men-
tioned above of the bugs for which at least a correct patch is
generated. The data of patch complexity is from the previous
study [48] in which the characteristics of each bug in Defects4J
have been analyzed. The data of test adequacy is calculated by
Cobertura1 which is a free Java tool being widely-used in re-
cent studies [49, 50]. If different types of patches are generated
for the same bug, the data of this bug is added into all the rele-
vant types for analysis. The distributions of the six characteris-
tics on bugs for which different types of patches are generated
are illustrated in Fig. 4. We also conduct a significant differ-
ence test to check if the differences in the distributions are sta-
tistically significant. For each characteristic, we consider the
data of bugs for which SLSM patches are generated as standard
and make comparison between them and the data of bugs for
which SLDM and DLDM patches are generated using Mann-
Whitney-Wilcoxon test. The intuition is that we aim to investi-

1 http://cobertura.github.io/cobertura

RQ2. The distribution of APR-generated correct patches
diverges for the aspects of Defects4J projects and APR
techniques: most of the patches (around 85%) generated
for project Math are SLSM patches while DLSM patches
are only generated by CapGen.

a) Patch size

b) Number of chunks

c) Number of modified files

d) Number of modified methods

e) Line coverage

f) Branch coverage

Fig. 4. Distributions of Bug Characteristics

TABLE IX. RESULTS OF THE SIGNIFICANT DIFFERENCE TEST

Characteristic
SLSM SLDM DLSM DLDM

ave ave p-v ave p-v ave p-v

patch size 2.32 2.70 0.183 2 - 5.7 0.008

number of chunks 1.32 1.35 0.862 1 - 2.6 0.073

number of modified files 1.06 1 0.226 1 - 1 0.423

number of modified methods 1.18 1.17 0.463 1 - 1.3 0.275

line coverage 87.88% 89.84% 0.406 68.5% - 90.04% 1

branch coverage 81.86% 84.69% 0.266 73.65% - 81.62% 0.559

gate whether bugs for which patches different from the ground
truth are generated possess obvious characteristics, compared
with bugs for which SLSM patches are generated. We ignore
the p-values of bugs for which DLSM patches are generated
since there are only two bugs. Therefore, the data is not enough
for a significant difference test. The results are shown in Table
IX with the average value of each characteristic for each type
of bug.

The previous study [48] shows that most of the patches
modify only one file in Defects4J, thus the difference over the
number of modified files indicator is not significant, as is
shown in Table IX. The average values of the four types of
bugs are close.

For bugs for which SLDM patches are generated, their av-
erages in patch size, number of chunks, and line and branch
coverages exceed those of the bugs for which SLSM patches
are generated and their average in number of modified methods
is only a little less than that of the SLSM. These differences are
all insignificant since all these p-values are higher than 0.05.

For bugs for which DLSM patches are generated, their av-
erages are lower than those of the SLSM in all the six charac-
teristics, especially in line and branch coverages where the
averages of the other three types of bugs are higher than 80%
while the averages of this type are only about 70%.

For bugs for which DLDM patches are generated, their av-
erages in patch size and number of chunks are much higher
than those of other three types of bugs (5.7 and 2.6, respective-
ly). The test results indicate that the difference between this

type of bugs and bugs for which SLSM patches are generated
is significant in patch size with the p-value reaching 0.008.
This type of bugs also possesses the highest line coverage av-
erage, but the difference is insignificant. The other three aver-
ages are close to those of the SLSM.

For bug Lang#57, the line and branch coverages of the
buggy class are 7.9% and 0, respectively, making it an outlier.
This happens because the raised exception in the setup method
causes the failing tests abort before the execution of the code in
the class under test.

Our results indicate that on one hand, APR techniques are
prone to generate DLDM patches for bugs which are complex
for repairing since the difference in the patch size is significant.
On the other hand, APR techniques have generated DLSM
patches for bugs whose test adequacies are lower than other
bugs.

V. DISCUSSION

In this section, we first provide implications of our findings.
We then discuss potential threats to validity.

A. Implications

To recap, we have obtained empirical results via investigat-
ing patch differences, distributions, and characteristics. Based
on these results, we distill several implications as follows.
 On the evaluation of patches generated by synthesize-

based APR techniques
General program repair techniques can typically be divided

into two main branches: search- and synthesize-based repair
methods. Search-based repair methods generate patch candi-
dates by searching within a predefined fault space determined
by Fault Localization (FL) techniques and then validate these
candidates against the provided test suite. Synthesize-based

RQ3. APR techniques are prone to generate DLDM
patches for bugs with large patch sizes. They also generate
DLSM patches for bugs with low test adequacies but the
difference significance cannot be measured.

repair methods, on the contrary, utilize semantic information to
synthesize patches. Among the ten APR techniques investigat-
ed in this study, only Nopol and ACS are synthesize-based, but
they totally generate nearly half (4/10) of the DLDM patches
according to the results shown in Table VIII. This implicates
that synthesize-based tools are prone to generate correct patch-
es that are syntactically different from developer-provided ones,
especially for Nopol where no SLSM patches are generated.
This implicates that comprehensive analysis should be con-
ducted when evaluating the correctness of patches generated by
future synthesize-based tools, and patches should not be casu-
ally labeled as incorrect simply because they are not syntacti-
cally the same as the developer-provided ones.
 On the location of edit points
Although correct patches can be generated at different plac-

es compared with their ground truth and the edit point distances
could even exceed one hundred lines (cf. Tables IV and V),
corrected patches are more likely to be generated when the edit
distances are smaller. For example, 95.5% (169/177) of the
correct patches are generated within distance of 1, and that
ratio is only 3.4% (6/177) when the distance exceeding 10.
This reflects the importance of fault localization in generating
correct patches. Another interesting finding revealed by Table
V is that all the edit points of correct patches concerning condi-
tional block are generated within the buggy methods. This in-
dicates that patches that deal with the conditional blocks should
focus on the conditional blocks in the buggy method.
 On the importance of conditional block
According to our results, the code modifications of 63.6%

(21/33) of SLDM patches and 60% (6/10) of DLDM patches
are related to conditional block. This reflects the necessity of
APR techniques such as ACS and Nopol that are designed spe-
cific for conditional blocks and calls for more in-depth research
towards this direction. Besides, among the five different types
of operations in the Conditional category, conditional block
addition and conditional expression modification are the most
popular ones (cf. Tables III and V). This indicates that ma-
chine-generated patches that make certain adjustments on con-
ditional blocks compared with the ground truth may be correct.
However, the correctness cannot be fully guaranteed since four
out of seven patches that have been filtered out in our sanity
check also belong to this code modification category (two are
conditional expression modification and two are conditional
expression expansion).
 On the assessment of DLSM patches
The only two correct DLSM patches are generated by

CapGen (cf. Table VIII). These two patches perform the same
code modification with the ground truth but at different points,
achieving semantic equivalence. However, another two DLSM
patches generated by CapGen were filtered during our sanity
check. These patches perform code modification outside of a
conditional branch, but the same code modification is per-
formed within the conditional branch by developers. Our par-
ticipants consider these two patches as false positives since
they affect the control flow of the program. Thus, we should
check carefully about the control and data flow of the program
when assessing the correctness of DLSM patches in the future.
 On the substantial portion of method calls
Machine-generated patches also prefer to utilize method

call addition and method call replacement to fulfill semantic

equivalence (cf. Tables III and V). The edit points of these
patches are not even restricted to the buggy method: three of
their edit points reside outside of the buggy method. This
means that in programs with complex logical structures, differ-
ent method invocations may achieve the same target. For in-
stance, in the patch generated by ACS for bug Chart#7, the
method trim() is not called while this method is called in the
developer’s patch. Thus, we should analyze the program com-
prehensively when facing patches that contain code modifica-
tions about method calls.
 On the bugs for which patches different from the

ground truth have been generated
We list 35 bugs for which correct patches that are different

from the developer-provided ones have been generated in Ta-
ble X. We call for attention for evaluating patches for these
bugs since our empirical study reveals that there is not only one
way to fix them.

TABLE X. BUGS THAT NEED ATTENTION

Project Bug ID

Chart 3; 5; 11; 24; 26

Closure 2; 33; 38; 40; 115; 126

Lang 7; 10; 16; 26; 33; 39; 41; 43; 44; 50; 51; 55; 57; 58

Math 32; 35; 50; 53; 63; 80

Mockito 29; 38

Time 7; 15

B. Threats to Validity

The main threats to the validity of our results belong to the
internal and external validity threat categories.

Internal validity threat corresponds to the dataset in our
study. Author annotation unavoidably suffers from bias. To fill
this gap, we conduct a sanity check by asking undergraduate
students to judge the correctness of those patches annotated by
the original authors. These students have no actual develop-
ment experience in industry. As a result, whether they can filter
all the false positives is questionable. However, this threat is
limited since 1) we believe that considerable effort has been
made by authors to ensure the quality of their labels; 2) the
previous study [30] shows that the possibility for authors to
generate wrong labels is rather low; 3) we do not find particu-
larly obvious mistakes during our investigation; and 4) each
collected patch is labeled by three individual participants. Since
the majority (74.6%) of our collected patches are SLSM patch-
es which are the same to the ground truth, the time limitation (2
hours) we set for this interview is sufficient for the participants
to judge non-SLSM patches in their own task.

External validity threats correspond to the generalization of
our results. Due to the unavailability of patches generated by
APR techniques such as SOFix and SketchFix, we exclude
them from our dataset. Thus, it is possible that results may dif-
fer in these patches. We select Defects4J dataset as our bench-
mark, as a result, bugs from other databases such as BEARS
[58] and Bugs.jar [59] are neglected. Patches generated for
these bugs may demonstrate different characteristics. The
threat is limited when considering the popularity of Defects4J
for being the evaluation criterion of recent studies [20-29].

VI. RELATED WORK

In Section II, we have described some popular APR tech-
niques and methods for patch evaluation. In this section, we
introduce some empirical studies on patch correctness assess-
ment and biases in software engineering.

A. Patch Correctness Assessment

Qi et al. [32] empirically studied patches generated by
GenProg, RSRepair, and AE. They found that the presented
evaluations of these techniques suffer from the fact that the
testing infrastructure used to validate the candidate patches
contains errors that cause the systems to incorrectly accept im-
plausible patches that do not even pass all the test cases in the
validation test suite. They subsequently corrected these errors
and found that 1) the systems generate much more plausible
patches than correct patches and 2) the majority of the plausi-
ble patches, including all correct patches, are equivalent to a
single modification that deletes functionality. They then pre-
sented a novel automatic patch generation system, Kali, that
works only with simple patches that delete functionality. The
experimental results showed that Kali generates at least as
many correct patches as prior techniques (GenProg, RSRepair,
and AE). Smith et al. [31] evaluated two repair tools (GenProg
and RSRepair) on a publicly available benchmark of 998 bugs.
They used two test suites per program: one is training data used
to construct a patch, and the other is evaluation data used to
evaluate the quality of the patch. They found that 1) GenProg
and RSRepair are less likely to repair programs that fail more
training tests, 2) patches that are overfitting to the training test
suite often break undertested functionality, and 3) higher cov-
erage test suites lead to higher quality patches. Xin et al. [34]
proposed DiffTGen which identifies a patched program to be
overfitting by first generating new test inputs that uncover se-
mantic differences between the original faulty program and the
patched program, then testing the patched program based on
the semantic differences, and finally generating test cases.
They further showed that an automatic repair technique, if con-
figured with DiffTGen, could avoid yielding overfitting patch-
es and potentially produce correct ones. Xiong et al. [33] pro-
posed a novel approach that heuristically determines the cor-
rectness of the generated patches to reduce the number of in-
correct patches generated. Their core idea is to exploit the be-
havior similarity of test case executions. Empirically, their ap-
proach successfully prevented 56.3% of the incorrect patches
to be generated when being evaluated on a dataset consisting
139 patches generated from 5 APR techniques, without block-
ing any correct patches. In a more recent study, Le et al. [30]
assessed reliability of author and automated annotations on
patch correctness assessment. They first constructed a gold set
of correctness labels for 189 patches through a user study and
then compared labels generated by author and automated anno-
tations with this gold set to assess reliability. They found that
although independent test suite alone should not be used to
evaluate the effectiveness of APR, it can be used to augment
author annotation. Yu et al. [60] studied the feasibility of using
automatic test generation to alleviate patch overfitting. They
divided the overfitting problem into two classifications (i.e.,
regression introduction and incomplete fixing) and found au-
tomatic test generation is effective in alleviating regression
introduction. Our study is different from the mentioned studies

in that we objectively summarize all the available correct
patches and conduct a detailed analysis, aiming at providing
insightful experience for future author annotation.

B. Biases in Software Engineering

A number of empirical studies have analyzed biases issues
that affect how software engineering solutions are evaluated.
Liu et al. [17] identified and investigated a practical bias
caused by the fault localization (FL) step in a repair pipeline.
Their main findings included 1) only a subset of Defects4J
bugs can be currently localized by commonly-used FL tech-
niques and 2) current practice of comparing state-of-the-art
APR systems is potentially misleading due to the bias of FL
configurations. Tu et al. [61] investigated the data leakage,
which results from ignoring the chronological order in which
the data were produced. They examined existing literature and
confirmed that 11 out of 58 studies have leakage problem.
They further recommended researchers and practitioners who
attempt to utilize issue tracking data to have a full understand-
ing of the origin and change of the data. Wang et al. [44] inves-
tigated the bias caused by the evaluation process in APR. They
recommended that more bugs should be considered to avoid
the potential overfitting and make the conclusion more general-
ized. Rodriguez et al. [62] studied reproducibility in Empirical
Software Engineering (ESE) by investigating how it has been
addressed in studies where SZZ, a widely-used algorithm to
detect the origin of a bug, has been applied. They confirmed
that reproducibility is not commonly found and recommended
to take reproducibility and other related aspects into considera-
tion to increase the credibility of the research results. The goal
of our study is similar to the mentioned studies since we want
to reduce bias in the author annotation process in APR pipeline.

VII. CONCLUSION AND FUTURE WORK

In this study, we conducted a dissection on the correct
patches generated by the state-of-the-art APR techniques. We
investigated the differences between these patches with their
corresponding developer-provided patches and divided these
patches into four types based on their edit points as well as
code modifications. We then studied the distributions of these
patches and the correlation between the characteristics of a bug
and patches generated for the bug. We find that 1) APR tech-
niques can generate patches that are different from the ground
truth; 2) machine-generated correct patches can be divided into
four types according to the edit points and code modifications:
SLSM, SLDM, DLSM, and DLDM; and 3) APR techniques
are more likely to generated DLDM patches for bugs which
contain large patch sizes. Through our study, we confirm some
opinions from previous studies (e.g., the view of Monperrus in
[41]) and highlight several implications for future study about
machine-generated patch correctness assessment.

In the future, we plan to expand our dataset to consider
patches generated for other benchmarks such as Bugs.jar [58]
to make our study more comprehensive.

ACKNOWLEDGEMENT

This work is supported by the National Key R&D Program
of China (No.2017YFB1001802), and the National Natural
Science Foundation of China (No.61672529). All the data of
this paper are publicly available in our online appendix [63].

REFERENCES
[1] Britton T, Jeng L, Carver G, et al. Reversible debugging software[J].

Judge Bus. School, Univ. Cambridge, Cambridge, UK, Tech. Rep, 2013.

[2] Weimer W, Nguyen T V, Le Goues C, et al. Automatically finding
patches using genetic programming[C]//Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer
Society, 2009: 364-374.

[3] Qi Y, Mao X, Lei Y, et al. The strength of random search on automated
program repair[C]//Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014: 254-265.

[4] Long F, Rinard M. Automatic patch generation by learning correct
code[C]//ACM SIGPLAN Notices. ACM, 2016, 51(1): 298-312.

[5] Ke Y, Stolee K T, Le Goues C, et al. Repairing programs with semantic
code search (t)[C]//2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015: 295-306.

[6] Nguyen H D T, Qi D, Roychoudhury A, et al. Semfix: Program repair
via semantic analysis[C]//Software Engineering (ICSE), 2013 35th
International Conference on. IEEE, 2013: 772-781.

[7] Mechtaev S, Yi J, Roychoudhury A. Angelix: Scalable multiline
program patch synthesis via symbolic analysis[C]//Proceedings of the
38th international conference on software engineering. ACM, 2016:
691-701.

[8] Le X B D, Chu D H, Lo D, et al. S3: syntax-and semantic-guided repair
synthesis via programming by examples[C]//Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering. ACM,
2017: 593-604.

[9] Le X B D, Chu D H, Lo D, et al. JFIX: semantics-based repair of Java
programs via symbolic PathFinder[C]//Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2017: 376-379.

[10] Xuan J, Monperrus M. Learning to combine multiple ranking metrics for
fault localization[C]//2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 2014: 191-200.

[11] Wong W E, Gao R, Li Y, et al. A survey on software fault
localization[J]. IEEE Transactions on Software Engineering, 2016,
42(8): 707-740.

[12] Zhang Z, Chan W K, Tse T H, et al. Non-parametric statistical fault
localization[J]. Journal of Systems and Software, 2011, 84(6): 885-905.

[13] Abreu R, Zoeteweij P, Van Gemund A J C. On the accuracy of
spectrum-based fault localization[C]//Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION
(TAICPART-MUTATION 2007). IEEE, 2007: 89-98.

[14] Campos J, Riboira A, Perez A, et al. Gzoltar: an eclipse plug-in for
testing and debugging[C]//Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering. ACM,
2012: 378-381.

[15] Yang D, Qi Y, Mao X. An empirical study on the usage of fault
localization in automated program repair[C]//Software Maintenance and
Evolution (ICSME), 2017 IEEE International Conference on. IEEE,
2017: 504-508.

[16] Qi Y, Mao X, Lei Y, et al. Using automated program repair for
evaluating the effectiveness of fault localization
techniques[C]//Proceedings of the 2013 International Symposium on
Software Testing and Analysis. ACM, 2013: 191-201.

[17] Liu K, Koyuncu A, Bissyande T, et al. You cannot fix what you cannot
find! An Investigation of fault localization bias in benchmarking
automated program repair[C]// In: Proceedings of IEEE International
Conference on Software Testing, Validation, and Verification (ICST).
IEEE, 2019.

[18] Zou D, Liang J, Xiong Y, et al. An Empirical Study of Fault
Localization Families and Their Combinations[J]. IEEE Transactions on
Software Engineering, 2019.

[19] Xiao Y, Keung J, Bennin K E, et al. Machine translation-based bug
localization technique for bridging lexical gap[J]. Information and
Software Technology, 2018, 99: 58-61.

[20] Xiong Y, Wang J, Yan R, et al. Precise condition synthesis for program
repair[C]//Proceedings of the 39th International Conference on Software
Engineering. IEEE Press, 2017: 416-426.

[21] Xin Q, Reiss S P. Leveraging syntax-related code for automated
program repair[C]//Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 2017:
660-670.

[22] Chen L, Pei Y, Furia C A. Contract-based program repair without the
contracts[C]//Automated Software Engineering (ASE), 2017 32nd
IEEE/ACM International Conference on. IEEE, 2017: 637-647.

[23] Liu X, Zhong H. Mining stackoverflow for program repair[C]//2018
IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2018: 118-129.

[24] Soto M, Le Goues C. Using a probabilistic model to predict bug
fixes[C]//2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2018: 221-231.

[25] Wen M, Chen J, Wu R, et al. Context-Aware Patch Generation for
Better Automated Program Repair[C]// Proceedings of the 40th
International Conference on Software Engineering. ACM, 2018.

[26] Hua J, Zhang M, Wang K, et al. Towards practical program repair with
on-demand candidate generation[C]//Proceedings of the 40th
International Conference on Software Engineering. ACM, 2018: 12-23.

[27] Saha R K, Yoshida H, Prasad M R, et al. Elixir: an automated repair tool
for Java programs[C]//Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings. ACM, 2018: 77-80.

[28] Jiang J, Xiong Y, Zhang H, et al. Shaping Program Repair Space with
Existing Patches and Similar Code[C]// The International Symposium on
Software Testing and Analysis. 2018.

[29] Liu K, Koyuncu A, Kim D, et al. AVATAR: Fixing Semantic Bugs with
Fix Patterns of Static Analysis Violations[C]//2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019: 456-467.

[30] Le X B D, Bao L, Lo D, et al. On Reliability of Patch Correctness
Assessment[C]//Proceedings of the 41st International Conference on
Software Engineering. IEEE, 2019.

[31] Smith E K, Barr E T, Le Goues C, et al. Is the cure worse than the
disease? overfitting in automated program repair[C]//Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015: 532-543.

[32] Qi Z, Long F, Achour S, et al. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems[C]
//Proceedings of the 2015 International Symposium on Software Testing
and Analysis. ACM, 2015: 24-36.

[33] Xiong Y, Liu X, Zeng M, et al. Identifying patch correctness in test-
based program repair[C]//Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018: 789-799.

[34] Xin Q, Reiss S P. Identifying test-suite-overfitted patches through test
case generation[C]//Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2017: 226-236.

[35] Le Goues C, Dewey-Vogt M, Forrest S, et al. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8
each[C]//2012 34th International Conference on Software Engineering
(ICSE). IEEE, 2012: 3-13.

[36] Long F, Rinard M. An analysis of the search spaces for generate and
validate patch generation systems[C]//2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE). IEEE, 2016:
702-713.

[37] Le X B D, Lo D, Le Goues C. Empirical study on synthesis engines for
semantics-based program repair[C]//2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2016: 423-427.

[38] Just R, Jalali D, Ernst M D. Defects4J: A database of existing faults to
enable controlled testing studies for Java programs[C]// Proceedings of
the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014: 437-440.

[39] Weimer W, Fry Z P, Forrest S. Leveraging program equivalence for
adaptive program repair: Models and first results[C]//2013 28th
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013: 356-366.

[40] Kim D, Nam J, Song J, et al. Automatic patch generation learned from
human-written patches[C]// International Conference on Software
Engineering. 2013.

[41] Monperrus M. A critical review of automatic patch generation learned
from human-written patches: essay on the problem statement and the
evaluation of automatic software repair[C]//Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014: 234-
242.

[42] DeMarco F, Xuan J, Le Berre D, et al. Automatic repair of buggy if
conditions and missing preconditions with SMT[C]//Proceedings of the
6th International Workshop on Constraints in Software Testing,
Verification, and Analysis. ACM, 2014: 30-39.

[43] Cadar C, Dunbar D, Engler D R. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems
Programs[C]//OSDI. 2008, 8: 209-224.

[44] Wang S, Wen M, Mao X, et al. Attention Please: Consider Mockito
when Evaluating Newly Released Automated Program Repair
Techniques[C]//Proceedings of the 23rd International Conference on
Evaluation and Assessment in Software Engineering (EASE). ACM,
2019.

[45] Martinez M, Durieux T, Sommerard R, et al. Automatic repair of real
bugs in java: A large-scale experiment on the defects4j dataset[J].
Empirical Software Engineering, 2017, 22(4): 1936-1964.

[46] Durieux T, Cornu B, Seinturier L, et al. Dynamic patch generation for
null pointer exceptions using metaprogramming[C]//Software Analysis,
Evolution and Reengineering (SANER), 2017 IEEE 24th International
Conference on. IEEE, 2017: 349-358.

[47] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair
Search Space with Automatically Mined Templates: the Cardumen
Mode of Astor. In Proceedings of the 10th International Symposium on
Search-Based Software Engineering (SSBSE ’18). Cham, 65–86.

[48] Sobreira V, Durieux T, Madeiral F, et al. Dissection of a bug dataset:
Anatomy of 395 patches from Defects4J[C]//2018 IEEE 25th
International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2018: 130-140.

[49] Wen M, Chen J, Wu R, et al. An empirical analysis of the influence of
fault space on search-based automated program repair[J]. arXiv preprint
arXiv:1707.05172, 2017.

[50] Ye H, Martinez M, Monperrus M. A comprehensive study of automatic
program repair on the QuixBugs benchmark[J]. arXiv preprint
arXiv:1805.03454, 2018.

[51] Koyuncu A, Bissyandé T F, Kim D, et al. Impact of tool support in patch
construction[C]//Proceedings of the 26th ACM SIGSOFT International
Sym-posium on Software Testing and Analysis. ACM, 2017: 237-248.

[52] Motwani M, Sankaranarayanan S, Just R, et al. Do automated program
repair techniques repair hard and important bugs?[J]. Empirical Software
Engineer-ing, 2018, 23(5): 2901-2947.

[53] Wang Y, Meng N, and Zhong H. An Empirical Study of Multi-Entity
Changes in Real Bug Fixes[C]// In: Proceedings of IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2018: 316-
327.

[54] Inozemtseva L, Holmes R. Coverage is not strongly correlated with test
suite effectiveness[C]//Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014: 435-445.

[55] Gligoric M, Groce A, Zhang C, et al. Guidelines for coverage-based
comparisons of non-adequate test suites[J]. ACM Transactions on
Software Engineering and Methodology (TOSEM), 2015, 24(4): 22.

[56] Just R, Jalali D, Inozemtseva L, et al. Are mutants a valid substitute for
real faults in software testing?[C]//Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering. ACM, 2014: 654-665.

[57] Chekam T T, Papadakis M, Le Traon Y, et al. An empirical study on
mutation, statement and branch coverage fault revelation that avoids the
unreliable clean program assumption[C]//2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017:
597-608.

[58] Madeiral F, Urli S, Maia M, et al. Bears: An Extensible Java Bug
Benchmark for Automatic Program Repair Studies [C]//2019 IEEE 26th
International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2019.

[59] Saha R, Lyu Y, Lam W, et al. Bugs. jar: a large-scale, diverse dataset of
real-world java bugs[C]//2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR). IEEE, 2018: 10-
13.

[60] Yu Z, Martinez M, Danglot B, et al. Alleviating patch overfitting with
automatic test generation: a study of feasibility and effectiveness for the
Nopol repair system[J]. Empirical Software Engineering, 2019, 24(1):
33-67.

[61] Tu F, Zhu J, Zheng Q, et al. Be careful of when: an empirical study on
time-related misuse of issue tracking data[C]//Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering. ACM, 2018: 307-318.

[62] Rodríguez-Pérez G, Robles G, González-Barahona J M. Reproducibility
and Credibility in Empirical Software Engineering: A Case Study based
on a Systematic Literature Review of the use of the SZZ algorithm[J].
Information and Software Technology, 2018.

[63] https://github.com/Kaka727/correct_patch_analysis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

