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ABSTRACT
Smart contracts have been widely and rapidly used to automate
financial and business transactions together with blockchains, help-
ing people make agreements while minimizing trusts. With millions
of smart contracts deployed on blockchain, various bugs and vul-
nerabilities in smart contracts have emerged. Following the rapid
development of deep learning, many recent studies have used deep
learning for vulnerability detection to conduct security checks be-
fore deploying smart contracts. These approaches show effective
results on detecting whether a smart contract is vulnerable or not
whereas their results on locating suspicious statements responsible
for the detected vulnerability are still unsatisfactory.

To address this problem, we propose a deep learning based two-
phase smart contract debugger for reentrancy vulnerability, one
of the most severe vulnerabilities, named as ReVulDL: Reentrancy
Vulnerability Detection and Localization. ReVulDL integrates the
vulnerability detection and localization into a unified debugging
pipeline. For the detection phase, given a smart contract, ReVulDL
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uses a graph-based pre-training model to learn the complex rela-
tionships in propagation chains for detecting whether the smart
contract contains a reentrancy vulnerability. For the localization
phase, if a reentrancy vulnerability is detected, ReVulDL utilizes in-
terpretable machine learning to locate the suspicious statements in
smart contract to provide interpretations of the detected vulnerabil-
ity. Our large-scale empirical study on 47,398 smart contracts shows
that ReVulDL achieves promising results in detecting reentrancy
vulnerabilities (e.g., outperforming 16 state-of-the-art vulnerabil-
ity detection approaches) and locating vulnerable statements (e.g.,
70.38% of the vulnerable statements are ranked within Top-10).
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ging.
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1 INTRODUCTION
Cryptocurrencies and blockchain technologies have experienced
a rapid development in industry and academia in recent years. A
blockchain is a transaction medium that utilizes a well-designed
consensus protocol to ensure transaction security and control the
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creation of transaction units [13, 64]. A blockchain platform [49]
provides networked units with value transfer without trust, and
developers deploy smart contracts on the blockchain platform (e.g.,
the most popular blockchain platform Ethereum [9]) allowing net-
worked peers to make agreements with minimizing trust. Since
smart contracts are designed to control digital assets with defined
arbitrary rules, they always involve cryptocurrencies worthy of
millions of USD. Thus, managing so much wealth under smart
contracts will inevitably attract the attention of hackers. Indeed,
security problems with smart contracts have led to serious conse-
quences. For instance, the well-known reentrancy smart contract
attacks cause millions of dollars loss 1. As a result, smart contract
vulnerabilities are of great necessity to be detected and located be-
fore deployment since (1) developers often inject vulnerabilities into
smart contracts unconsciously under the condition that they fail
to understand the relationships among the cooperating smart con-
tracts; and (2) once smart contracts are deployed to the blockchain,
they are difficult to be updated due to their immutability [12].

Many smart contract vulnerability detection approaches have
been proposed to tackle the security problems. The conventional
vulnerability detection approaches are based on classical static anal-
ysis methods and dynamic execution methods [23, 35, 36, 45, 47, 48,
59, 60, 62, 68]. However, these conventional approaches rely heavily
on manually crafted heuristics, which are difficult to be summarized
for a wide spectrum of vulnerabilities in practice and also suffer
from the inherent risk of being error-prone as well as the tricks
used by crafty attackers who may surpass these already known
rules [13, 64]. With the remarkable achievements of deep learning
in many fields, researchers recently explore the use of deep neural
networks to detect smart contract vulnerabilities [26, 43, 51, 58, 72]
to address the aforementioned limitations. These approaches either
treat the source code as a text sequence or cast the rich control
and data flow semantics of the source code into graphs for the
learning process, and have achieved promising performances on
vulnerability detection for smart contracts. Although many deep-
learning-based approaches are generally effective in determining
whether an entire given contract is vulnerable or not, their results
on providing the explanation of a context with which the deep
learning model have made the decision (a.k.a, the vulnerability lo-
calization in this paper) are still unsatisfactory. This is a critical
capability of deep-learning-based debugging tools since the number
of code statements of smart contracts usually range from dozens
to thousands. Thus, it is still time-consuming and error-prone for
developers to manually locate the faulty statements even if they are
aware of the existence of the vulnerability. In addition, vulnerability
detection and localization are two interactive tasks. Specifically,
vulnerability localization usually relies on the vulnerability symp-
toms (e.g., execution traces) discovered by the detection phase to
analyze and pinpoint the root cause of vulnerability, and is thus a
natural extension of detection.

Thus, we propose a deep learning based two-phase debugging
approach for smart contracts that explicitly targets the reentrancy
vulnerability, ReVulDL: Reentrancy Vulnerability Detection and
Localization. Reentrancy vulnerability is one of the most severe vul-
nerabilities in smart contracts [55, 67], occurring when the attacker

1https://moralis.io/what-is-reentrancy-reentrancy-smart-contract-example/

drains funds from the target by recursively calling the target to
withdraw function. It has also caused huge financial losses in re-
cent years, e.g., the famous DAO incident causing 3.6 Million Ether
stolen and 60 million USD loss [56] due to the reentrancy attack.
Therefore, debugging this type of vulnerability has attracted the
attentions from many researchers [65, 67]. Our ReVulDL adopts
deep learning techniques (i.e., a graph-based pre-training model
and interpretable machine learning) to integrate reentrancy vulner-
ability detection and localization into a unified debugging pipeline,
for pinpointing the root cause of a reentrancy vulnerability.

For reentrancy vulnerability detection phase, ReVulDL presents
a graph-based pre-training model to learn the complex relation-
ships in propagation chains to detect whether a smart contract is
vulnerable to reentrancy. Specifically, given a smart contract 𝑆𝐶 ,
ReVulDL first constructs propagation chains 𝐶𝐻𝑆𝐶 by leveraging
the data flow graph of the source code of SC; then customizes a
graph-based pre-training model to learn the complex relationships
(i.e., data dependencies) in the propagation chains 𝐶𝐻𝑆𝐶 that may
lead to reentrancy vulnerability; and finally uses the trained model
to determine whether the smart contract SC contains a reentrancy
vulnerability or not.

For reentrancy vulnerability localization phase, if a reen-
trancy vulnerability is detected in SC, ReVulDL utilizes the inter-
pretable machine learning (i.e., post-hoc interpretability method)
on the detected vulnerability information to locate suspicious state-
ments that might be responsible for the detected smart contract
vulnerability. Specifically, ReVulDL first prepares the detected vul-
nerability information (i.e., the trained model with its decision
(vulnerable or not) and the smart contract SC in the test dataset
with its propagation chains 𝐶𝐻𝑆𝐶 ) for localization; then leverages
post-hoc interpretability method [6, 21, 69] to seek the interpreta-
tion subchains𝑚𝑖𝑛𝐶𝐻𝑆𝐶 which is the minimal propagation chains
in𝐶𝐻𝑆𝐶 that eventually leads to the reentrancy vulnerability, where
the basic idea is that if an edge 𝑒𝑆𝐶 in𝐶𝐻𝑆𝐶 is crucial for the trained
model to identify SC to be vulnerable, 𝑒𝑆𝐶 should be included in
𝑚𝑖𝑛𝐶𝐻𝑆𝐶 ; and finally uses the crucial variables and their prop-
agation chains in 𝑚𝑖𝑛𝐶𝐻𝑆𝐶 to locate the suspicious statements
potentially responsible for the detected reentrancy vulnerability.

We design and conduct large-scale experiments on the widely-
used dataset (i.e., SmartBugs Wild Dataset[25]) with 47,398 real-
world smart contracts. The experimental results show that our
approach is effective in both detecting reentrancy vulnerability (e.g.,
the F1 score of 0.93 outperforms those of 16 state-of-the-art base-
lines) and locating the vulnerable statements (e.g., 20.38%, 44.05%,
58.99%, and 70.38% of the buggy statements are ranked within Top-
1, Top-3, Top-5, and Top-10 respectively). Such performances are
promising considering that a number of vulnerabilities in our test
set are comparatively complex, involvingmultiple buggy statements
across functions.

The main contributions of this paper can be summarized as:
•We present (1) a reentrancy vulnerability detection approach

which models propagation chains as graphs and learns the com-
plex relationship from the graph level; and (2) a statement-level
reentrancy vulnerability localization approach which customizes
interpretable machine learning to identify suspicious statements.

• Based on the above two components, we implement a deep
learning based two-phase smart contract debugger, ReVulDL, that

https://moralis.io/what-is-reentrancy-reentrancy-smart-contract-example/
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not only determines if a smart contract contains a reentrancy vul-
nerability but also pinpoints the root cause of the vulnerability if
any. 2

•We perform large-scale empirical evaluations and the exper-
iment results demonstrate the effectiveness of ReVulDL on both
vulnerability detection and localization tasks.

The structure of the rest paper is organized as follows. Sec-
tion 2 introduces background. Section 3 depicts ReVulDL. Section 4
presents our empirical study. Section 7 summarizes related work.
Section 8 concludes the whole study and mentions future work.

2 BACKGROUND
2.1 Interpretable Machine Learning
Interpretable machine learning tackles the important problem of
explaining how a complex machine learning model achieves a par-
ticular decision and makes up for the deficiency of transparency
behind behaviors of learning models [22]. It enables machine learn-
ing models to explain or present their behaviors to humans in an
understandable way [19]. Generally, there are two interpretable
machine learning techniques: intrinsic interpretability and post-
hoc interpretability [46]. Intrinsic interpretability refers to machine
learning models that are considered interpretable due to their sim-
ple structure [11], e.g., decision tree, rule-based model, linear model.
The constructed intrinsic interpretation models either are globally
interpretable models which offer a certain extent of transparency
inside a model or locally interpretable models that provide ratio-
nals for a specific prediction. In contrast, post-hoc interpretability
refers to a model-agnostic model which provides the explanation
after another model is trained [5]. Post-hoc methods are valuable in
legal proceedings for their inherent ability in explaining the model
after training [20]. They aim to provide an understanding about
what knowledge has been acquired and which part of the learned
representations or features in the interpreted model is responsible
for the predicted result, without changing the underlying model.

In our study, we utilize the interpretable machine learning for
localizing the faulty statements in smart contracts. Specifically,
the vulnerability localization can be regarded as the process of
seeking the explanation of why the decision is made by the trained
model of vulnerability detection. Thus, ReVulDL uses the post-
hoc interpretability to explain what statements are suspicious for
causing the detected vulnerability.

2.2 Propagation Chain
A propagation chain refers to the existence of a code sequence
among a certain number of specified program code snippets [28]. In
this sequence, there are direct or indirect data/control dependencies
between any two adjacent code snippets. Given code snippet a and
code snippet b, there may be one or more propagation chains be-
tween a and b, which is called the propagation chain set of specified
code snippets a and b (denoted as PC(a, b)). For each program snip-
pet, there are several propagation chains affected by it and a certain
number of propagation chains affecting it. In software debugging, a
defect propagation chain refers to a code sequence from the defect
code to the program failure output. One or more code snippets in
this sequence have errors in the program state (such as variable
2Our replication package including the source code, datasets and running examples is
publicly available at https://github.com/toolstemp/IAcontract.

1 contract Private_accumulation_fund

2 {

3    mapping (address => uint) public balances;

4    uint public MinDeposit = 1 ether;

5    Log TransferLog;

6    function Private_accumulation_fund(address _log)

7    public 

8    {

9      TransferLog = Log(_log);

10    }

11    function Deposit()

12    public payable

13    {

14    if(msg.value > MinDeposit)

15    {

16    balances[msg.sender]+=msg.value;

17    TransferLog.AddMessage(

18    msg.sender,msg.value,"Deposit");

Victim contract

1 contract Attack

2{

3     Private_accumulation_fund public entrance;

4    constructor(address _target) public

5    {

6    entrance = Private_accumulation_fund(_target);

7     }

8    function attack() payable

9    {

Attack contract

19    }

20    }

21    function CashOut(uint _am)

22    public payable

23    {

24    if(_am<=balances[msg.sender])

25    {

26    if(msg.sender.call.value(_am)())

27    {

28    balances[msg.sender]-=_am;

29    TransferLog.AddMessage(

30    msg.sender,_am,"CashOut");

31    }

32    }

33     }

34    function() public payable{}  

35 }

10    entrance.CashOut(0.5 ether);

11    }

12    function() public payable

13    {

14    // re-enter Private_accumulation_fund

15    entrance.Cashout(0.5 ether);

16    }

17 }

Figure 1: A Reentrancy Vulnerability Example.

value) during execution. There are one or more defect propagation
chains from program defect code d to program failure code f, and
the set of the defect propagation chains is called defect propagation
chain set (EPC(d, f )). EPC(d, f ) is a subset of the propagation chain
set PC (d, f ) from code snippet d to program failure code f. For a
smart contract, there are one or more propagation chains related
to vulnerability code snippets of the smart contract, which could
be learned by deep learning models. Propagation chains can be
constructed by data flow relationships or control flow relationships,
providing crucial code semantic information for program analysis
and comprehension [2, 29, 30].

In this paper, we use data flow relationships to construct prop-
agation chains since they are the same under different abstract
grammars for the same source code and easier for deep-learning
models to learn (see the evaluation on other types of relationships
in Section 4.6). In data flow graph, nodes represent variables in a
smart contract while edges denote the dependency relations among
these variables. For example, after constructing the data flow graph
of c = a + b, it would be clear that the value of c depends on a and
b, providing a new perspective for understanding the semantics
of the variable c. Therefore, ReVulDL takes the advantage of the
relationships in the propagation chains of a smart contract, and
uses a graph-based pre-training model to learn the relationships
for detecting reentrancy vulnerability.

2.3 Motivating Example
Figure 1 shows a reentrancy vulnerability example. The contract
Private_accumulation_fund is a real contract deployed on Ethereum
in SmartBugs Wild Dataset[25]. Reentrancy vulnerability is one of
the most dangerous smart contract vulnerabilities that has led to
huge amounts of financial losses [55, 56, 67]. Attackers could use
the mechanism of call and callee statements to stole balance (ether).
When the victim contract use call-statement to call attack contract,
the attack contract use callee-statement to call the caller and enter
the caller in victim contract again, and consequently the balance is
stolen. The attackers use this mechanism to eventually withdraw a
large amount of Ethers from victim contract’s balance. As shown
in Figure 1, there are two smart contract: the victim contract Pri-
vate_accumulation_fund and the attack contract Attack. The Attack
contract calls the function attack at line 8, and then calls the Cashout
function at line 21 of the contract Private_accumulation_fund. At

https://github.com/toolstemp/IAcontract
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the same time, Private_accumulation_fund will execute function
Cashout at line 21 and send ether to contract Attack with the call-
statement at line 26. When the call-statement at the line 26 is exe-
cuted, the fallback function3 of the contract Attack will be executed.
Thus, the fallback function at line 12 of the contractAttack responds
to the transfer of the contract Private_accumulation_fund, and the
contract Attack will keep withdrawing the ether from the contract
Private_accumulation_fund until the gas runs out. In the meantime,
the line 28 of the contract Private_accumulation_fund deducts the
balance of contract Attack once while the record in block chain is
only the first withdrawal.

The reason for the reentrancy vulnerability lies in the fact that
the atomic transfer operation becomes non-atomic by transferring
money first and then deducting the balance. It gives the attacker
the opportunity to reentry and get multiple transfers, but only
one balance deduction is recorded on the block chain. Thus, the
vulnerable statement is located at line 28 for the fact that there is a
balance operation at line 28 after the non-atomic transfer operation
call.value at line 26. Other code snippets such as statements in the
function Private accumulation fund and Deposit have neither non-
atomic transfer operation nor data propagation with the function
Cashout. Consequently, what the programmers really expect to seek
out are the statements at line 26-28 and other ones are of limited
usefulness to locate the reentrancy vulnerability.

Therefore, regarding to the number of smart contract statements
ranging from dozens to thousands, it is necessary to identify what
statements are responsible for a detected vulnerability. With the
help of interpretable machine learning, ReVulDL integrates two
phases: vulnerability detection and localization to pinpoint what
specific statements are potentially responsible for the detected vul-
nerability. Specifically, based on the vulnerability symptoms (e.g.,
the trained model with its decision (vulnerable or not) and the
smart contract in the test dataset with its full propagation chains)
discovered by vulnerability detection, ReVulDL uses interpretable
machine learning to find a convergent subset of propagation chains
with corresponding statements related to the detected vulnerabil-
ity, and provides explanation on why the trained model makes
the decision by outputting a ranking list of suspicious statements
potentially responsible for the detected vulnerability.

3 APPROACH

Phase 1：Reentrancy 
Vulnerability

Detection

Smart Contract 
Source Code

Phase 2: Reentrancy 
Vulnerability
Localization

Suspicious 
statements

Vulnerable Non-Vulnerable

Data Preparation

Figure 2: Workflow of ReVulDL.

This section depicts our deep learning based two-phase approach
ReVulDL: Reentrancy Vulnerability Detection and Localization, to
pinpoint what specific statements that might be involved in the
detected reentrancy vulnerability. ReVulDL uses a graph-based pre-
training model to learn the relationships among the propagation
chains to detect reentrancy vulnerability, and utilizes interpretable
3A fallback function is executed when a contract receives Ether without any additional
data.

machine learning (i.e., post-hoc interpretability) to provide an inter-
pretation of the decision of the detection model to locate suspicious
statements relevant to the detected vulnerability.

Figure 2 shows the workflow of ReVulDL, consisting of three
parts: (1) Data Preparation, which constructs the representation for
smart contract code features and extracts propagation chains for
the next two phases (i.e., vulnerability detection and localization).
(2) Reentrancy Vulnerability Detection phase, which detects whether
a smart contract contains a reentrancy vulnerability based on the
pre-trained model. (3) Reentrancy Vulnerability Localization phase,
which locates the suspicious statements responsible for the detected
reentrancy vulnerability based on post-hoc interpretability.

3.1 Data Preparation
ReVulDL first needs to prepare data (i.e., the representation of smart
contract code features and propagation chains) for the two phases
(i.e., vulnerability detection and localization). For a contract, Re-
VulDL extracts different types of data via the following two steps:
Representation of smart contract source code. ReVulDL cap-
tures the content of a smart contract source code in terms of the
sequence of tokens. The tokens of each statement are collected
and broken down into sequence. ReVulDL removes the sub-tokens
with one character to avoid the influence of noises. Specifically,
suppose there is a contract A. From A, the source code set is 𝐶 =

{𝑐1, 𝑐2, ..., 𝑐𝑚𝑐 } and variable set is 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚𝑣
}. Then, the

two sets are concatenated into a sequence 𝐼 = {[𝐶𝐿𝑆],𝐶, [𝑆𝐸𝑃],𝑉 },
where [CLS] is a special token in front of the two sets and [SEP] is a
special notation to split the source code set C and the variable set V.
For the representation of A, the sequence I is transformed into an
input vector, in which each token is represented by the embeddings
of token itself and its position.
Construction of propagation chains. ReVulDL first parses the
smart contract source code into an abstract syntax tree (AST); then
extracts data flow relationships from the AST; finally constructs
propagation chains from the dataflow relationships. Specifically,
ReVulDL converts the source code set is 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑚𝑐 } to
AST using treesitter [44]. Since solidity is the most common lan-
guage used in smart contracts, ReVulDL follows the JoranHonig’s
grammar [32], and customizes treesitter to solidity language [15]
for facilitating data flow relationship construction. The AST from
the source code C contains syntax information of the contract
source code while the terminals (leaves) are used to gain the vari-
able set 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚𝑣

}. For each variable in the variable
set 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚𝑣

}, marked as 𝑣𝑖 , we create a direct edge
𝜖 =

〈
𝑣𝑖 , 𝑣 𝑗

〉
from 𝑣𝑖 to 𝑣 𝑗 , indicating that the value of 𝑗-th vari-

able comes from or is computed from 𝑖-th variable. After creating
edges for every variable, we could filter out the variables without
edge flowing to them as the initial nodes and pull out chain struc-
tures from these variables. These chain structures are propagation
chains for the smart contract source code.

3.2 Reentrancy Vulnerability Detection
For reentrancy vulnerability detection phase, ReVulDL customizes
a graph-based pre-training model to learn the contract code fea-
tures and propagation chains acquired from Data Preparation. Pre-
trained models have acquired big success in tasks of natural lan-
guage processing (NLP) [17, 34, 42, 52, 53], inspiring the use on
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Figure 3: Vulnerability Detection Architecture of ReVulDL.

programming languages to promote the development of code in-
telligence [8, 24, 37, 38, 57]. There are widely used models such as
GPT [52] and BERT [17] for NLP and Scelmo [38], CodeBert [24],
C-Bert [8] and GPT-C [57] for programming languages. These pre-
trained techniques on programming languages pre-train on a large
unsupervised code corpus, and fine-tune on downstream tasks, e.g.,
code search [29], code completion [39], and code summarization [3].

Compared with other techniques which consider a source code
as a sequence of tokens, GraphCodeBERT [29] regards the inherent
structure of code. It is trained on the CodeSearchNet dataset[33],
which includes 2.3 millions functions of six programming languages
paired with natural language documents. In pre-training stage,
GraphCodeBERT uses a semantic-level structure that is less com-
plex and does not bring an unnecessarily deep hierarchy, the prop-
erty of which helps the model show better capability and perfor-
mance. During pre-training, the first task is masked language mod-
eling [17], which aims to learn representation from the source code;
the second task is edge prediction for learning representation from
code graph; The third is variable-alignment, which aims to align
the representation between source code and graph and to predict
where a variable is identified from. Thus, we use GraphCodeBERT
as backbone to learn the propagation chains of smart contract code
and perform the vulnerability detection task. In view of the success
of pre-trained models in the field of natural language processing, we
seek a new perspective probably benefiting reentrancy vulnerability
detection phase in smart contract. Therefore, ReVulDL customizes
the vulnerability detection model from a graph-based pre-trained
model GraphCodeBERT [29], which processes programming lan-
guage based on Transformer neural architecture [63].

Figure 3 shows the vulnerability detection architecture of Re-
VulDL, consisting of 6 parts, which are input units, join layer,
masked multi-head attention layer, layer normalization layers, n
transformer layers and linear layers. There are 6 input units in
ReVulDL constructed from Data Preparation: token sequence, vari-
able sequence, position sequence of tokens, position sequence of
variables, propagation chains and key information. The first 4 units
are the representations of smart contract source code. As previ-
ously discussed, we concatenate token sequence set and variable
sequence set into a sequence 𝐼 = {[𝐶𝐿𝑆],𝐶, [𝑆𝐸𝑃],𝑉 } while con-
catenating position sequence of tokens and position sequence of
variables into another sequence. [𝐶𝐿𝑆] is a special token in front

of the two sets and [𝑆𝐸𝑃] is a special notation to split the source
code 𝐶 and the variable set 𝑉 . We transform these two sequence
into an input vector 𝑋 0 as the representation of the smart contract
source code. 𝑋 0 contains two embeddings, where one denotes to-
ken sequence set and variable sequence while the other represents
position of tokens and position of variables. We obtain propagation
chains from AST with data flow relationships and denote them as
𝑃𝐶 = {𝑝𝑐1, 𝑝𝑐2, ..., 𝑝𝑐𝑚𝑝𝑐 }. For 𝑝𝑐𝑖 (i ∈ {1, 2, ...,𝑚𝑝𝑐 }), 𝑝𝑐𝑖 = (𝑉 , 𝐸),
where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑘 } is a variable set, and 𝐸 = {𝜖1, 𝜖2, ..., 𝜖𝑘 ′ }
is a directed edge set indicating where the value of each variable
comes from or computed from. Key information is extracted from
the source code as 𝑉 ′ = {𝑣 ′1, 𝑣

′
2, ..., 𝑣

′
𝑙
}, which are at the same line

with call.value or have a direct data flow relation to the line’s vari-
ables. Then, we expand variables on the propagation chains’ path
through 𝑣 ′

𝑖
(i ∈ {1, 2, ..., 𝑙} to 𝑉 ′ and remove the discrete elements

in 𝑉 ′ through which none of the edges in propagation chains pass.
Finally, 𝑉 ′ is rebuilt and we could remove redundancies of propa-
gation chains which are irrelevant to elements in 𝑉 ′. The cropped
propagation chains are critical for reentrancy vulnerability.

The 6 input units are fed to the join layer for generating the
contextual representation 𝑟0. After the join layer, there are n struc-
turally equivalent transformer layers which are 𝐿1 to 𝐿𝑛 for 𝑟0 to go
through, 𝑟 𝑖 = 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑖 (𝑟 𝑖−1), 𝑖 ∈ [1, 𝑛]. The calculation pro-
cess of 𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟𝑖 corresponds to Equation (1) and Equation (2).
In Equation (1), the vector 𝑟 𝑖−1 will first generate the vector𝐷𝑖 after
a multi-headed self-attentive operation [63]. Then in Equation (2),
𝐷𝑖 will output the vector 𝑟 𝑖 after a feed-forward layer.

𝐷𝑛 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝑀𝑢𝑙𝑡𝑖𝐴𝑡𝑡𝑛 (𝑟𝑛−1 ) + 𝑟𝑛−1 ) (1)

𝑟𝑛 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 (𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑁𝑒𝑡 (𝐷𝑛 ) +𝐷𝑛 ) (2)

In Equation (1) and Equation (2), MultiAttn is a multi-headed self-
attention mechanism, FeedForwardNet is a two layers feed forward
network, and LayerNorm represents a layer normalization opera-
tion. For the 𝑛-th transformer layer, the output 𝑟𝑛 of a multi-headed
self-attention (i.e., MultiAttn in Equation (1)) is computed by Equa-
tion (3), Equation (4) and Equation (5).

𝑄𝑖 = 𝑟
𝑛−1𝑊𝑖

𝑄 , 𝐾𝑖 = 𝑟
𝑛−1𝑊𝑖

𝐾 ,𝑉𝑖 = 𝑟
𝑛−1𝑊𝑖

𝑉 (3)

ℎ𝑒𝑎𝑑𝑖 = softmax(𝑄𝑖𝐾𝑖
𝑇√︁

𝑑𝑘

+𝑀 )𝑉𝑖 (4)

𝑟𝑛 = [ℎ𝑒𝑎𝑑1; ...;ℎ𝑒𝑎𝑑𝑚 ]𝑊𝑛𝑂 (5)
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Figure 4: Vulnerability Localization Architecture of ReVulDL.

Where, the previous layer’s output 𝑟𝑛−1 ∈ R |𝐼 |×𝑑ℎ is linearly
projected onto a triplet consisting of queries, keys, and values using
model parameters𝑊𝑖

𝑄 ,𝑊𝑖
𝐾 ,𝑊𝑖

𝑉 ∈ R𝑑ℎ×𝑑𝑘 , respectively.𝑚 is the
number of heads, 𝑑𝑘 is the dimension of a head, and𝑊𝑛

𝑄 ∈ R𝑑ℎ×𝑑ℎ
is the model parameters.𝑀 ∈ R |𝐼 |× |𝐼 | is a mask matrix, where𝑀𝑖 𝑗
is 0 if 𝑖-th token is allowed to attend 𝑗-th token otherwise -∞.

According toGraphCodeBERT [29], we use graph-guidedmasked
attention function to model variable dependency relations and in-
corporate graph structure into Transformer. Equation (6) shows the
mask matrix𝑀 to demonstrate graph-guided masked attention.

𝑀𝑖 𝑗 =


0 if 𝑞𝑖 ∈ {[𝐶𝐿𝑆 ], [𝑆𝐸𝑃 ] }

or 𝑞𝑖 , 𝑘 𝑗 ∈ 𝐶
or

〈
𝑞𝑖 , 𝑘 𝑗

〉
∈ 𝐸 ∪ 𝐸′

−∞ otherwise

(6)

The key 𝑘𝑖 attended by the query 𝑞 𝑗 could be avoided by adding
an infinite negative value to the attention score 𝑞 𝑗𝑇𝑘𝑖 so that the
attention weight becomes zero after using the softmax function (i.e.,
Equation (4)). In Equation (6),𝐶 is the source code set as declaration
before. For each propagation chain 𝑝𝑐𝑖 (i ∈ {1, 2, ...,𝑚𝑝𝑐 }), E is a
directed edge set indicating where the value of each variable comes
from or computed from. The query of node 𝑣𝑖 is allowed to pay
attention to a node-key of node 𝑣 𝑗 if there is a direct edge between
node 𝑣𝑖 and node 𝑣 𝑗 (i.e.,

〈
𝑣𝑖 , 𝑣 𝑗

〉
∈ 𝐸) or they are the same node

(i.e., 𝑖 = 𝑗 ). Otherwise, the attention is masked, adding the attention
score to an infinitely large negative value. 𝐸′ is a set to denote the
relation between smart contract source code tokens and variables of
the propagation chain, where

〈
𝑣𝑖 , 𝑐 𝑗

〉 〈
𝑐 𝑗 , 𝑣𝑖

〉
∈ 𝐸′ if the variable 𝑣𝑖

is identified from the code token 𝑐 𝑗 . We allow query of node 𝑣𝑖 and
node-key of 𝑐 𝑗 attend each other if and only if

〈
𝑣𝑖 , 𝑐 𝑗

〉 〈
𝑐 𝑗 , 𝑣𝑖

〉
∈

𝐸′. At the end of the model, we add a linear classifier and use
the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function to output the predicted probabilities 𝑦 in
Equation (7).

�̂� = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑟𝑛 ) (7)

In summary, the vulnerability detection phase seeks to find
whether a given smart contract contains reentrancy vulnerability
by fine-tuning the detection model, which is fed with a large num-
ber of smart contract source code and corresponding propagation
chains, together with their ground truth labels.

3.3 Reentrancy Vulnerability Localization
For reentrancy vulnerability localization phase, ReVulDL takes in-
put as the vulnerability symptoms (i.e., the trained vulnerability
detection model, propagation chains of smart contract source code,
detection result and prediction score) acquired from Reentrancy
Vulnerability Detection phase; then adopts interpretable machine
learning (post-hoc interpretability) to identify interpretable sub-
propagation chains providing explanation why the detection model
makes the vulnerable decision; finally outputs a ranking list of
suspicious statements responsible for the detected vulnerability.

Figure 4 shows the vulnerability localization architecture of Re-
VulDL, the aim of which is to find out minimal propagation chains
𝑚𝑖𝑛𝑃𝐶 that minimize the difference in the prediction scores be-
tween using the original propagation chains 𝑃𝐶 and using the mini-
mal propagation chains𝑚𝑖𝑛𝑃𝐶 . With the help of GNNExplainer[70]
which treats the task of finding subgraphs as an edge-mask learning
task, we derive interpretation sub-propagation chains by learning
an edge-mask set 𝐸𝑀𝑆𝑒𝑡 and masking-out the edges in the original
propagation chains. Since an edge is cut in the original propagation
chains 𝑃𝐶 , vulnerable statements localization model of ReVulDL
checks whether the vulnerability detection model outputs the same
prediction result or not. If yes, the edge is not crucial and need
not to be included in𝑚𝑖𝑛𝑃𝐶 . Otherwise, the edge is important and
should be included in𝑚𝑖𝑛𝑃𝐶 . In view of the untractable characteris-
tics of edge-mask, we use a learning approach for 𝐸𝑀𝑆𝑒𝑡 . The task
could be formulated as maximizing the mutual information (𝑀𝐼 )
between the minimal propagation chains𝑚𝑖𝑛𝑃𝐶 and the original
propagation chains 𝑃𝐶 (see Equation (8)).

max
minPC

𝑀𝐼 (�̂�,𝑚𝑖𝑛𝑃𝐶 ) = 𝐻 (�̂�) − 𝐻 (�̂� |𝐺 =𝑚𝑖𝑛𝑃𝐶 ) (8)

Where, 𝑦 is the output score of the vulnerability detection model
and 𝐻 (𝑦) is constant for the trained vulnerability detection model
(denoted as TVDM) accordingly. Thus, maximizing the𝑀𝐼 value for
𝑚𝑖𝑛𝑃𝐶 is equivalent to minimizing conditional entropy 𝐻 (𝑦 |𝐺 =

𝑚𝑖𝑛𝑃𝐶). −E�̂� |𝑚𝑖𝑛𝑃𝐶 [log𝑃𝑇𝑉𝐷𝑀 (�̂� |𝐺 =𝑚𝑖𝑛𝑃𝐶 ) ] (9)

Equation (9) measures how much uncertainty remains about the
outcome𝑦 under the condition that𝐺 =𝑚𝑖𝑛𝑃𝐶 . Direct optimization
of Equation (9) is not tractable, we further treat𝑚𝑖𝑛𝑃𝐶 as a random
graph variable𝑚𝑖𝑛𝑃𝐶′. The objective of Equation (9) changes to
the following Equation (10) and (11).)

min
𝑚𝑖𝑛𝑃𝐶′ Emin𝑃𝐶∼𝑚𝑖𝑛𝑃𝐶′𝐻 (�̂� |𝐺 =𝑚𝑖𝑛𝑃𝐶 ) (10)

min
𝑚𝑖𝑛𝑃𝐶′𝐻 (�̂� |𝐺 = E𝑚𝑖𝑛𝑃𝐶′ [𝑚𝑖𝑛𝑃𝐶 ] ) (11)

According to Jensen’s inequality[10], we transform Equation (10)
to Equation (11). The conditional entropy in Equation (10) can be
optimized by replacing E𝑚𝑖𝑛𝑃𝐶 ′ [𝑚𝑖𝑛𝑃𝐶] and masking with 𝐸𝑀𝑆𝑒𝑡

on the input graph𝑚𝑖𝑛𝑃𝐶 . Finally, learning the mask set 𝐸𝑀𝑆𝑒𝑡 is
available according to [70] and the resulting sub-propagation chains
𝑚𝑖𝑛𝑃𝐶 could directly be utilized as an interpretation for vulnera-
bility statements localization. With the generated sub-propagation
chains𝑚𝑖𝑛𝑃𝐶 , ReVulDL can calculate each element’s suspiciousness
in𝑚𝑖𝑛𝑃𝐶 . ReVulDL initially assigns the elements (i.e., variables) in
𝑚𝑖𝑛𝑃𝐶 with the same suspiciousness value. There are two types of
edges in𝑚𝑖𝑛𝑃𝐶 . One is values comes from that denotes a variable’s
value comes from another one; the other one is values computed
from which means that a variable’s value is computed from an-
other one. Then, based on the types of edges in𝑚𝑖𝑛𝑃𝐶 , ReVulDL
calculates the suspiciousness of each element in𝑚𝑖𝑛𝑃𝐶 in the two
cases. In the case of values comes from edge type, ReVulDL assigns
the maximum suspiciousness value of the data-dependent (values
comes from) elements; in the case of values computed from edge type,



Reentrancy Vulnerability Detection and Localization: A Deep Learning Based Two-phase Approach ASE ’22, October 10–14, 2022, Rochester, MI, USA

_am
84

_am
91

msg
95

msg
103

_am
111

balances
117

msg
119

sender
121

_am

124

msg
129

sender
131

_am
133

Value comes from Value computed from

balances

MinDeposit
TransferLog

MinDeposit
TransferLog

14

17

22

51

64

balances
93

TransferLog
125

Identified Variable Sequence

Log

_log

TransferLog

Log

_log

21

27

31

33

35

msg

balances

msg

sender

msg
47

54

56

58

61

msg
68

sender
70

msg
72

balances

msg

sender

value

54

5663

msg
68

sender

msg
72

70

Parse into AST Propagation Chains(PC)Smart Contract Source Code

Token 
Sequence

Variable 
Sequence

Position 
Sequence of 

Tokens

Key 
Information

Position 
Sequence of 
Variables

ReVulDL

_am
84

_am
91

balances
117

msg
119

sender

_am
124

121

Minimal Propagation Chains(minPC)

1:statement28
2:statement21
3:statement24
4:statement26

Ranking List

_am
84

_am
91

balances
117

sender
121

_am
124

_am
111

contract 
declaration

contract identifier
contract 

body

Parse into AST

{ }
state 

variable
declaration

function 
definition

fallback 
receive

definition

type name visibility identifier = number 
literal

function identifier type_name( visibility
function 

body
state 

mutability)

... ... ... ...

visibility
state 

mutability
function 

body)

... ... ...

function (

... ... ...

... ...

Deposit

MinDeposit

...

contract 
declaration

contract identifier
contract 

body

{ }
state 

variable
declaration

function 
definition

fallback 
receive

definition

type name visibility identifier = number 
literal

function identifier type_name( visibility
function 

body
state 

mutability)

... ... ... ...

visibility
state 

mutability
function 

body)

... ... ...

function (

... ... ...

... ...

Deposit

MinDeposit

...

Figure 5: An example illustrating ReVulDL.

ReVulDL adds up the suspiciousness values of the data-dependent
(values computed from) elements and assign the sum to the elements
as the new suspiciousness value. For example, the data dependence
(values computed from) of 𝑒𝑖 contains 𝑒 𝑗 and 𝑒𝑘 , meaning that there
are two direct edges of values computed from type to 𝑒𝑖 in𝑚𝑖𝑛𝑃𝐶 : 𝑒 𝑗
to 𝑒𝑖 and 𝑒𝑘 to 𝑒𝑖 . Suppose that the current suspiciousness values of
𝑒𝑖 , 𝑒 𝑗 and 𝑒𝑘 are 𝑠𝑖 , 𝑠 𝑗 and 𝑠𝑘 respectively. We add the suspiciousness
values 𝑠𝑖 , 𝑠 𝑗 and 𝑠𝑘 to 𝑠𝑢𝑚, i.e., 𝑠𝑢𝑚=𝑠𝑖+𝑠 𝑗+𝑠𝑘 . Then we assign the
value of 𝑠𝑢𝑚 to 𝑠𝑖 , which is the new suspiciousness value of 𝑒𝑖 .

According to the above method, we rank the elements in𝑚𝑖𝑛𝑃𝐶

in descending order of the suspiciousness values and obtain the
final ranking list of elements. Since each element in𝑚𝑖𝑛𝑃𝐶 denotes
a variable in smart contract source code, we could replace the
variable in the ranking list with the statement that the variable
belongs to. Finally, ReVulDL could obtain a ranking list of vulnerable
statements in descending order of suspiciousness. As a reminder,
for a vulnerable contract is incorrectly identified as non-vulnerable
in the first phase, we set the rank of this contract to be null.

3.4 Illustrative Example
To show how ReVulDL works, Figure 5 illustrates a real smart
contract 𝑆𝐶 deployed on Etherium with a reentrancy vulnerability.
The top left of Figure 5 shows the source code of 𝑆𝐶 . As mentioned
in Section 2.3, the reason why reentrancy vulnerability exists is that
the atomic transfer operation becomes non-atomic by transferring
money first (at 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡26) and then deducting the balance (at
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡28) so that the hacker may make multiple transfers but

only one deduction of the balance is recorded. Thus, we recognize
𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡28 as the vulnerable statement.

ReVulDL first extract token sequence, variable sequence, position
sequence of tokens, position sequence of variables and key infor-
mation from the source code of 𝑆𝐶 . Then, ReVulDL acquires the
propagation chains by parsing 𝑆𝐶 into AST by modified treesitter
and identifying variable sequence from AST. For example, the vari-
able _𝑎𝑚 at the line 21 is ranked 84th in the sequence of variables
while at the line 28, the variable _𝑎𝑚 is the 124th in the variable
sequence. They have the same name _𝑎𝑚 in a propagation chain but
are different variables. We take each variable as a node of the corre-
sponding propagation chain, and a direct edge indicates the value
of a variable comes from or is computed from another one. Taking
TranferLog = expr at the line 9 as an example, the edges from all
variables in expr to TranferLog are added into the propagation chain
and labeled as "computed from". Meanwhile, the edges like from
27th _𝑙𝑜𝑔 to 35th _𝑙𝑜𝑔 are added into the propagation chain and
labeled as "comes from". We utilize the dependency relation between
variables of data flow to construct propagation chains. In Figure 5,
there are several propagation chains 𝑃𝐶 , in which the red dotted
line denotes "values comes from" while blue solid line represents
"values computed from". The 6 units token sequence, variable se-
quence, position sequence of tokens, position sequence of variables,
key information and propagation chains are inputted into ReVulDL.
After reentrancy vulnerability detection and localization, we acquire
the minimal propagation chains𝑚𝑖𝑛𝑃𝐶 . In Figure 5, there are 6 vari-
ables in𝑚𝑖𝑛𝑃𝐶 , from which we could compute the suspiciousness
of elements according to method in Section 3.3 and output a ranking
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list {_𝑎𝑚124, _𝑎𝑚84, _𝑎𝑚91, 𝑠𝑒𝑛𝑑𝑒𝑟111,𝑚𝑠𝑔117, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑠121}. Finally,
since these variables belong to their specific statements, we could
obtain the ranking list of the statements in descending order of sus-
piciousness {𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡28, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡21, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡24, 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡26}. The
vulnerable 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡28 is ranked 1st.

4 EMPIRICAL EVALUATION
4.1 Research questions
To evaluate our approach, we design experiments to answer the
following research questions:
RQ1: How effective is ReVulDL in detecting reentrancy vul-
nerability in smart contracts? It is worthwhile to investigate
whether ReVulDL outperforms the state-of-the-art vulnerability de-
tection methods in smart contracts. We compare ReVulDL with the
16 state-of-the-art reentrancy vulnerability detection approaches.
RQ2: How effective is ReVulDL in locating vulnerable state-
ments in smart contracts? We study how well ReVulDL per-
forms on smart contract vulnerable statements localization. We
compare ReVulDL with the seven state-of-the-art baselines.
RQ3: How the different modules contribute to the ReVulDL?
We investigate how the different modules (i.e., propagation chains
and graph-based pre-trained model) contribute to the ReVulDL. We
design ablation experiments to answer this research question.

4.2 Experimental Setup
Benchmarks Weempirically evaluate ReVulDL on all the Ethereum
smart contracts that have source code verified by Etherscan[25].
Thus, our experiments use the large-scale popular dataset Smart-
Bugs Wild Dataset [25], which contains 47,398 real smart contracts.
Experimental settings For RQ1, we compare ReVulDL with the
16 state-of-the-art vulnerability detection approaches, where the
eight approaches are conventional ones withoutng deep learning
(i.e., Honeybadger [61], Manticore [47], Mythril [48], Osiris [60],
Oyente [45], Securify [62], Slither [23] and SmartCheck [59]), and
the other eight are deep-learning-based ones (i.e.,GCN [43], Vanilla-
RNN [43], Peculiar [65], LSTM [43], GRU [43], DR-GCN [72], TMP
[72] and CGE [43]).

For RQ2, although the eight state-of-the-art deep learning based
approaches focus on vulnerability detection and cannot localize
vulnerable statements, we still seek to evaluate ReVulDL with more
comparisons. Regrading that ReVulDL is a deep learning based two-
phase approach, we can use eight deep learning based detection
approaches instead of our detection approach in the detection phase
to perform vulnerability localization and compare ReVulDL with
them to evaluate localization effectiveness.

For RQ3, to investigate the contribution of graph-based pre-
trained model, we normalize the parameters of the pre-trained
model and retrain it with the original input. As for the propagation
chains using data flow relationships, we use the other two types of
relationships (i.e., control flow relationships, and the combination
of control and data flow relationships), instead of data flow rela-
tionships used by ReVulDL, to construct the propagation chains to
perform the comparison.
Environment The physical environment of the experiments is
on a computer containing a CPU of Intel I7-9700 with 64G physical
memory, and two 12G GPUs of NVIDIA TITAN X Pascal. The

operating system is Ubuntu 18.04. We conducted the statistical
comparison on MATLAB R2016b.
Parameter settings ReVulDL uses the adam optimizer, and ap-
plies a grid search for the best settings of hyper-parameters: the
learning rate is 2e-5; the batch size of the training dataset is 2; the
batch size of the validation dataset is 32; the gradient accumulation
step is 1; the adam epsilon is 1e-8. For splitting the original dataset,
we follow the conventional strategy by randomly selecting 20% of
them as the training set, 10% of them as the validation set and the
other 70% as the testing set. The ground truth labels for contracts
are provided by the prior work of the experts [43] and the labeled
dataset has been open sourced in our online repository.

4.3 Evaluation Metrics
We adopt seven widely used metrics, where Precision, Recall, and
F1-score [59, 72] are the metrics for vulnerability detection while
Top-N Accuracy [40, 50],Mean Average Rank (MAR) [41],Mean First
Rank (MFR) [41], and Relative Improvement (RImp) [16, 71] are the
metrics for vulnerability localization.
Precision, Recall, and F1 Precision = True Positive/(True Posi-
tive + False Positive), Recall = True Positive/(True Positive + False
Negative), F1 = 2×Precision×Recall/(Precision+Recall). To evaluate
the overall performance of our approach equally across the class-
imbalanced dataset, we adopt the macro way [65] to compute the
three metrics for the contracts with and without vulnerabilities,
respectively, and then use the average value as the final result.
Top-N Accuracy It denotes the percentage of vulnerabilities
located within the first N position of a ranked list of all statements
in descending order of suspiciousness returned by a vulnerability
localization approach.
Mean Average Rank (MAR) It is the mean of the average rank
of all vulnerabilities using a vulnerability localization approach.
Mean First Rank (MFR) For a vulnerability with multiple vul-
nerable statements, locating the first one is critical since the others
may be located after that. MFR is the mean of the first vulnerable
statement’s rank of all vulnerabilities using a vulnerability localiza-
tion approach.
Relative Improvement (RImp) It is to compare the total number
of statements that need to be examined to find all vulnerable state-
ments using ReVulDL versus the number that need to be examined
by using other vulnerability localization approaches. A lower value
of RImp shows better improvement.

4.4 Vulnerability Detection Results (RQ1)
Precision, Recall, F1 and number of detected vulnerabilities
We compare ReVulDL with 16 state-of-the-art smart contract vul-
nerability detection approaches. Table 1 shows the detection perfor-
mance (i.e., Recall, Precision and F1) of different approaches, and Fig-
ure 6 further visualizes the quantitative results of the performance
distribution. In addition, Table 1 shows the number of detected
vulnerabilities of each approach, i.e., the column ‘Number’.

As shown in Table 1 and Figure 6, we could observe that ReVulDL
obtains the best results of Precision, Recall, F1, and the number
of detected vulnerabilities among the 16 baseline approaches, i.e.,
ReVulDL achieves 0.92 Precision, 0.93 Recall, and 0.93 F1, 790 detected
vulnerabilities, significantly improving the 16 baselines.
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ReVulDL
Honeybadge

r
Manticore Mythril Osiris Oyente Securify Slither Smartcheck GCN Peculiar Vanilla-RNN LSTM GRU DR-GCN TMP CGE

recall 93% 51% 50% 52% 54% 54% 55% 66% 71% 78% 92% 59% 68% 71% 81% 83% 87%
precision 92% 87% 50% 50% 59% 66% 53% 52% 79% 71% 91% 49% 52% 53% 72% 73% 85%
F1 93% 51% 50% 50% 55% 57% 53% 53% 74% 74% 92% 51% 59% 61% 76% 78% 86%
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80%

100%
recall precision F1

Figure 6: Recall, Precision and F1-score distribution of ReVulDL over 16 baselines.

Table 1: Detection performance comparison of ReVulDL and
the 16 baselines in terms of Recall, Precision, F1 and the num-
ber of detected vulnerabilities.

Approach Reentrancy
Recall Precision F1 Number

Honeybadger 0.51 0.87 0.51 19
Manticore 0.50 0.50 0.50 17
Mythril 0.52 0.50 0.50 50
Osiris 0.54 0.59 0.55 65
Oyente 0.54 0.66 0.57 69
Securify 0.55 0.53 0.53 341
Slither 0.66 0.52 0.53 293

Smartcheck 0.71 0.79 0.74 88
GCN 0.78 0.71 0.74 595

Vanilla-RNN 0.59 0.49 0.51 432
Peculiar 0.92 0.91 0.92 782
LSTM 0.68 0.52 0.59 441
GRU 0.71 0.53 0.61 463

DR-GCN 0.81 0.72 0.76 623
TMP 0.83 0.73 0.78 628
CGE 0.87 0.85 0.86 728

ReVulDL 0.93 0.92 0.93 790

Table 2: Top-N Accuracy,MAR andMFR of ReVulDL and eight
baselines.

Approach Top-1 Top-3 Top-5 Top-10 Top-20 MFR MAR
ReVulDL 20.40% 44.05% 58.99% 70.38% 84.05% 4.87 5.70

GCN 9.24% 21.91% 29.82% 38.67% 51.15% 16.44 21.25
Vanilla-RNN 5.81% 12.55% 16.81% 20.06% 23.95% 29.13 34.58
Peculiar 17.52% 34.17% 47.81% 60.25% 76.78% 6.92 8.13
LSTM 6.43% 13.87% 18.59% 22.17% 26.48% 28.61 32.79
GRU 6.63% 14.32% 19.18% 22.87% 28.16% 26.95 29.47

DR-GCN 11.16% 28.87% 34.57% 42.56% 59.27% 14.25 16.37
TMP 13.38% 30.44% 37.28% 46.15% 61.23% 12.83 14.16
CGE 16.34% 33.44% 44.14% 56.82% 67.44% 8.79 11.87

4.5 Vulnerability Localization Results (RQ2)
Top-N Accuracy, MAR and MFR For developers, they expect
the vulnerable statements to be top-ranked and thus they are more
likely to examine and locate vulnerabilities earlier [40, 66]. Thus,
our experiments use Top-NAccuracy (i.e.,N=1, 3, 5, 10, 20),MAR, and
MFR to evaluate the localization effectiveness of ReVulDL. Table 2
presents their distribution among eight vulnerability localization
approaches.

As shown in Table 2, ReVulDL achieves promising localization
results, e.g., Top-1 is 20.40% meaning that ReVulDL can locate the
vulnerable statements at the first place in 20.40% of all Reentrancy
vulnerabilities. Specifically, ReVulDL can localize 20.40%, 44.05%,
58.99%, 70.38%, 84.05% vulnerable statements when inspecting the
Top-1, Top-3, Top-5, Top-10 and Top-20 ranked statements. Further-
more, the MAR and MFR are 4.87 and 5.70 respectively. The results
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Figure 7: RImp distribution of ReVulDL.
Table 3: Statistical results of RQ2.

Program 2-tailed 1-tailed(right) 1-tailed(left) Conclusion
ReVulDL vs GCN 0.03 0.90 0.02 BETTER

ReVulDL vs Vanilla-RNN 0.02 0.96 0.01 BETTER
ReVulDL vs Peculiar 0.04 0.84 0.04 BETTER
ReVulDL vs LSTM 0.02 0.99 0.01 BETTER
ReVulDL vs GRU 0.03 0.86 0.02 BETTER

ReVulDL vs DR-GCN 0.03 0.89 0.03 BETTER
ReVulDL vs TMP 0.04 0.85 0.04 BETTER
ReVulDL vs CGE 0.04 0.81 0.04 BETTER

on Top-N Accuracy,MAR, andMFR show that ReVulDL significantly
outperforms all the seven vulnerability localization approaches.
RImp distribution For a detailed improvement, we adopt RImp
to evaluate ReVulDL. Figure 7 represents the RImp distribution of
ReVulDL. As shown in Figure 7, the RImp score is less than 100% in
all approaches, meaning that ReVulDL outperforms all the other
vulnerability localization approaches. The statements that need
to be examined decrease ranging from 31.72% in Vanilla-RNN to
68.34% in Peculiar. It also means that ReVulDL, in comparison to
the other approaches, obtains a maximum saving of 68.28% (100%-
31.72%=68.28%) in Vanilla-RNN and the minimum saving is 31.66%
(100%-68.34%=31.66%) in Peculiar. In summary, ReVulDL saves from
31.66% to 80.15% of the number of statements examined among all
the nine baselines.
Statistical comparison To investigate whether the difference be-
tween the baselines and ReVulDL is statistically significant, we fur-
ther conduct statistical comparisonWilcoxon-Signed-Rank Test [14]
with a Bonferroni correction [1]. The experiments performed eight
paired Wilcoxon-Signed-Rank tests between ReVulDL and each
of the eight localization baselines by using ranks of the vulnera-
ble statements as the pairs of measurements F(x) and G(y). Each
test uses both the 2-tailed and 1-tailed checking at the 𝜎 level of
0.05. Specifically, given a vulnerability localization approach VL1,
we use the list of ranks of ReVulDL in all vulnerable versions of
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Table 4: Statistical results of RQ3.
Program 2-tailed 1-tailed(right) 1-tailed(left) Conclusion

ReVulDL-DFR vs ReVulDL-CFR 0.03 0.86 0.02 BETTER
ReVulDL-DFR vs ReVulDL-CFRDFR 0.78 0.39 0.61 SIMILAR

all smart contracts as the list of measurements of F(x), while the
list of measurements of G(y) is the list of ranks of VL1 in all vul-
nerable versions of all smart contracts. Hence, in the 2-tailed test,
ReVulDL has SIMILAR effectiveness as VL1 when 𝐻0 is accepted at
the significant level of 0.05. And in the 1-tailed test (right), ReVulDL
has WORSE effectiveness than VL1 when 𝐻1 is accepted at the
significant level of 0.05. Finally, in the 1-tailed test (left), VL1 using
ReVulDL has BETTER effectiveness than VL1 when 𝐻1 is accepted
at the significant level of 0.05.

Table 3 shows the statistical results between ReVulDL and each
baseline. We can observe that ReVulDL obtains all BETTER results,
showing that ReVulDL is statistically significantly better than all
the seven baselines in locating vulnerable statements.

4.6 Ablation Experiments (RQ3)
Graph-based pre-trained model ReVulDL utilizes a graph-
based pre-trained model to perform the two-phase tasks (i.e., de-
tection and localization). It is thus interesting to investigate the
contribution of this model. We normalize the parameters of the
pre-trained model and retrain it with the original inputs. During the
training process, the loss rate of the model decreased insignificantly
and consequently the model can not converge with no vulnerable
contract detected. Thus, we conclude that the graph-based pre-
trained model plays an irreplaceable role in vulnerability detection
and localization.
Propagation chains ReVulDL constructs the propagation chains
using data flow relationships (denoted as DFR) to drive the learn-
ing process. It is thus interesting to see the contribution of our
propagation chains, i.e., what is the effect by constructing prop-
agation chains using other types of relationships. There are two
other major types of propagation chains: propagation chains using
control flow relationships (denoted as CFR) and the ones combining
control flow relationships with data flow relationships (denoted
as CFRDFR). We use CFR and CFRDFR for ReVulDL respectively,
and compared them with the original ReVulDL using data flow
relationships. Table 4 shows the statistical comparison results using
Wilcoxon-Signed-Rank Test. Each test uses the list of ranks of the
vulnerable statements of ReVulDL as F(x) and the list of ranks of
each baseline as G(y), checking at the 𝜎 level of 0.05. ReVulDL-DFR
(i.e., the original ReVulDL) obtains BETTER result on ReVulDL-CFR,
meaning that the propagation chains using data flow relationships
are more effective than control flow relationships in vulnerability
detection and localization. ReVulDL-DFR acquires SIMILAR result
on ReVulDL-CFRDFR, showing that even if we combine two types
of relationships, just using data flow relationships is comparable to
the combination. In addition, the combination of two types of rela-
tionships increases the learning cost, and thus ReVulDL (CFRDFR)
does not improve the efficiency in comparison to ReVulDL (DFR).
Thus, we conclude that propagation chains of the original ReVulDL
play a vital role in reentrancy vulnerability detection and localiza-
tion.

Table 5: Timestamp detection performance comparison of
ReVulDL and the 13 baselines in terms of Recall, Precision
and F1 score.

Approach Timestamp
Recall Precision F1 Number

Manticore 0.50 0.57 0.50 11
Osiris 0.51 0.53 0.52 81
Oyente 0.52 0.55 0.53 107
Securify 0.55 0.53 0.53 683
Slither 0.78 0.82 0.84 1296

Smartcheck 0.50 0.74 0.51 22
GCN 0.76 0.68 0.72 1643

Vanilla-RNN 0.45 0.52 0.46 1256
LSTM 0.59 0.50 0.54 1224
GRU 0.59 0.49 0.54 1089

DR-GCN 0.79 0.71 0.75 1698
TMP 0.84 0.75 0.79 1785
CGE 0.88 0.87 0.88 1894

ReVulDL 0.91 0.88 0.90 1996

Table 6:Top-NAccuracy,MAR andMFR of ReVulDL and seven
baselines in locating timestamp vulnerability.
Comparison Top-1 Top-3 Top-5 Top-10 Top-20 MFR MAR
ReVulDL 17.25% 33.17% 42.83% 55.46% 61.47% 12.48 21.32

GCN 6.53% 16.48% 21.65% 29.42% 38.19% 22.17 31.79
Vanilla-RNN 4.12% 8.72% 11.91% 15.34% 17.67% 34.25 42.68

LSTM 5.28% 9.14% 13.27% 18.51% 24.93% 29.61 35.79
GRU 5.94% 11.27% 15.35% 19.46% 27.26% 28.87 33.68

DR-GCN 7.26% 21.28% 25.72% 35.15% 44.67% 21.38 29.27
TMP 10.24% 25.56% 28.19% 43.64% 49.47% 19.35 26.61
CGE 14.16% 27.58% 35.04% 51.19% 57.33% 16.44 24.32

Table 7: Comparison of ReVulDL and Sereum.
Approach Recall Precision F1 Number
ReVulDL 0.89 0.87 0.88 73
Sereum 0.62 0.57 0.59 49

5 DISCUSSION
5.1 Can ReVulDL be generalized to detect and

locate other types of smart contract
vulnerabilities?

It is natural to raise a question whether ReVulDL can be generalized
to detect and locate other types of smart contract vulnerabilities.
To evaluate this potential, we apply ReVulDL for another repre-
sentative type of smart contract vulnerability (i.e., timestamp vul-
nerability [18]), and compare ReVulDL with those baselines which
can work on timestamp vulnerabilities. Our experiments also use
the dataset SmartBugs Wild Dataset [25] and the same parameter
settings in Section 4.2.

Table 5 and Table 6 show the timestamp detection performance
(i.e., Recall, Precision and F1) and localization performance (i.e., Top-
N Accuracy, MAR and MFR) of ReVulDL over the baselines. Table 5
and Table 6 show that ReVulDL achieves the best timestamp detec-
tion (i.e., 0.88 Precision, 0.91 Recall, 0.90 F1 and 1996 detected vulner-
abilities) and localization (i.e., 17.25% Top-1, 33.17% Top-3, 42.83%
Top-5, 55.46% Top-10, 61.47% Top-20, 12.48 MFR and 21.32 MAR)
performance. It means that ReVulDL is potential to be generalized
to detect and locate other types of smart contract vulnerabilities.
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5.2 What types of reentrancy vulnerabilities can
be detected by ReVulDL?

There are four major types of reentrancy vulnerabilities: same-
function reentrancy, cross-function reentrancy, delegated reentrancy
and create-based reentrancy [54, 55]. Same-function reentrancy
causes control flow to an external contract with a fallback function,
and then updates the state afterward in a single function, which
may cause the state of the contract to be incomplete when flow
control is transferred. In comparison to same-function reentrancy,
cross-function reentrancy is a similar attack when the same contract
is re-entered in a different function. Delegated reentrancy performs
a reentrancy hiding in a DELETEGATECALL or CALLCODE instruc-
tion. Create-based reentrancy denotes that a newly created contract
may issue further calls in its constructor to a malicious contract.
As compared with the first two types of reentrancy, the delegated
reentrancy and create-based reentrancy require the dynamic infor-
mation with transactions to be revealed. Thus, without dynamic
execution information of smart contracts, the latter two types of
reentrancy are out of the scope of static approaches including Re-
VulDL, and can be mainly detected by dynamic approaches.

To evaluate the effectiveness of ReVulDL in the first two types of
reentrancy, we further compare ReVulDL with the recent promising
dynamic approach Sereum [54]. Since Sereum requires the dynamic
execution information of smart contracts with many transactions,
its process is much time-consuming. Due to the high cost, we ran-
domly select 500 smart contracts from the test dataset of the ex-
periments to conduct the comparison, where 80 are vulnerable
contracts and 420 are non-vulnerable ones, to interact with these
contracts under test. Table 7 illustrates the comparison of ReVulDL
and Sereum, where ReVulDL acquires a higher Recall, Precision, F1
and the number of detected vulnerabilities over Sereum, showing
that our approach outperforms Sereum.

6 THREATS TO VALIDITY
Threats to internal validity Our implementation of baselines
and ReVulDL may potentially include bugs. To mitigate the threats,
our five team members carefully implement them according to the
publicly available source code and the previous studies, and then
test those approaches by hand-made test cases for their correctness.
Threats to external validity Our experiments use the large-
scale popular dataset SmartBugs Wild Dataset, all from real-life
development, However, the experimental results may not apply
to all cases since there are still many unknown and complicated
factors in realistic development that could affect the experimental
results. Thus, it is worthwhile to conduct experiments on more
smart contracts to further strengthen the experimental results.
Threats to construct validity We adopt seven widely used
metrics to evaluate the effectiveness. According to the extensive
use of the measurement, the threat is acceptably mitigated.

7 RELATEDWORK
This section surveys closely related work on contract vulnerability
detection.

There are conventional smart contract vulnerability detection
techniques. Bhargavan et al. [4] provide a verification system that
inputs Ethereum virtual machine (EVM) bytecode and Solidity

code. Grishchenko et al. [27] utilize a F* framework and Hilden-
brandt et al. [31] use a K framework to define EVM formal semantics.
Brenner et al. [7] detects vulnerabilities in smart contracts using
the Isabelle/HOL tool. Jiang et al. [35] propose ContractFuzzer us-
ing fuzzing technology with dynamic executions to detect vulner-
abilities. Rodler et al. [54] develops Sereum monitoring runtime
data flows during smart contract execution using taint analysis.
Some researchers leverage symbolic execution (e.g., Oyente [45],
Osiris [60], Mythril [48] and Manticore [47]), program analysis (e.g.,
Smartcheck[59] and Slither[23]), and formal verification (e.g., ZEUS
[36] and Securify [62]) to detect smart contract vulnerabilities. The
above conventional approaches are fundamentally based on several
expert-defined rules and patterns manually summarized in advance.
However, the manually summarized rules and patterns may suffer
from the inherent risk of being error-prone and the tricks used by
crafty attackers who may surpass these already known rules.

To overcome these limitations, many researchers recently have
applied deep learning to smart contract vulnerability detection, e.g.,
SmartEmbed [26], DR-GCN [72], TMP [72], CGE [43], Qian et al.
[51] and Tann et al. [58]. SmartEmbed [26] utilizes similarity calcu-
lation to detect vulnerabilities in smart contracts. DR-GCN, TMP [72]
and CGE [43] use graph neural network to learn both syntactic
and semantic features of smart contracts and detect vulnerabilities.
Qian et al. [51] customize LSTM based networks to sequentially
process smart contract source code while Tann et al. [58] utilize a
sequential model to analyze the Ethereum operation code.

Despite delivering promising results, the above deep learning
based approaches focus on detecting whether a smart contract is
vulnerable or not whereas their results on locating vulnerable state-
ments are still unsatisfactory. Thus, we propose a deep learning
based two-phase approach ReVulDL, trying to study vulnerabil-
ity detection and localization as a debugging pipeline for further
improvement.

8 CONCLUSION AND FUTUREWORK
In this paper, we propose a deep learning based two-phase approach
ReVulDL to detect and locate reentrancy vulnerability in smart con-
tracts. For detection phase, ReVulDL customizes a graph-based
pre-trained model using propagation chains to learn a model to
detect whether a smart contract is vulnerable or not for reentrancy
vulnerability; for localization phase, ReVulDL utilizes post-hoc inter-
pretable machine learning to learn and evaluate the suspiciousness
of each statement of being vulnerable. Our experimental results
show that ReVulDL is statistically significantly effective in detecting
and locating reentrancy vulnerability.

In future, we plan to explore more on interpretable machine
learning and extend our approach to other types of vulnerabilities
(e.g., infinite loop vulnerability [18]).
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