

Attention Please: Consider Mockito when Evaluating Newly

Proposed Automated Program Repair Techniques

Shangwen Wang1,3, Ming Wen2, Xiaoguang Mao1,3, Deheng Yang1,3
1National University of Defense Technology, Changsha, China

2The Hong Kong University of Science and Technology, Hong Kong, China
3Hunan Key Laboratory of Software Engineering for Complex Systems, Changsha, China

{wangshangwen13, xgmao, yangdeheng13}@nudt.edt.cn; mwenaa@cse.ust.hk

ABSTRACT

Automated program repair (APR) has attracted widespread

attention in recent years with substantial techniques being

proposed. Meanwhile, a number of benchmarks have been

established for evaluating the performances of APR techniques,

among which Defects4J is one of the most widely used

benchmark. However, bugs in Mockito, a project augmented in a

later-version of Defects4J, do not receive much attention by recent

researches. In this paper, we aim at investigating the necessity of

considering Mockito bugs when evaluating APR techniques. Our

findings show that: 1) Mockito bugs are not more complex for

repairing compared with bugs from non-Mockito projects; 2) the

bugs repaired by the state-of-the-art tools share the same repair

patterns compared with those patterns required to repair Mockito

bugs; however, 3) the state-of-the-art tools perform poorly on

Mockito bugs (Nopol can only correctly fix one bug while SimFix

and CapGen cannot fix any bug in Mockito even if all the buggy

locations have been exposed). We conclude from these results that

existing APR techniques may be overfitting to their evaluated

subjects and we should consider Mockito, or even more bugs from

other projects, when evaluating newly proposed APR techniques.

CCS CONCEPTS

• Software and its engineering → Software reliability;

Software testing and debugging

KEYWORDS
Automated Program Repair; Defects4J; Mockito

ACM Reference format:

EASE' 19, April 15–17, 2019, Copenhagen, Denmark © 2019 Association

for Computing Machinery. ACM ISBN 978-1-4503-7145-

2/19/04…$15.00 https://doi.org/10.1145/3319008.3319349

1 INTRODUCTION

Automated program repair (APR) techniques aim at reducing the

excessively high cost in fixing bugs and have shown to be

promising in increasing the effectiveness of automated debugging

[1]. Pioneered by GenProg [2], substantial techniques have been

proposed recently [3 – 14].

To facilitate controlled experiments and fair evaluations for

different APR techniques, researchers have built several publicly

available benchmarks during recent years [15 – 17]. Defects4J

[18], one of the most widely used benchmark, is a database

containing Java bugs from real-world open source projects. Each

bug in this benchmark is extracted from the project’s associated

version control histories through three steps, including identifying

real bugs fixed by developers, reproducing those real bugs, and

isolating them. As a result, each bug corresponds to two versions,

buggy and fixed, and is accompanied by a comprehensive

programmer-written test suite that can reveal the bug (at least one

test triggers a failure on the buggy version). The test execution

framework provided by Defects4J can facilitate the experiments

of fault localization and program repair, making this database

widely used by recent studies.

In the first release of Defects4J in June 2015, it contained 357

bugs from five open source projects, namely JFreechart, Closure

compiler, Apache commons-lang, Apache commons-math, and

Joda-Time, respectively. Subsequently, in October 2016, the

original team added 38 new bugs from another project named

Mockito into this database when releasing its version 1.1.0. Many

APR techniques were proposed after that [4 – 14], however, none

of them have evaluated the performance on these 38 bugs. In

Table 1, we list nine APR techniques designed for Java with the

projects they select for evaluating their performances. From the

results, the newly augmented project, Mockito, does not receive

much attention. This phenomenon motivates our study. Our

intuition is that since these 38 bugs are extracted by the original

methodology and integrated into the database by the professional

developers, they must be able to make supplementary for this

database from some aspects. It seems unreasonable to exclude

them from the evaluation criteria of newly proposed APR

techniques.

In this paper, we conduct an empirical study to investigate the

importance of taking bugs from Mockito into consideration when

evaluating APR techniques. Since our study will compare

Mockito with other projects in Defects4J database frequently, we

use terms Mockito and non-Mockito to distinguish them. Our

study can be summarized in three phases: In the first phase, we do

the statistics about the characteristics of human-written patches

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

EASE’19, April 2019, Copenhagen, Denmark S. Wang et al.

2

from Mockito project and compare them with that of non-Mockito

projects. Our aim is to investigate whether the patches from

Mockito are more complex than patches from the non-Mockito

projects and the result is negative. In the second phase, we

examine whether patches from Mockito contain any unique repair

patterns that cannot be observed among the patches from non-

Mockito projects and the result is still negative. In the third phase,

we choose two recently proposed techniques to evaluate their

performances on Mockito and adopt the experimental results from

a study which evaluated another tool on Mockito. Results indicate

that the state-of-the-art APR tools perform poorly when

evaluating on Mockito. To summarize: since bugs from Mockito

are not more complex than bugs from non-Mockito projects and

they do not require extra repair patterns, the poor performances of

the state-of-the-art APR tools on this project drive us to conclude

that we do need to take Mockito into consideration when

evaluating newly proposed APR techniques. There may exist

overfitting between existing APR techniques and their evaluated

subjects.

In summary, this paper makes the following contributions:

 A comprehensive comparison between Mockito and non-

Mockito projects in Defects4J towards the patch

characteristics and repair patterns;

 An experiment on the evaluation of the performances of

SimFix and CapGen, two of the latest search-based APR

tools, on bugs from Mockito.

Table 1. Details of Some Recently Released APR Tools

Tools Source Selected projects

ACS ICSE’17 Chart, Math, Lang, Time

ssFix ASE’17 Chart, Closure, Math, Lang, Time

JAID ASE’17 Chart, Closure, Math, Lang, Time

SOFix SANER’18 Chart, Math, Lang, Time

Probabilistic-

Model
SANER’18 Chart, Closure, Math, Lang, Time

CapGen ICSE’18 Chart, Math, Lang, Time

SketchFix ICSE’18 Chart, Closure, Math, Lang, Time

Elixir ICSE’18 Chart, Math, Lang, Time

SimFix ISSTA’18 Chart, Closure, Math, Lang, Time

In the table, column “Source” denotes the conference the corresponding APR

tool publishes in. The contents of this column are divided into two parts: the

previous section represents the short name of this well-known international

conference while the latter section represents the year. Note that these tools are

arranged according to the order of their publication time.

2 RESEARCH QUESTIONS

RQ1: Are patches of Mockito bugs more complex than those

of non-Mockito bugs in Defects4J? In order to find out if the

bugs in Mockito are more difficult to fix, this problem analyzes

these patches from a quantitative perspective. To answer this

question, we select four features of the patches which can help to

quantify the complexity and difficulty to fix a bug (i.e., patch size,

number of chunks, number of modified files, and number of

modified methods). We observe the distribution situations of these

attributes of bugs from each project and perform a significant

difference test.

RQ2: Are the state-of-the-art techniques capable to fix non-

Mockito bugs whose repairs require the same repair patterns

as Mockito bugs? This question, analyzing the repair patterns of

Mockito bugs, is an extension of the previous one. To answer this

question, we classify bugs in Mockito into several kinds according

to their repair patterns and check if there is any bug in non-

Mockito projects possessing the same repair pattern for each kind.

Further, for each kind, we explore whether there are bugs in non-

Mockito projects that have been successfully repaired before.

RQ3: What are the performances of the state-of-the-art

APR techniques on Mockito? This question is the focus of our

research and is directly related to our conclusion. Generally, APR

tools can be classified into two categories, i.e., search-based and

semantics-based. For evaluating the performances of the state-of-

the-art tools on Mockito, we select two of the latest search-based

tools, SimFix and CapGen, for performing the experiment and we

also add the experimental results from another study [19], which

presents the evaluation results on Mockito of a semantic-based

tool, Nopol [20], into our analysis.

3 RESULTS AND ANALYSIS

3.1 RQ1: The Complexity of Patches

To characterize patches, a recent study [21] has performed

detailed analysis of the patch characteristics in Defects4J. They

further select six indicators for analyzing patch features (patch

size, number of chunks, number of modified files, number of

modified methods, spreading of chunks, and number of modified

classes). In our study, we select the former four features for

evaluating the patch complexity. We do not take the latter two

into considerations since 1) spreading of chunks is not directly

related to patch complexity, e.g., if two single lines of addition

appear at the beginning and end of a class, it can spread more than

three chunks of modification in the middle of this class,

nevertheless, it is not obvious which situation is more difficult to

be repaired; 2) number of modified classes is highly related to the

number of modified files as shown in [21], making this indicator

redundant. Along their ideas, we give our own explanations as

follows.

It is widely known that there are three types of code changes:

addition, deletion, and modification. Addition and deletion appear

as lines of codes are added or deleted consecutively or separately

in source code. Modification appears as sequences of removed

lines are straight followed by added lines or vice-versa. The patch

size is the sum of the number of lines of these three types of code

change in the patch. In previous study [2], authors used patch size

as an indicator when evaluating the repair results by stating that

the less the patch size is, the more manageable the patch is. Thus,

this indicator is a key point to the patch complexity.

Composed by the combination of addition, deletion, and

modification of lines, a chunk is a sequence of continuous

changes in a file. The number of chunks of a patch can provide

insights on how a patch is spread through the source code and

further give information about how complex the patch is: the more

chunks means the more buggy points in the program, and thus the

more complexly for fixing this bug. Patches with more chunks are

more complex in logical structure than patches with fewer chunks.

Several empirical studies have proved this perspective.

Attention Please: Consider Mockito when Evaluating Newly

Proposed Automated Program Repair Techniques
EASE’19, April 2019, Copenhagen, Denmark

 3

Similarly, the number of modified files and the number of

modified methods are also two important indicators. The larger

they are, the more program elements are involved in the patch,

and the more complex the patch is.

The previous study [21] has figured out the statistics of these

indicators of bugs from Defects4J using the same standard as we

mentioned. We sum the data and make the distribution of the

patches of each project about these four features as the box plots

in Figure 1. Note that in each subgraph, the bar displayed at the

rightmost is the distribution of this feature for the patches of non-

Mockito projects (the other five projects in Defects4J except

Mockito).

1) Patch size: In Mockito, the average value of patch sizes is

around 7 (7.08, accurately) while the value for non-

Mockito projects is 6.7. The median value is 4 and 25% of

the patches change less than two lines, both these values

the same as that of the non-Mockito projects.

2) Number of chunks: In Mockito, the average and median

numbers are 3.5 and 3, both larger than that of the non-

Mockito projects which are 2.6 and 2, respectively. The

maximum of this feature is 20 and it occurs three times

(one in Mockito, one in Lang, and one in Time).

3) Number of modified files: In Defects4J, 92.41% of the

patches modify only one file [21]. Thus, the box in the

figure becomes a line with the value of 1. Nevertheless,

the average value of Mockito is 1.2, still slightly larger

than that of the non-Mockito projects which is 1.08.

4) Number of modified methods: Although the first quartiles

of Mockito and non-Mockito projects are both 1, the aver

age of Mockito is 2.3, larger than that of non-Mockito

projects (1.4). This time, the maximum of this feature is 20

and it only occurs once in Mockito-6.

From the results, we can see that the values of patch

characteristics of Mockito are slightly larger than that of non-

Mockito projects with respect to the four features. We further

perform the significant difference test to check if the differences

are significant and the result is positive. Thus, the Mockito patch

features are subject to the same distribution as the patch features

of non-Mockito projects.

3.2 RQ2: The Repair Patterns in Mockito

Repair pattern is a recurrent abstract structure in patches [22]. In

the study [21], the repair patterns are established based on a

Thematic Analysis (TA) process including identifying initial

repair actions, combining repair actions re-appearing over many

patches, and naming the themes.

Pioneered by Pattern-based Automatic program Repair (PAR)

[3], there is a trend in APR of utilizing existent repair patterns for

guiding the repair process [8, 9, 13]. Researchers have

summarized more and more repair patterns with finer-grained

granularity, from AST statement level to expression level, and

made great progress in using these patterns for fixing bugs. In this

question, we aim to check whether the repair patterns summarized

in previous studies are enough for bugs in Mockito and whether

there exists any bug that has been fixed utilizing the same pattern

with Mockito bugs.

The previous study [21] categorizes patches in Defects4J

benchmark into nine repair patterns. We do the statistic the repair

patterns of bugs in Mockito from their results and illustrate them

in Table 2. Note that to obtain information from a more detailed

perspective, the authors of [21] create several sub-categories

under each category (e.g., to distinguish the wrapping structure,

the variants for Wraps-with include if, if-else, and method call as

is shown in Table 2). In the column “Repair patterns”, we

demonstrate the main categories identified by the study [21] and

we choose to demonstrate the sub-categories in the column

“Detailed patterns” with the aim of investigating from a more

detailed perspective. The column “Selected samples” shows some

cases of bugs from non-Mockito projects which need the same

repair pattern to fix. Due to the space limitation, we randomly

select eight cases for each classification as the samples since the

most common category (Single line) possesses 98 bugs (see the

column “Total number of bugs”), making it impossible to list

them all in the table. The selection is completely random without

any bias and in these samples, the number of bugs of each project

is calculated based on the proportion of its total bugs in this

category. The column “Fixed bugs” at the right-most lists the

successfully repaired bugs in the column “Selected samples”. The

APR techniques we take into consideration when collecting these

information come from ACS, Elixir, ssFix, JAID, CapGen, Nopol,

and SimFix. In this paper, to refer to Defects4J bugs, we use a

simple notation with project name followed by bug id, e.g., Math-

5. Note that in this table, a bug can be classified into several

categories (e.g., Mockito-19 is classified into Conditional block

addition and Addition with return statement), that is due to the

multiple edits in the patch: every code change chunk in the patch

is analyzed and classified and if a patch contains several chunks, it

may be classified into several categories. From the results, bugs in

Mockito contain up to 15 kinds of repair patterns with 5 of them

(Mockito-10, 25, 27, 30, 31) being not classified. Conditional

block addition is the most popular pat-tern among this project,

including totally ten bugs. Several patterns like Logic expression

expansion and Constant change contain only one instance and

thus are not very popular in this project. For each classification, at

least two cases from samples have been successfully repaired in

the past. At the most, six of the eight instances have been fixed

before (Single line and Not classified). Even the bugs which are

not classified can be fixed by current tools. According to the afor-

RQ1: Are patches of Mockito bugs more complex than

that of non-Mockito bugs in Defects4J?

Findings: With respect to four measurements (patch size,

number of chunks, number of modified files, and number of

modified methods), the average values of Mockito are

slightly larger than that of non-Mockito projects. However,

these differences are not significant at the 10% significance

level according to a test. Thus, Mockito bugs are not more

significantly complex for repairing than bugs from non-

Mockito projects.

EASE’19, April 2019, Copenhagen, Denmark S. Wang et al.

4

(a) Patch size

(b) Number of chunks

(c) Number of modified files

(d) Number of modified methods

Figure 1: Features distribution map of the Defects4J patches

Table 2. Details of the repair patterns of Mockito bugs

Repair patterns Detailed patterns
Total number

of bugs
Mockito bugs# Selected samples Fixed bugs

Conditional block

Conditional block addition 79
1,2,3,13,19,21,

23,33,36,37

Lang-39,45 Time-1,2,13

Math-36,51,54
Lang-39,45

Addition with return statement 77
4,9,11,18,19,

21,22,23

Chart-14,15 Closure-33,60

Lang-5,40 Math-92,93

Chart-14,15 Closure-33

Math-93

Expression fix

Logic expression expansion 48 34
Chart-9 Closure-39,50

Lang-24,27,30 Math-32,37

Chart-9 Lang-24,27

Math-32

Logic expression reduction 12 13
Chart-5 Lang-15 Time-2

Closure-7,23,31,35,89
Chart-5 Closure-31

Logic expression modification 49 17
Chart-16 Closure-22,62,73

Lang-50 Math-47,94 Time-19

Closure-62,73 Lang-50

Math-94 Time-19

Wraps-with

Wraps-with if statement 24 14,15,16
Chart-15 Closure-96 Lang-3,46

Math-28,95 Time-3,27
Chart-15 Math-95

Wraps-with if-else statement 46
11,12,17,

24,29,38

Closure-23,56,111 Lang-28,33

Math-47,97 Time-12
Lang-33 Time-12

Wraps-with method call 14 4,14,28
Chart-12,13 Closure-16 Time-8

Math-23,26,35,105

Chart-12,13

Math-35,105

Wrong reference

Wrong reference variable 42 6,20
Chart-8,12 Closure-54 Time-4

Lang-4,60 Math-21,64,98

Chart-8,12 Lang-60

Time-4 Math-98

Wrong reference method 31 6,32,35
Chart-13 Closure-4,45,109

Lang-26 Math-58,75 Time-26

Chart-13 Lang-26

Math-58,75

Missing null-check

Missing null check 25 4,23,29,38
Chart-15,25 Closure-20,30

Lang-32,33 Math-32 Time-2

Chart-15,25 Lang-33

Math-32

Missing non-null check 32 33
Chart-25 Closure-17,22,76,98

Lang-12 Math-20 Time-21
Chart-25 Math-20

Constant change Constant change 19 26
Closure-14,40,70 Lang-19

Math-22,104 Time-8,10

Closure-14,40,70

Math-22,104

Copy/Paste Copy/Paste 48 4,6,35
Chart-7 Closure-4,6 Time-12

Lang-30,62 Math-37,76
Chart-7 Time-12

Single line Single line 98
5,7,8,24,26,

28,29,34,38

Chart-1,24 Closure-62,67

Lang-51 Math-32,94 Time-16

Chart-1,24 Closure-62

Lang-51 Math-32,94

Not classified Not classified 22 10,25,27,30,31
Chart-3 Closure-25 Lang-35

Math-8,61,90 Time-7,22

Chart-3 Lang-35 Time-7

Math-8,61,90

Attention Please: Consider Mockito when Evaluating Newly

Proposed Automated Program Repair Techniques
EASE’19, April 2019, Copenhagen, Denmark

ementioned analysis, Mockito bugs do not contain unique repair

pattern and the state-of-the-art APR techniques have achieved

success on fixing bugs with the same repair patterns.

3.3 RQ3: The Performances of the State-of-the-

art APR Techniques on Mockito

APR techniques can be generally divided into two categories (i.e.,

search-based and semantic-based). Search-based repair methods

(also known as generate-and-validate methods) search within a

huge population of candidate patches generated by applying

mutation operators to a predefined fault space determined by Fault

Location (FL) techniques and are widely recognized to be able to

fix a wide range of bugs [9, 23]. Semantics-based repair

methodology, on the contrary, utilizes semantic information

generated by symbolic execution and constraint solving to

synthesize patches. In this section, we aim to check the

performances of the state-of-the-art APR tools on Mockito. To

this end, we select two latest and open access search-based tools

(SimFix and CapGen) for evaluating them on Mockito and we

also take a reproduced study [19] about the semantic-based tool,

Nopol, into consideration when analyzing. All the execution logs

of our experiments can be found in the link1.

3.3.1 SimFix

SimFix is one of the latest search-based APR tools and has been

evaluated on the non-Mockito projects in Defects4J [13]. The key

novelty of SimFix is that it that takes the intersection of existing

patches and source code into consideration to reduce search space.

We first got the fault space information of suspicious buggy

statements for each bug through the Ochiai algorithm

implemented in GZoltar version 1.6.0 [24] and then reran SimFix

to evaluate its performances on the Mockito bugs. All the

experiments were conducted on a 64-bit Linux virtual machine

with Ubuntu 15.10 operating system and 2GB RAM. The

execution results of SimFix can be three types: success when a

patch passes all test cases, failed when all the suspicious

statements are executed but still no patch is found, and timeout

when the execution exceeds the pre-defined time. The experiment

results are illustrated in Table 3.

 As is shown, none of Mockito bugs can be fixed by SimFix.

From the execution logs, ten of these bugs failed due to timeout

1 https://github.com/Kaka727/Mockito-Study

and the rest 28 bugs were due to incapable of finding a valid patch

at all suspicious locations.

The failure of SimFix is mainly caused by two reasons. First is

the lack of rich context information. Take Mockito-37 as an

example, the human-written patch of this bug adds an method

invocation (reporter.cannotCallRealMethodOnInterface()) under

a conditional branch. However, this method invocation does not

occur in any other place in this project, making SimFix incapable

of generating a correct patch. Second is the course-grained donor

snippet identification. Given a potential faulty location, SimFix

expands it into a faulty code snippet and then locates a set of

similar code snippets as donors for repair. The size of the code

snippet can be as large as 10 lines. Consequently, if the correct

fixing ingredient is only in a single line, SimFix may overlook it

and fail to repair. For example, in Mockito-26, human-written

patch turns a parameter in a method invocation from 0 to 0D. The

correct fixing ingredient is several lines before this statement but

the objects which invocate the same function at these two

locations are not the same, making variable name similarity (i.e.,

a metric which is used by SimFix to identify similar donor) rather

low. Thus, SimFix considers these two code snippets as dissimilar,

leading to the miss of possible correct patch of this bug.

3.3.2 CapGen

CapGen is another the state-of-the-art search-based APR tool that

utilizes context information to prioritize patches. Empirically, its

precision can reach 84% on the four projects of Defects4J [9].

We reran CapGen on Mockito bugs under the environment

which is consistent with its original execution environment in [9].

The experiment results are illustrated in Table 4. CapGen

generates patches for all of the 38 bugs, but none of them are

plausible (i.e., pass both the failing test cases and the regression

test cases).

CapGen fails mainly because: 1) it performs a single mutation

to generate patches, making it impossible to fix bugs which need

operations at several different places (i.e., multi-location bugs)

and this kind of bug occupies a large proportion in Mockito

project (65.8%, 25/38); and 2) it usually cannot find the correct

fixing ingredients since its searching scope is restricted in a single

file. For example, in Mockito-27, human-written patch replaces a

parameter of an object instantiation with another one

(oldMockHandler.getMockSettings()) under the class MockUtil.

However, the correct fixing ingredient is in another file named

MockHandler, making it impossible for being extracted by

CapGen. This point is easy to understand because the previous

analysis has indicated that there may be no fixing ingredient even

if the search space is the whole project.

3.3.3 Nopol

Nopol is a semantic-based program repair tool utilizing angelic

values and a Satisfiability Modulo Theory (SMT) solver for

synthesizing conditional expressions [20]. A previous study has

evaluated its performance on all the projects in Defects4J version

1.1.0 [19], thus, we adopt their results for our analysis here. Table

5 illustrates the empirical results of evaluating Nopol on

Defects4J bugs.

It is shown in the results that Mockito is the lowest in terms of

both the number of generated patches (2) and the repair rate (5%).

Nopol totally generates patches for 103 Defects4J bugs and

reaches an average repair rate of 26%. Note that these patches

only pass all the test cases and are not manually checked. As a

result, the repair rate here is consistent to the recall in other

RQ2: Are the state-of-the-art techniques capable to fix

non-Mockito bugs whose repairs require the same repair

patterns as Mockito bugs?

Findings: Most of the repair patterns of Mockito bugs

(33/38) can be classified into existing categories. In each

category, a number of bugs in non-Mockito projects have

been successfully fixed by existing techniques. Thus, the

state-of-the-art techniques are capable of fixing bugs from

non-Mockito projects whose repairs require the same

repair patterns as Mockito bugs.

EASE’19, April 2019, Copenhagen, Denmark S. Wang et al.

2

literature [4, 9] (i.e., the percentage of bugs for which Nopol

generates a patch among all the bugs). We then manually

analyzed these two patches and considered a patch correct if it is

the same or semantically equivalent to human-written one

provided in Defects4J, which is widely adopted by previous

studies [4, 9, 12, 25]. According to our manual analysis, the patch

for Mockito-29 is semantically equivalent to human-written one

since they both wrap a statement with a conditional statement.

However, the patch for Mockito-38 is not correct since it changes

code at a wrong place and the generated code is partially

redundant and to some extent unreadable with too many

mathematic symbols. Thus, Nopol actually only fixes one bug in

Mockito, achieving a poor performance of a repair rate at around

2.6%.

Discussion: According to the findings of our RQ1-3, Mockito

bugs are not more complex with respect to the four patch

characteristics (i.e., patch size, number of chunks, number of

modified files, and number of modified methods); the state-of-the-

art APR tools have achieved success on bugs whose repairs

require the same repair patterns with Mockito bugs; three

representative APR tools (one is semantic-based and two are

search-based) achieve poor performances on this project. These

are the bases of our argument. It is unreasonable to exclude

Mockito from the verification set since the experimental results

show that existing APR techniques may be overfitting to non-

Mockito projects. Therefore, we recommend that Mockito should

be considered when evaluating newly proposed APR

techniques to avoid potential bias from the evaluation process

and judge the progress in repairing ability.

4 LIMITATIONS

The results of this study may not apply to other APR tools since

APR is a hot topic in Software Engineering (SE) and there are lots

of tools being proposed in main software conferences and journals

each year, but we only analyzed three of them. However, our

evaluating subjects are representative since SimFix possesses the

highest recall (34/357, 9.52%) and CapGen possesses the highest

precision (21/25, 84%) on Defects4J among the state-of-the-art

APR tools. Nopol generates the most patches for Defects4J bugs

among semantic-based tools and is a widely used semantic-based

tool in recent empirical studies [25, 26]. Therefore, it is

reasonable to speculate that other approaches may demonstrate

similar results. Besides, we deprecated other tools for several

reasons: HDRepair, SOFix, ProbabilisticModel, Elixir and

SketchFix do not release the source code of their tools for reprod-

Table 3. Experiment results of SimFix

Execution results Bug ID

Timeout
1, 2, 3, 6, 9, 12, 23, 26,

33, 35

Failed

4, 5, 7, 8, 10, 11, 13, 14,

15, 16, 17, 18, 19, 20,

21, 22, 24, 25, 27, 28,

29, 30, 31, 32, 34, 36,

37, 38

Table 4. Experiment results of CapGen

Execution results #Bug

Generated 38

Plausible 0

Correct 0

Table 5. Experiment results of Nopol

Projects #Patches #Bugs Repair Rate

Chart 9 26 37%
Closure 56 133 42%

Math 24 106 22%

Lang 4 65 6%

Time 8 27 29%

Mockito 2 38 5%

Total 103 395 26%

ucible experiments. JFix announces to design a plugin for Eclipse

but does not provide the download address (the download link

provided in JFix’s homepage is invalid). ACS announces in its

homepage that it can no longer execute on new bugs due to the

interface change in GitHub. ssFix needs a code search phase and

the database is stored in a server in Brown university in the USA,

making this process much slower for overseas users like us (we

get the information after connecting with the authors). Thus,

evaluating more APR tools on Mockito project can be future work.

5 RELATED WORK

During the years, developers have created several benchmarks for

reproducible experiments on APR tools. The iBugs project [15]

which contains 223 Java bugs with an exposing test case was

initially created for fault localization. The software-artifact

infrastructure repository (SIR) [16] can be considered as the first

to provide a database of real bugs but most of its bugs are hand-

seeded or obtained from mutation. Recently, a multilingual

program repair benchmark named QuixBugs [17] is designed with

40 programs in both Python and Java, each with a bug on one line.

Although many benchmarks are created, our evaluation object,

Defects4J, is the most widely-used one for Java language in recent

studies [4-12].

There are also some experiments about evaluating previous

tools on newly released benchmark. Martinez et al. [24]

reimplement GenProg and Kali in Java language and evaluate

them with Nopol on Defects4J benchmark. A recent technique

report [19] evaluates GenProg on Defects4J version 1.1.0

RQ3: What are the performances of the state-of-the-art

APR tools on Mockito?

Findings: Both search-based APR approaches and semantic-

based APR approaches perform poorly, with extremely low

repair rate, on Mockito bugs. Compared with its performance

on non-Mockito projects, Nopol have lower repair rate on

this project and can only fix one bug in fact. SimFix and

CapGen even cannot fix any bug in this project. Thus, the

performances of the state-of-the-art APR tools on

Mockito are poor.

Attention Please: Consider Mockito when Evaluating Newly

Proposed Automated Program Repair Techniques
EASE’19, April 2019, Copenhagen, Denmark

 3

including Mockito bugs and thus its experiment results are used

by us for analysis. Our study is the first to conduct experiments to

present results for SimFix and CapGen on Mockito bugs.

6 CONCLUSION

While Defects4J database is widely used in evaluating the

performances of APR tools, the Mockito project has not attracted

enough attention. In this paper, we studied the importance of

taking bugs from Mockito into consideration when evaluating

APR techniques. We investigated the characteristics as well as the

repair patterns of patches in Mockito. We conducted experiments

on two of the latest search-based tools (SimFix and CapGen) on

this project and took the experimental results of another semantic-

based tool (Nopol) into consideration. Results show that the state-

of-the-art tools achieve poor performances on Mockito bugs. We

thus reached the conclusion that indeed we should incorporate

Mockito into the evaluation criteria.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science

Foundation of China under Grant 61672529.

REFERENCES
[1] Britton T, Jeng L, Carver G, et al. Reversible debugging software[J]. Judge

Bus. School, Univ. Cambridge, Cambridge, UK, Tech. Rep, 2013.

[2] Weimer W, Nguyen T V, Le Goues C, et al. Automatically finding patches

using genetic programming[C]//Proceedings of the 31st International

Conference on Software Engineering. IEEE Computer Society, 2009: 364-374.

[3] Kim D, Nam J , Song J , et al . Automatic patch generation learned from hu-

man-written patches[C]// 2013 35th International Conference on Software

Engineering (ICSE). IEEE Computer Society, 2013.

[4] Xiong Y, Wang J, Yan R, et al. Precise condition synthesis for program re-

pair[C]// Proceedings of the 39th International Conference on Software

Engineering. IEEE Press, 2017: 416-426.

[5] Xin Q, Reiss S P. Leveraging syntax-related code for automated program

repair[C]//Proceedings of the 32nd IEEE/ACM International Conference on

Automated Software Engineering. IEEE Press, 2017: 660-670.

[6] Chen L, Pei Y, Furia C A. Contract-based program repair without the

contracts[C]//Automated Software Engineering (ASE), 2017 32nd IEEE/ACM

International Conference on. IEEE, 2017: 637-647.

[7] Liu X, Zhong H. Mining stackoverflow for program repair[C]//2018 IEEE 25th

International Conference on Software Analysis, Evolution and Reengineering

(SANER). IEEE, 2018: 118-129.

[8] Soto M, Le Goues C. Using a probabilistic model to predict bug fix-

es[C]//2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE, 2018: 221-231.

[9] Wen M, Chen J, Wu R, et al. Context-Aware Patch Generation for Better

Automated Program Repair[C]// Proceedings of the 40th International

Conference on Software Engineering. ACM, 2018.

[10] Hua J, Zhang M, Wang K, et al. Towards practical program repair with on-

demand candidate generation[C]//Proceedings of the 40th International

Conference on Software Engineering. ACM, 2018: 12-23.

[11] Saha R K, Yoshida H, Prasad M R, et al. Elixir: an automated repair tool for

Java programs[C]//Proceedings of the 40th International Conference on Soft-

ware Engineering: Companion Proceedings. ACM, 2018: 77-80.

[12] Jiang J, Xiong Y, Zhang H, et al. Shaping Program Repair Space with Existing

Patches and Similar Code[C]// The International Symposium on Software

Testing and Analysis. 2018.

[13] Le X B D, Chu D H, Lo D, et al. JFIX: semantics-based repair of Java pro-

grams via symbolic PathFinder[C]//Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis. ACM, 2017.

[14] Durieux T, Cornu B, Seinturier L, et al. Dynamic patch generation for null

pointer exceptions using metaprogramming[C]//Software Analysis, Evolution

and Reengineering (SANER), 2017 IEEE 24th International Conference on.

IEEE, 2017: 349-358.

[15] Dallmeier V , Zimmermann T. Extraction of bug localization benchmarks from

history[C]// IEEE/ACM International Conference on Automated Soft-ware

Engineering. ACM, 2007.

[16] Do H , Elbaum S , Rothermel G. Supporting Controlled Experimentation with

Testing Techniques: An Infrastructure and its Potential Impact[J]. Empirical

Software Engineering, 2005, 10(4):405-435.

[17] Lin D, Koppel J, Chen A, et al. QuixBugs: a multi-lingual program repair

benchmark set based on the quixey challenge[C]// Proceedings Companion of

the 2017 ACM SIGPLAN International Conference on Systems, Programming,

Languages, and Applications: Software for Humanity. ACM, 2017: 55-56.

[18] Just R, Jalali D, Ernst M D. Defects4J: A database of existing faults to enable

controlled testing studies for Java programs[C]// Proceedings of the 2014

International Symposium on Software Testing and Analysis. ACM, 2014.

[19] Durieux T, Danglot B, Yu Z, et al. The patches of the nopol automatic repair

system on the bugs of defects4j version 1.1.0[D]. Université Lille 1-Sciences et

Technologies, 2017.

[20] Xuan J, Martinez M, Demarco F, et al. Nopol: Automatic repair of conditional

statement bugs in java programs[J]. IEEE Transactions on Software

Engineering, 2017, 43(1): 34-55.

[21] Sobreira V, Durieux T, Madeiral F, et al. Dissection of a bug dataset: Anatomy

of 395 patches from Defects4J[C]//2018 IEEE 25th International Conference on

Software Analysis, Evolution and Reengineering (SANER). IEEE, 2018.

[22] Martinez M, Monperrus M. Mining software repair models for reasoning on the

search space of automated program fixing[J]. Empirical Software Engineering,

2015, 20(1): 176-205.

[23] Wen M, Chen J, Wu R, et al. An empirical analysis of the influence of fault

space on search-based automated program repair[J]. arXiv preprint

arXiv:1707.05172, 2017.

[24] Pearson S, Campos J, Just R, et al. Evaluating and improving fault

localization[C]//Proceedings of the 39th International Conference on Software

Engineering. IEEE Press, 2017: 609-620.

[25] Martinez M, Durieux T, Sommerard R, et al. Automatic repair of real bugs in

java: A large-scale experiment on the defects4j dataset[J]. Empirical Software

Engineering, 2017, 22(4): 1936-1964.

[26] Wang S, Mao X, Niu N, et al. Multi-Location Program Repair Strategies

Learned from Successful Experience [J]. arXiv preprint arXiv:1810.12556,

2018.

