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ABSTRACT 

Automated program repair (APR) has attracted widespread 

attention in recent years with substantial techniques being 

proposed. Meanwhile, a number of benchmarks have been 

established for evaluating the performances of APR techniques, 

among which Defects4J is one of the most widely used 

benchmark. However, bugs in Mockito, a project augmented in a 

later-version of Defects4J, do not receive much attention by recent 

researches. In this paper, we aim at investigating the necessity of 

considering Mockito bugs when evaluating APR techniques. Our 

findings show that: 1) Mockito bugs are not more complex for 

repairing compared with bugs from non-Mockito projects; 2) the 

bugs repaired by the state-of-the-art tools share the same repair 

patterns compared with those patterns required to repair Mockito 

bugs; however, 3) the state-of-the-art tools perform poorly on 

Mockito bugs (Nopol can only correctly fix one bug while SimFix 

and CapGen cannot fix any bug in Mockito even if all the buggy 

locations have been exposed). We conclude from these results that 

existing APR techniques may be overfitting to their evaluated 

subjects and we should consider Mockito, or even more bugs from 

other projects, when evaluating newly proposed APR techniques.  
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1 INTRODUCTION 

Automated program repair (APR) techniques aim at reducing the 

excessively high cost in fixing bugs and have shown to be 

promising in increasing the effectiveness of automated debugging 

[1]. Pioneered by GenProg [2], substantial techniques have been 

proposed recently [3 – 14]. 

To facilitate controlled experiments and fair evaluations for 

different APR techniques, researchers have built several publicly 

available benchmarks during recent years [15 – 17]. Defects4J 

[18], one of the most widely used benchmark, is a database 

containing Java bugs from real-world open source projects. Each 

bug in this benchmark is extracted from the project’s associated 

version control histories through three steps, including identifying 

real bugs fixed by developers, reproducing those real bugs, and 

isolating them. As a result, each bug corresponds to two versions, 

buggy and fixed, and is accompanied by a comprehensive 

programmer-written test suite that can reveal the bug (at least one 

test triggers a failure on the buggy version). The test execution 

framework provided by Defects4J can facilitate the experiments 

of fault localization and program repair, making this database 

widely used by recent studies.  

In the first release of Defects4J in June 2015, it contained 357 

bugs from five open source projects, namely JFreechart, Closure 

compiler, Apache commons-lang, Apache commons-math, and 

Joda-Time, respectively. Subsequently, in October 2016, the 

original team added 38 new bugs from another project named 

Mockito into this database when releasing its version 1.1.0. Many 

APR techniques were proposed after that [4 – 14], however, none 

of them have evaluated the performance on these 38 bugs. In 

Table 1, we list nine APR techniques designed for Java with the 

projects they select for evaluating their performances. From the 

results, the newly augmented project, Mockito, does not receive 

much attention. This phenomenon motivates our study. Our 

intuition is that since these 38 bugs are extracted by the original 

methodology and integrated into the database by the professional 

developers, they must be able to make supplementary for this 

database from some aspects. It seems unreasonable to exclude 

them from the evaluation criteria of newly proposed APR 

techniques. 

In this paper, we conduct an empirical study to investigate the 

importance of taking bugs from Mockito into consideration when 

evaluating APR techniques. Since our study will compare 

Mockito with other projects in Defects4J database frequently, we 

use terms Mockito and non-Mockito to distinguish them. Our 

study can be summarized in three phases: In the first phase, we do 

the statistics about the characteristics of human-written patches 
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from Mockito project and compare them with that of non-Mockito 

projects. Our aim is to investigate whether the patches from 

Mockito are more complex than patches from the non-Mockito 

projects and the result is negative. In the second phase, we 

examine whether patches from Mockito contain any unique repair 

patterns that cannot be observed among the patches from non-

Mockito projects and the result is still negative. In the third phase, 

we choose two recently proposed techniques to evaluate their 

performances on Mockito and adopt the experimental results from 

a study which evaluated another tool on Mockito. Results indicate 

that the state-of-the-art APR tools perform poorly when 

evaluating on Mockito. To summarize: since bugs from Mockito 

are not more complex than bugs from non-Mockito projects and 

they do not require extra repair patterns, the poor performances of 

the state-of-the-art APR tools on this project drive us to conclude 

that we do need to take Mockito into consideration when 

evaluating newly proposed APR techniques. There may exist 

overfitting between existing APR techniques and their evaluated 

subjects.  

In summary, this paper makes the following contributions: 

 A comprehensive comparison between Mockito and non-

Mockito projects in Defects4J towards the patch 

characteristics and repair patterns; 

 An experiment on the evaluation of the performances of 

SimFix and CapGen, two of the latest search-based APR 

tools, on bugs from Mockito. 

Table 1. Details of Some Recently Released APR Tools 

Tools Source Selected projects 

ACS ICSE’17 Chart, Math, Lang, Time 

ssFix ASE’17 Chart, Closure, Math, Lang, Time 

JAID ASE’17 Chart, Closure, Math, Lang, Time 

SOFix SANER’18 Chart, Math, Lang, Time 

Probabilistic-

Model 
SANER’18 Chart, Closure, Math, Lang, Time 

CapGen ICSE’18 Chart, Math, Lang, Time 

SketchFix ICSE’18 Chart, Closure, Math, Lang, Time 

Elixir ICSE’18 Chart, Math, Lang, Time 

SimFix ISSTA’18 Chart, Closure, Math, Lang, Time 

In the table, column “Source” denotes the conference the corresponding APR 

tool publishes in. The contents of this column are divided into two parts: the 

previous section represents the short name of this well-known international 

conference while the latter section represents the year. Note that these tools are 

arranged according to the order of their publication time. 

2  RESEARCH QUESTIONS 

RQ1: Are patches of Mockito bugs more complex than those 

of non-Mockito bugs in Defects4J? In order to find out if the 

bugs in Mockito are more difficult to fix, this problem analyzes 

these patches from a quantitative perspective. To answer this 

question, we select four features of the patches which can help to 

quantify the complexity and difficulty to fix a bug (i.e., patch size, 

number of chunks, number of modified files, and number of 

modified methods). We observe the distribution situations of these 

attributes of bugs from each project and perform a significant 

difference test. 

RQ2: Are the state-of-the-art techniques capable to fix non-

Mockito bugs whose repairs require the same repair patterns 

as Mockito bugs? This question, analyzing the repair patterns of 

Mockito bugs, is an extension of the previous one. To answer this 

question, we classify bugs in Mockito into several kinds according 

to their repair patterns and check if there is any bug in non-

Mockito projects possessing the same repair pattern for each kind. 

Further, for each kind, we explore whether there are bugs in non-

Mockito projects that have been successfully repaired before. 

RQ3: What are the performances of the state-of-the-art 

APR techniques on Mockito? This question is the focus of our 

research and is directly related to our conclusion. Generally, APR 

tools can be classified into two categories, i.e., search-based and 

semantics-based. For evaluating the performances of the state-of-

the-art tools on Mockito, we select two of the latest search-based 

tools, SimFix and CapGen, for performing the experiment and we 

also add the experimental results from another study [19], which 

presents the evaluation results on Mockito of a semantic-based 

tool, Nopol [20], into our analysis.  

3  RESULTS AND ANALYSIS 

3.1  RQ1: The Complexity of Patches 

To characterize patches, a recent study [21] has performed 

detailed analysis of the patch characteristics in Defects4J. They 

further select six indicators for analyzing patch features (patch 

size, number of chunks, number of modified files, number of 

modified methods, spreading of chunks, and number of modified 

classes). In our study, we select the former four features for 

evaluating the patch complexity. We do not take the latter two 

into considerations since 1) spreading of chunks is not directly 

related to patch complexity, e.g., if two single lines of addition 

appear at the beginning and end of a class, it can spread more than 

three chunks of modification in the middle of this class, 

nevertheless, it is not obvious which situation is more difficult to 

be repaired; 2) number of modified classes is highly related to the 

number of modified files as shown in [21], making this indicator 

redundant. Along their ideas, we give our own explanations as 

follows. 

It is widely known that there are three types of code changes: 

addition, deletion, and modification. Addition and deletion appear 

as lines of codes are added or deleted consecutively or separately 

in source code. Modification appears as sequences of removed 

lines are straight followed by added lines or vice-versa. The patch 

size is the sum of the number of lines of these three types of code 

change in the patch. In previous study [2], authors used patch size 

as an indicator when evaluating the repair results by stating that 

the less the patch size is, the more manageable the patch is. Thus, 

this indicator is a key point to the patch complexity. 

Composed by the combination of addition, deletion, and 

modification of lines, a chunk is a sequence of continuous 

changes in a file. The number of chunks of a patch can provide 

insights on how a patch is spread through the source code and 

further give information about how complex the patch is: the more 

chunks means the more buggy points in the program, and thus the 

more complexly for fixing this bug. Patches with more chunks are 

more complex in logical structure than patches with fewer chunks. 

Several empirical studies have proved this perspective. 



Attention Please: Consider Mockito when Evaluating Newly 

Proposed Automated Program Repair Techniques 
EASE’19, April 2019, Copenhagen, Denmark 

 

 3 

Similarly, the number of modified files and the number of 

modified methods are also two important indicators. The larger 

they are, the more program elements are involved in the patch, 

and the more complex the patch is. 

The previous study [21] has figured out the statistics of these 

indicators of bugs from Defects4J using the same standard as we 

mentioned. We sum the data and make the distribution of the 

patches of each project about these four features as the box plots 

in Figure 1. Note that in each subgraph, the bar displayed at the 

rightmost is the distribution of this feature for the patches of non-

Mockito projects (the other five projects in Defects4J except 

Mockito). 

1) Patch size: In Mockito, the average value of patch sizes is 

around 7 (7.08, accurately) while the value for non-

Mockito projects is 6.7. The median value is 4 and 25% of 

the patches change less than two lines, both these values 

the same as that of the non-Mockito projects. 

2) Number of chunks: In Mockito, the average and median 

numbers are 3.5 and 3, both larger than that of the non-

Mockito projects which are 2.6 and 2, respectively. The 

maximum of this feature is 20 and it occurs three times 

(one in Mockito, one in Lang, and one in Time). 

3) Number of modified files: In Defects4J, 92.41% of the 

patches modify only one file [21]. Thus, the box in the 

figure becomes a line with the value of 1. Nevertheless, 

the average value of Mockito is 1.2, still slightly larger 

than that of the non-Mockito projects which is 1.08. 

4) Number of modified methods: Although the first quartiles 

of Mockito and non-Mockito projects are both 1, the aver 

age of Mockito is 2.3, larger than that of non-Mockito 

projects (1.4). This time, the maximum of this feature is 20 

and it only occurs once in Mockito-6. 

From the results, we can see that the values of patch 

characteristics of Mockito are slightly larger than that of non-

Mockito projects with respect to the four features. We further 

perform the significant difference test to check if the differences 

are significant and the result is positive. Thus, the Mockito patch 

features are subject to the same distribution as the patch features 

of non-Mockito projects. 

 

3.2  RQ2: The Repair Patterns in Mockito 

Repair pattern is a recurrent abstract structure in patches [22]. In 

the study [21], the repair patterns are established based on a 

Thematic Analysis (TA) process including identifying initial 

repair actions, combining repair actions re-appearing over many 

patches, and naming the themes.  

Pioneered by Pattern-based Automatic program Repair (PAR) 

[3], there is a trend in APR of utilizing existent repair patterns for 

guiding the repair process [8, 9, 13]. Researchers have 

summarized more and more repair patterns with finer-grained 

granularity, from AST statement level to expression level, and 

made great progress in using these patterns for fixing bugs. In this 

question, we aim to check whether the repair patterns summarized 

in previous studies are enough for bugs in Mockito and whether 

there exists any bug that has been fixed utilizing the same pattern 

with Mockito bugs. 

The previous study [21] categorizes patches in Defects4J 

benchmark into nine repair patterns. We do the statistic the repair 

patterns of bugs in Mockito from their results and illustrate them 

in Table 2. Note that to obtain information from a more detailed 

perspective, the authors of [21] create several sub-categories 

under each category (e.g., to distinguish the wrapping structure, 

the variants for Wraps-with include if, if-else, and method call as 

is shown in Table 2). In the column “Repair patterns”, we 

demonstrate the main categories identified by the study [21] and 

we choose to demonstrate the sub-categories in the column 

“Detailed patterns” with the aim of investigating from a more 

detailed perspective. The column “Selected samples” shows some 

cases of bugs from non-Mockito projects which need the same 

repair pattern to fix. Due to the space limitation, we randomly 

select eight cases for each classification as the samples since the 

most common category (Single line) possesses 98 bugs (see the 

column “Total number of bugs”), making it impossible to list 

them all in the table. The selection is completely random without 

any bias and in these samples, the number of bugs of each project 

is calculated based on the proportion of its total bugs in this 

category. The column “Fixed bugs” at the right-most lists the 

successfully repaired bugs in the column “Selected samples”. The 

APR techniques we take into consideration when collecting these 

information come from ACS, Elixir, ssFix, JAID, CapGen, Nopol, 

and SimFix. In this paper, to refer to Defects4J bugs, we use a 

simple notation with project name followed by bug id, e.g., Math-

5. Note that in this table, a bug can be classified into several 

categories (e.g., Mockito-19 is classified into Conditional block 

addition and Addition with return statement), that is due to the 

multiple edits in the patch: every code change chunk in the patch 

is analyzed and classified and if a patch contains several chunks, it 

may be classified into several categories. From the results, bugs in 

Mockito contain up to 15 kinds of repair patterns with 5 of them 

(Mockito-10, 25, 27, 30, 31) being not classified. Conditional 

block addition is the most popular pat-tern among this project, 

including totally ten bugs. Several patterns like Logic expression 

expansion and Constant change contain only one instance and 

thus are not very popular in this project. For each classification, at 

least two cases from samples have been successfully repaired in 

the past. At the most, six of the eight instances have been fixed 

before (Single line and Not classified). Even the bugs which are 

not classified can be fixed by current tools. According to the afor- 

RQ1: Are patches of Mockito bugs more complex than 

that of non-Mockito bugs in Defects4J? 

Findings: With respect to four measurements (patch size, 

number of chunks, number of modified files, and number of 

modified methods), the average values of Mockito are 

slightly larger than that of non-Mockito projects. However, 

these differences are not significant at the 10% significance 

level according to a test. Thus, Mockito bugs are not more 

significantly complex for repairing than bugs from non-

Mockito projects. 
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(a) Patch size 

 
(b) Number of chunks 

 
(c) Number of modified files 

 
(d) Number of modified methods 

Figure 1: Features distribution map of the Defects4J patches 

Table 2. Details of the repair patterns of Mockito bugs 

Repair patterns Detailed patterns 
Total number 

of bugs 
Mockito bugs# Selected samples Fixed bugs 

Conditional block 

Conditional block addition 79 
1,2,3,13,19,21, 

23,33,36,37 

Lang-39,45 Time-1,2,13 

Math-36,51,54 
Lang-39,45 

Addition with return statement 77 
4,9,11,18,19, 

21,22,23 

Chart-14,15 Closure-33,60 

Lang-5,40 Math-92,93 

Chart-14,15 Closure-33 

Math-93 

Expression fix 

Logic expression expansion 48 34 
Chart-9 Closure-39,50 

Lang-24,27,30 Math-32,37 

Chart-9 Lang-24,27 

Math-32 

Logic expression reduction 12 13 
Chart-5 Lang-15 Time-2 

Closure-7,23,31,35,89 
Chart-5 Closure-31 

Logic expression modification 49 17 
Chart-16 Closure-22,62,73 

Lang-50 Math-47,94 Time-19 

Closure-62,73 Lang-50 

Math-94 Time-19 

Wraps-with 

Wraps-with if statement 24 14,15,16 
Chart-15 Closure-96 Lang-3,46 

Math-28,95 Time-3,27 
Chart-15 Math-95 

Wraps-with if-else statement 46 
11,12,17, 

24,29,38 

Closure-23,56,111 Lang-28,33 

Math-47,97 Time-12 
Lang-33 Time-12 

Wraps-with method call 14 4,14,28 
Chart-12,13 Closure-16 Time-8 

Math-23,26,35,105 

Chart-12,13 

Math-35,105 

Wrong reference 

Wrong reference variable 42 6,20 
Chart-8,12 Closure-54 Time-4 

Lang-4,60 Math-21,64,98 

Chart-8,12 Lang-60 

Time-4 Math-98 

Wrong reference method 31 6,32,35 
Chart-13 Closure-4,45,109  

Lang-26 Math-58,75 Time-26 

Chart-13 Lang-26 

Math-58,75 

Missing null-check 

Missing null check 25 4,23,29,38 
Chart-15,25 Closure-20,30 

Lang-32,33 Math-32 Time-2 

Chart-15,25 Lang-33 

Math-32 

Missing non-null check 32 33 
Chart-25 Closure-17,22,76,98 

Lang-12 Math-20 Time-21 
Chart-25 Math-20 

Constant change Constant change 19 26 
Closure-14,40,70 Lang-19 

Math-22,104 Time-8,10 

Closure-14,40,70 

Math-22,104 

Copy/Paste Copy/Paste 48 4,6,35 
Chart-7 Closure-4,6 Time-12 

Lang-30,62 Math-37,76 
Chart-7 Time-12 

Single line Single line 98 
5,7,8,24,26, 

28,29,34,38 

Chart-1,24 Closure-62,67 

Lang-51 Math-32,94 Time-16 

Chart-1,24 Closure-62 

Lang-51 Math-32,94 

Not classified Not classified 22 10,25,27,30,31 
Chart-3 Closure-25 Lang-35 

Math-8,61,90 Time-7,22 

Chart-3 Lang-35 Time-7 

Math-8,61,90 
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ementioned analysis, Mockito bugs do not contain unique repair 

pattern and the state-of-the-art APR techniques have achieved 

success on fixing bugs with the same repair patterns. 

3.3 RQ3: The Performances of the State-of-the-

art APR Techniques on Mockito 

APR techniques can be generally divided into two categories (i.e., 

search-based and semantic-based). Search-based repair methods 

(also known as generate-and-validate methods) search within a 

huge population of candidate patches generated by applying 

mutation operators to a predefined fault space determined by Fault 

Location (FL) techniques and are widely recognized to be able to 

fix a wide range of bugs [9, 23]. Semantics-based repair 

methodology, on the contrary, utilizes semantic information 

generated by symbolic execution and constraint solving to 

synthesize patches. In this section, we aim to check the 

performances of the state-of-the-art APR tools on Mockito. To 

this end, we select two latest and open access search-based tools 

(SimFix and CapGen) for evaluating them on Mockito and we 

also take a reproduced study [19] about the semantic-based tool, 

Nopol, into consideration when analyzing. All the execution logs 

of our experiments can be found in the link1. 

3.3.1 SimFix  

SimFix is one of the latest search-based APR tools and has been 

evaluated on the non-Mockito projects in Defects4J [13]. The key 

novelty of SimFix is that it that takes the intersection of existing 

patches and source code into consideration to reduce search space. 

We first got the fault space information of suspicious buggy 

statements for each bug through the Ochiai algorithm 

implemented in GZoltar version 1.6.0 [24] and then reran SimFix 

to evaluate its performances on the Mockito bugs. All the 

experiments were conducted on a 64-bit Linux virtual machine 

with Ubuntu 15.10 operating system and 2GB RAM. The 

execution results of SimFix can be three types: success when a 

patch passes all test cases, failed when all the suspicious 

statements are executed but still no patch is found, and timeout 

when the execution exceeds the pre-defined time. The experiment 

results are illustrated in Table 3. 

  As is shown, none of Mockito bugs can be fixed by SimFix. 

From the execution logs, ten of these bugs failed due to timeout 

                                                                 
1 https://github.com/Kaka727/Mockito-Study 

and the rest 28 bugs were due to incapable of finding a valid patch 

at all suspicious locations. 

The failure of SimFix is mainly caused by two reasons. First is 

the lack of rich context information. Take Mockito-37 as an 

example, the human-written patch of this bug adds an method 

invocation (reporter.cannotCallRealMethodOnInterface()) under 

a conditional branch. However, this method invocation does not 

occur in any other place in this project, making SimFix incapable 

of generating a correct patch. Second is the course-grained donor 

snippet identification. Given a potential faulty location, SimFix 

expands it into a faulty code snippet and then locates a set of 

similar code snippets as donors for repair. The size of the code 

snippet can be as large as 10 lines. Consequently, if the correct 

fixing ingredient is only in a single line, SimFix may overlook it 

and fail to repair. For example, in Mockito-26, human-written 

patch turns a parameter in a method invocation from 0 to 0D. The 

correct fixing ingredient is several lines before this statement but 

the objects which invocate the same function at these two 

locations are not the same, making variable name similarity (i.e., 

a metric which is used by SimFix to identify similar donor) rather 

low. Thus, SimFix considers these two code snippets as dissimilar, 

leading to the miss of possible correct patch of this bug. 

3.3.2 CapGen  

CapGen is another the state-of-the-art search-based APR tool that 

utilizes context information to prioritize patches. Empirically, its 

precision can reach 84% on the four projects of Defects4J [9]. 

We reran CapGen on Mockito bugs under the environment 

which is consistent with its original execution environment in [9]. 

The experiment results are illustrated in Table 4. CapGen 

generates patches for all of the 38 bugs, but none of them are 

plausible (i.e., pass both the failing test cases and the regression 

test cases).  

CapGen fails mainly because: 1) it performs a single mutation 

to generate patches, making it impossible to fix bugs which need 

operations at several different places (i.e., multi-location bugs) 

and this kind of bug occupies a large proportion in Mockito 

project (65.8%, 25/38); and 2) it usually cannot find the correct 

fixing ingredients since its searching scope is restricted in a single 

file. For example, in Mockito-27, human-written patch replaces a 

parameter of an object instantiation with another one 

(oldMockHandler.getMockSettings()) under the class MockUtil. 

However, the correct fixing ingredient is in another file named 

MockHandler, making it impossible for being extracted by 

CapGen. This point is easy to understand because the previous 

analysis has indicated that there may be no fixing ingredient even 

if the search space is the whole project. 

3.3.3 Nopol  

Nopol is a semantic-based program repair tool utilizing angelic 

values and a Satisfiability Modulo Theory (SMT) solver for 

synthesizing conditional expressions [20]. A previous study has 

evaluated its performance on all the projects in Defects4J version 

1.1.0 [19], thus, we adopt their results for our analysis here. Table 

5 illustrates the empirical results of evaluating Nopol on 

Defects4J bugs. 

It is shown in the results that Mockito is the lowest in terms of 

both the number of generated patches (2) and the repair rate (5%). 

Nopol totally generates patches for 103 Defects4J bugs and 

reaches an average repair rate of 26%. Note that these patches 

only pass all the test cases and are not manually checked. As a 

result, the repair rate here is consistent to the recall in other 

RQ2: Are the state-of-the-art techniques capable to fix 

non-Mockito bugs whose repairs require the same repair 

patterns as Mockito bugs? 

Findings: Most of the repair patterns of Mockito bugs 

(33/38) can be classified into existing categories. In each 

category, a number of bugs in non-Mockito projects have 

been successfully fixed by existing techniques. Thus, the 

state-of-the-art techniques are capable of fixing bugs from 

non-Mockito projects whose repairs require the same 

repair patterns as Mockito bugs. 
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literature [4, 9] (i.e., the percentage of bugs for which Nopol 

generates a patch among all the bugs). We then manually 

analyzed these two patches and considered a patch correct if it is 

the same or semantically equivalent to human-written one 

provided in Defects4J, which is widely adopted by previous 

studies [4, 9, 12, 25]. According to our manual analysis, the patch 

for Mockito-29 is semantically equivalent to human-written one 

since they both wrap a statement with a conditional statement. 

However, the patch for Mockito-38 is not correct since it changes 

code at a wrong place and the generated code is partially 

redundant and to some extent unreadable with too many 

mathematic symbols. Thus, Nopol actually only fixes one bug in 

Mockito, achieving a poor performance of a repair rate at around 

2.6%. 

Discussion: According to the findings of our RQ1-3, Mockito 

bugs are not more complex with respect to the four patch 

characteristics (i.e., patch size, number of chunks, number of 

modified files, and number of modified methods); the state-of-the-

art APR tools have achieved success on bugs whose repairs 

require the same repair patterns with Mockito bugs; three 

representative APR tools (one is semantic-based and two are 

search-based) achieve poor performances on this project. These 

are the bases of our argument. It is unreasonable to exclude 

Mockito from the verification set since the experimental results 

show that existing APR techniques may be overfitting to non-

Mockito projects. Therefore, we recommend that Mockito should 

be considered when evaluating newly proposed APR 

techniques to avoid potential bias from the evaluation process 

and judge the progress in repairing ability. 

4 LIMITATIONS 

The results of this study may not apply to other APR tools since 

APR is a hot topic in Software Engineering (SE) and there are lots 

of tools being proposed in main software conferences and journals 

each year, but we only analyzed three of them. However, our 

evaluating subjects are representative since SimFix possesses the 

highest recall (34/357, 9.52%) and CapGen possesses the highest 

precision (21/25, 84%) on Defects4J among the state-of-the-art 

APR tools. Nopol generates the most patches for Defects4J bugs 

among semantic-based tools and is a widely used semantic-based 

tool in recent empirical studies [25, 26]. Therefore, it is 

reasonable to speculate that other approaches may demonstrate 

similar results. Besides, we deprecated other tools for several 

reasons: HDRepair, SOFix, ProbabilisticModel, Elixir and 

SketchFix do not release the source code of their tools for reprod- 

Table 3. Experiment results of SimFix 

Execution results Bug ID 

Timeout 
1, 2, 3, 6, 9, 12, 23, 26, 

33, 35 

Failed 

4, 5, 7, 8, 10, 11, 13, 14, 

15, 16, 17, 18, 19, 20, 

21, 22, 24, 25, 27, 28, 

29, 30, 31, 32, 34, 36, 

37, 38 

Table 4. Experiment results of CapGen 

Execution results #Bug 

Generated 38 

Plausible 0 

Correct 0 

Table 5. Experiment results of Nopol 

Projects #Patches #Bugs Repair Rate 

Chart 9 26 37% 
Closure 56 133 42% 

Math 24 106 22% 

Lang 4 65 6% 

Time 8 27 29% 

Mockito 2 38 5% 

Total 103 395 26% 

 

ucible experiments. JFix announces to design a plugin for Eclipse 

but does not provide the download address (the download link 

provided in JFix’s homepage is invalid). ACS announces in its 

homepage that it can no longer execute on new bugs due to the 

interface change in GitHub. ssFix needs a code search phase and 

the database is stored in a server in Brown university in the USA, 

making this process much slower for overseas users like us (we 

get the information after connecting with the authors). Thus, 

evaluating more APR tools on Mockito project can be future work. 

5 RELATED WORK 

During the years, developers have created several benchmarks for 

reproducible experiments on APR tools. The iBugs project [15] 

which contains 223 Java bugs with an exposing test case was 

initially created for fault localization. The software-artifact 

infrastructure repository (SIR) [16] can be considered as the first 

to provide a database of real bugs but most of its bugs are hand-

seeded or obtained from mutation. Recently, a multilingual 

program repair benchmark named QuixBugs [17] is designed with 

40 programs in both Python and Java, each with a bug on one line. 

Although many benchmarks are created, our evaluation object, 

Defects4J, is the most widely-used one for Java language in recent 

studies [4-12].  

There are also some experiments about evaluating previous 

tools on newly released benchmark. Martinez et al. [24] 

reimplement GenProg and Kali in Java language and evaluate 

them with Nopol on Defects4J benchmark. A recent technique 

report [19] evaluates GenProg on Defects4J version 1.1.0 

RQ3: What are the performances of the state-of-the-art 

APR tools on Mockito? 

Findings: Both search-based APR approaches and semantic-

based APR approaches perform poorly, with extremely low 

repair rate, on Mockito bugs. Compared with its performance 

on non-Mockito projects, Nopol have lower repair rate on 

this project and can only fix one bug in fact. SimFix and 

CapGen even cannot fix any bug in this project. Thus, the 

performances of the state-of-the-art APR tools on 

Mockito are poor. 
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including Mockito bugs and thus its experiment results are used 

by us for analysis. Our study is the first to conduct experiments to 

present results for SimFix and CapGen on Mockito bugs. 

6 CONCLUSION 

While Defects4J database is widely used in evaluating the 

performances of APR tools, the Mockito project has not attracted 

enough attention. In this paper, we studied the importance of 

taking bugs from Mockito into consideration when evaluating 

APR techniques. We investigated the characteristics as well as the 

repair patterns of patches in Mockito. We conducted experiments 

on two of the latest search-based tools (SimFix and CapGen) on 

this project and took the experimental results of another semantic-

based tool (Nopol) into consideration. Results show that the state-

of-the-art tools achieve poor performances on Mockito bugs. We 

thus reached the conclusion that indeed we should incorporate 

Mockito into the evaluation criteria. 
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