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ABSTRACT

Patch correctness has been the focus of automated program repair
(APR) in recent years due to the propensity of APR tools to generate
overfitting patches. Given a generated patch, the oracle (e.g., test
suites) is generally weak in establishing correctness. Therefore, the
literature has proposed various approaches of leveraging machine
learning with engineered and deep learned features, or exploring
dynamic execution information, to further explore the correctness
of APR-generated patches. In this work, we propose a novel perspec-
tive to the problem of patch correctness assessment: a correct patch
implements changes that “answer” to a problem posed by buggy be-

haviour. Concretely, we turn the patch correctness assessment

into a Question Answering problem. To tackle this problem,
our intuition is that natural language processing can provide the
necessary representations and models for assessing the semantic
correlation between a bug (question) and a patch (answer). Specifi-
cally, we consider as inputs the bug reports as well as the natural
language description of the generated patches. Our approach, Qua-
train, first considers state of the art commit message generation
models to produce the relevant inputs associated to each generated
patch. Then we leverage a neural network architecture to learn
the semantic correlation between bug reports and commit mes-
sages. Experiments on a large dataset of 9 135 patches generated
for three bug datasets (Defects4j, Bugs.jar and Bears) show that
Quatrain can achieve an AUC of 0.886 on predicting patch cor-
rectness, and recalling 93% correct patches while filtering out 62%
incorrect patches. Our experimental results further demonstrate the
influence of inputs quality on prediction performance. We further
perform experiments to highlight that the model indeed learns the
relationship between bug reports and code change descriptions for
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the prediction. Finally, we compare against prior work and discuss
the benefits of our approach.

KEYWORDS

Patch correctness; Program Repair; Question Answering;

1 INTRODUCTION

Generate-and-validate techniques have achieved success in auto-
matic program repair (APR) by yielding valid patches for a large
number of defects in several benchmarks [13, 29, 37, 57, 59]. While
such techniques are commonplace, their adoption by the industry
faces a critical concern with respect to their practicality: state-of-
the-art approaches tend to generate patches that overfit the weak
oracles (e.g., test suites) [26, 30, 50, 60]. Indeed, in practice, patches
validated by test cases are only plausible. Most of them will be
manually found by practitioners to be incorrect [8, 29].

Research on automatic assessment of patch correctness has been
prolific in recent years [47, 48, 51]. We identify mainly two cat-
egories leveraging either static or dynamic information. In the
first category, only static information is leveraged to decide on
patch correctness. For example, Ye et al. [56] have manually crafted
static features of code changes that can be used for training a ma-
chine learning (ML) based classifier of patch correctness. Similar
approaches based on deep representation learning have been pro-
posed [47]. More recently, Tian et al. [46] proposed a system where
correctness is decided by checking the static similarity of failing
test cases vs the similarity of code changes. In the second category,
traces of dynamic execution of test suites are leveraged for cor-
rectness evaluation. To predict patch correctness, Xiong et al. [53]
check the behavioural change of failing test case executions. Shar-
iffdeen et al. [43] relied on concolic execution to traverse test inputs
and patch spaces to reduce the number of patch candidates.

Despite the promising results achieved by the aforementioned
approaches to patch correctness assessment, we identify one fun-
damental issue and one opportunity that open roads to the new
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research direction studied in this work. As a fundamental issue,
we note that state of the art approaches generally assess patch
correctness by reasoning mostly about the code changes, and some-
times also about the test case. However, the bug itself, which is

targeted by the generated patch, is seldom explicitly investi-

gated. Yet, patches are written to address a specific buggy behavior.
As an opportunity, we note that bug reports, while informal, may
offer an explicit description of the bug, which can be leveraged to
assess patch correctness.

To the best of our knowledge, no prior work has investigated the
problem of patch correctness as a question-answering problem. We
follow the intuition that when a code base maintainer is presented
with a patch, the suggested changes are evaluated with respect to
the reported bug. That bug is therefore a question. Bug reports,
with their natural language description (cf. Example of Figure 1),
typically pose the problem. The code changes implementing a patch
offer an answer to the problem. The commit message describing
these changes (cf. Example of Figure 2) typically presents the so-
lutions to the maintainer. The maintainer can then immediately
perceive whether the solution (patch) would be relevant to the prob-
lem (bug). This scenario of patch validation by human maintainers
may appear naive since there are other aspects that developers con-
sider, including whether the bug is real, whether the changes are
riskier, etc. Nevertheless, this constitutes a first screening process
that we aim to automate by leveraging recent advances in natural
language processing (NLP) and machine learning (ML).

This paper.We explore the feasibility of leveraging a deep NLP
model to assess the semantic correlation between a bug description
and a patch description, towards predicting patch correctness for
automated program repair. Our main contributions are as follows:

❶ We perform a preliminary validation study to demonstrate that
bug and patch descriptions are correlated within a dataset of
developer submitted patches. This hypothesis validation consti-
tutes a first finding that can open a novel direction for patch
correctness studies using bug artefacts.

❷ We formulate the patch correctness assessment problem as a
question answering problem and proposeQuatrain (Question
Answering for Patch Correctness Evaluation), a supervised learn-
ing approach that exploits a deep NLP model to classify the
relatedness of a bug report with a patch description.

❸ We extensively evaluate the effectiveness of Quatrain to iden-
tify correct patches as well as filter out incorrect patches among
a dataset of 9,135 plausible patches (written by developers or
generated by APR tools). Our evaluation further compares Qua-
train to state of the art dynamic [53] and static [47] approaches,
and demonstrates that Quatrain achieves comparable or better
performance in terms of AUC, F1, +Recall and -Recall.

❹ We conduct an analysis of the impact of inputs quality on the
prediction performance. In particular, we show that the software
engineering committee could benefit from extended research
into the direction of patch summarization (a.k.a. commit message
generation).

The remainder of this paper is organized as follows. Section 2
provides information on the related work, presents our intuition
and summarizes validation data on the hypothesis of our work.
Section 3 overviews our proposed approach. Experimental setup

Missing type-checks for var_args notation

Figure 1: Bug report title of the bug closure-96 in Defects4J.

check var_args properly

Figure 2: Message title of commit fixing bug closure-96.

and results are then described in Sections 4 and 5 respectively. We
provide discussions in Section 6 and conclude in Section 7.

2 RELATEDWORK & HYPOTHESIS

In this section, we describe the related work to highlight the rel-
evance of our work and the novelty of our approach. Then we
validate the hypothesis thatQuatrain builds on.

2.1 Related work

Patch correctness: Test suites are widely used as the oracle to val-
idate the correctness of generated patches in APR. Nonetheless,
given that a test suite is an imperfect (i.e., non-comprehensive)
specification of the program correctness, a patch that passes the
test suite may still be incorrect: such patch is referred to in the liter-
ature as an overfitting patch [30, 40]. With the increasing interest in
program repair, a number of research efforts have been undertaken
towards identifying such overfitting patches, aiming at mitigating
this limitation in APR [51]. In general, existing approaches can be
split into two categories based on whether they need to execute
test cases: static approaches rely on simple heuristics that are sum-
marized from expert knowledge or extracted with learning-based
techniques that capture deep features of the patch. For instance,
Tan et al. [45] enumerated several code change rules that help iden-
tify overfitting patches as those that violate them. Ye et al. [56]
trained a machine learning based classifier, ODS, which is based on
manually-crafted features specially designed for assessing patch
correctness (e.g., presence of binary arithmetic operators). Tian et al.
[47] investigated the feasibility of utilizing representation learning
techniques (e.g., CC2Vec [15] and code2vec [2]) for comparing over-
fitting and correct patches. In contrast, the dynamic approaches
utilize extra information obtained during test execution, such as
the execution results on newly-generated test cases [52, 55, 58], the
test runtime trace [53], and the program invariant inferred from
the execution [54]. Specifically, Ye et al. [58] used two test gener-
ation tools (i.e., Evosuite [11] and Randoop [38]) to generate test
cases independent from the original test suite and Xin et al. [52]
proposed to generate tests that are ad-hoc to cover the syntactic
differences between the generated patch and the ground-truth (i.e.,
developer-provided patch). A patch is considered as overfitting if
it fails any of the newly-generated test cases. Xiong et al. [53] on
the other hand assumes that the ground-truth is missing. They
therefore proposed PATCH-SIM, which builds on the similarities
among test execution traces for predicting patch correctness. The
basic idea is that a patch is likely to be correct if execution traces
of the patched program on previously failing tests are significantly
different from those of the buggy program.

In other directions, Yang et al. [54] proposed a simple heuristic
where a patch can be considered as correct if its inferred invari-
ants are identical to those of the ground-truth. Wang et al. [51]
performed a systematic study and found that combining dynamic
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approaches with static features achieves promising results and is
thus a potential direction.

Overall, prior works in patch assessment have generally exclu-
sively focused on the syntax and semantics of the generated patch,
and to some extent of the patched program behaviour. We observe
that the literature has largely overlooked the characteristics of the
bug itself. In this work, we introduce a novel perspective of patch
assessment where the correlation between the patch and the bug is
investigated. Our intuition is thus that the description of a correct
patch for a specific bug has a latent correlation with that bug’s de-
scription. By leveraging the bug reports as an informal description
of the buggy behaviour and a natural language description of the
patch, we propose an NLP-driven approach,Quatrain, which is
capable to discriminate correct patches from incorrect ones.
Applying NLP in program repair: Given that the target of pro-
gram repair is to transform a buggy program into its correct version,
a number of recent studies have considered it as a translation task.
Building on the software naturalness hypothesis [14], researchers
proposed to apply existing neural machine translation (NMT) tech-
niques generally leveraged in natural language processing. Chen
et al. [5] proposed a Recurrent Neural Network (RNN) based ap-
proach that fixes one-line bugs by translating the buggy line into
the correct line. Tufano et al. [49] designed another RNN based
model that works at the method level: the model takes a buggy
method as input and generates the entire fixed method as output.
Lutellier et al. [31] proposed to separately encode the buggy line
and its surrounding contexts (i.e., statements that appear before
or after the buggy line). CURE [19], a more advanced approach,
leverages pre-training techniques to help the model gain knowl-
edge about the rigorous syntax of programming languages and how
developers write code. Another recent study [33] investigated the
feasibility of applying a large-scale pre-trained model, CodeBERT,
to generate patches.

Overall, while these previous works apply NLP techniques to
the patch generation process, our work investigates NLP models
for patch correctness assessment.
Leveraging bug reports in Software Engineering Automation:
Bug reports are considered as invaluable resources for debugging
activities since they typically contain detailed descriptions about
the program failures as well as the clues of the fault (usually in
the form of stack traces) [4]. A number of studies have exploited
bug reports to facilitate diverse software engineering tasks. Liu
et al. [27] and Koyuncu et al. [24] investigated the feasibility of
building program repair systems based on bug reports, instead
of the traditional test cases. Indeed, the primary motivation of
their works is that the required test case in APR for triggering
the bug may not be readily available in practice when the bug is
reported. Fazzini et al. [10] and Zhao et al. [62] explored how to
automatically reproduce program failures from bug reports without
human intervention. By leveraging code change patterns mined
from bug reports, Khanfir et al. [22] proposed an approach that
can inject realistic faults for improving mutation testing. Besides,
bug reports have been utilized for constructing high-quality defect
benchmarks for software testing [23, 42]. In our study, we leverage
bug reports to model the semantics of the bug and thus better assess
the patch correctness.

2.2 Hypothesis validation

Our hypothesis is that there is a semantic correlation between a
bug description and the associated (correct) patch description. To
validate the existence of such a correlation, we conduct a prelimi-
nary experiment on a collected dataset. The experiment is about
investigating the semantic similarity between the descriptions. To
that end, we consider a ground truth dataset of Defects4J bugs for
which a bug report is available and the commit messages describing
developer-written patches are provided. These are denoted “origi-
nal pairs”. Then, we assign a randomly selected commit message
to each bug report in order to build ‘random pairs’. Finally, to cap-
ture the semantics of the natural language sentences forming the
descriptions (of bugs and patches), we utilize a pre-trained deep
learning model BERT [7] (introduced in Section 3.4), which embeds
the descriptions into vectors. We standardize1 these vector values
to eliminate the influence of dimension on the similarity computa-
tion. Finally, we calculate Euclidean distance for all pairs. Figure 3
presents the distribution for original pairs and random pairs. The
results show that the original (i.e., ground truth) bug report and
associated commit message pairs are more similar than random
pairs. The Mann–Whitney–Wilcoxon test [34] (p-value: 1.2e-32)
further validates the significance of the distribution difference. Note
that we use semantic similarity as a metric to determine correlation.
The validation of the existence of such correlation motivates the
Quatrain approach, where NLP modelling is leveraged to develop
a classification approach of patch correctness by building on pre-
dicting the relevance of a patch (based on its description) for a bug
(given its description).

Figure 3: Distributions of Euclidean distances between bug

and patch descriptions.

3 APPROACH

In this section, we first describe the overview of our proposed
approach. Then, we fill in the details of the approach with specific
steps separated in several subsections.
[Overview]: The intuition we build on is that the natural language
description of a bug-fixing patch is semantically related to the bug
report describing that specific bug: the bug report describes the
problem (bug) and the patch description describes the solution to

the problem. This semantic relation between a bug report and its
associated patch is similar to the QA relation between questions
and their answers in NLP. We present the definition as follow:
Definition 3.1 (Patch Correctness Prediction as a QA Problem).

Given a bug report in natural language 𝑏𝑟𝑛𝑙 , a patch 𝑝𝑎𝑡𝑐ℎ𝑐
for the reported bug, and a natural language description 𝑝𝑎𝑡𝑐ℎ𝑛𝑙
of the patch, predict whether the QA-like pair (𝑏𝑟𝑛𝑙 , 𝑝𝑎𝑡𝑐ℎ𝑛𝑙 ) is
matching or not. I.e, predict whether the patch 𝑝𝑎𝑡𝑐ℎ𝑛𝑙 is relevant
to (answers) the bug report 𝑏𝑟𝑛𝑙 (the question) or not.

1A standardized dataset will have a mean of 0 and standard deviation of 1.
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To solve this problem, we propose an approach, Quatrain,
which takes as input a program whose buggy behaviour is de-
scribed in a bug report and the associated patch generated by an
APR tool, and outputs a prediction of correctness. Figure 4 provides
an overview of the approach, which includes two phases: training
(offline) and prediction (online).

In the training phase, given a batch of buggy programs, Qua-
train first extracts bug natural-language (NL) descriptions (bug
report) from the program repository in an automatic way; then,
for the candidate patches associated to these bugs, it generates
the patch NL description (i.e., a textual description of what the
applied changes) from code-diff of the patch by leveraging a code
change summarization tool (i.e., a commit message generator - cf.
Sections 3.1 and 3.2). Subsequently,Quatrain requires a large num-
ber of positive (i.e. correct) and negative (i.e. incorrect) examples
to train a classifier that can predict the correlation between a bug
report and a patch description. Our third step (Section 3.3) thus
focuses on building a dataset of positive and negative examples
of pairs of bug reports and associated (in)correct patches. In the
fourth step (Section 3.4),Quatrain converts the patch descriptions
and the bug reports into vectors in high-dimensional vector space
to enable model learning. Finally, in the fifth step (Section 3.5),
Quatrain trains a neural QA classifier on the pairs of bug reports
and patch descriptions.

In the prediction phase, Quatrain performs the same prepro-
cessing (first, second and fourth steps) for new buggy program and
its associated candidate patch. Then, Quatrain uses the offline-
trained QA classifier to predict whether the candidate patch indeed
answers the problem represented by the bug report. The answer is
equivalent to a statement on the correctness of the plausible patch
(yes:correct; no:incorrect).

3.1 Extraction of Bug Reports

The first step of our approach is to obtain descriptions of the bugs.
A natural choice for finding such descriptions is to leverage bug re-
ports. They exist in large numbers across projects and provide a NL
description of program buggy behaviour which, at least, describes
the symptom of the bug. Bug reports are submitted via different
platforms, e.g., issue trackers such as Jira and issues in GitHub. For
our purpose, we use a script to automatically mine bug reports for
the bug datasets that we use.

An official bug report typically includes three parts: title, de-
scription, and comments. In the benchmark that we build, some
bug reports include comments where the correct solution or even
the entire patch is posted. Note, however, that in our experimental
assessment, we must assume that the bug has not yet been fixed.
Thus, to remain practical and reduce bias, we discard all comments
and leverage only the title and the description body of bug reports.

3.2 Generation of Patch Description

The second step of our approach is to summarize an APR-generated
patch in natural language so as to obtain a semantic explanation
of the changes applied in the patch. The idea here is to get a rep-
resentation of the patch that is as close as possible to how a bug
report describes, in natural language, what is the bug. If the patch is

written by a developer (e.g., positive example patches in our train-
ing set), its associated commit message could be used as a proxy
for such NL description of the patch. We use a script to mine the
commit messages from developer repositories such as GitHub and
collect the descriptions associated to the patches in our datasets.

Note however that commit messages are obviously not available
for APR-generated patches. Therefore, we automatically generate
patch descriptions with the help of state-of-the-art commit message
generation techniques. In particular, we consider CodeTrans [9],
an encoder-decoder transformer based model that has been de-
veloped to tackle several software engineering tasks. Quatrain
uses CodeTrans-TF-Large, the largest such model which achieves
the highest BLEU score so far of 44.41 on the commit message
generation task.

During training, we obtain patch descriptions either from: (i)
Manually written commit messages of bug-fixing patches provided
by developers, or (ii) Automatically generated descriptions using
CodeTrans for APR-generated patches.

3.3 Construction of Training Examples

Recall from Definition 3.1 that we are addressing a binary classi-
fication problem. To train a binary classifier, one needs to collect
positive (i.e. correct) as well as negative (i.e. incorrect) examples.
Therefore, the third step of Quatrain is to build a dataset of posi-
tive and negative training examples.

At a high level, a positive (or negative) training (or testing) ex-
ample consists of a bug report and its associated patch.

Definition 3.2 (Bug report-patch description pair). A bug report-

patch description pair is a tuple (𝑏𝑟𝑛𝑙 , 𝑝𝑎𝑡𝑐ℎ𝑛𝑙 ) of a bug report
𝑏𝑟𝑛𝑙 and a patch description 𝑝𝑎𝑡𝑐ℎ𝑛𝑙 (in NL) of a 𝑝𝑎𝑡𝑐ℎ that is
intended to fix the bug reported in 𝑏𝑟 .

3.3.1 Positive Examples. We collect two kinds of positive (correct)
training examples. The first kind of correct examples are developer-
written patches and their associated bug reports. The second kind
of correct examples are APR-generated patches and their associated
bug reports where the APR patches have been manually labelled in
previous studies [25, 28, 46, 56]

3.3.2 Negative Examples. We need to create negative examples to
train Quatrain to identify incorrect patches. To do so, we build
two kinds of incorrect examples.

For the first kind of negative examples, we randomly assign
developer-written patches to irrelevant bug reports. For example,
we create a training sample by assigning the patch for bug-x with
the bug report of bug-y. The rationale for creating this kind of
negative examples is to mobilize the model to learn the hidden rela-
tions between bug reports and their associated patch descriptions.
A patch that tackles a totally irrelevant bug would carry much less
- if any - relation to the bug under examination.

The second kind of negative examples is created by selecting
APR-generated patches that have been labelled as incorrect in previ-
ous studies [25, 28, 46, 56] and their associated bug reports. The idea
is that those APR-generated patches were intended to address the
specific bug under examination, but a manual verification revealed
that they were incorrect. Correspondingly, the patch description
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Figure 4: Overview of the approach.

generated for such incorrect patch does not correctly answer the
bug report and thus could be considered as negative example.

3.4 Embedding of Bug Reports and Patches

To efficiently learn the relationship between bug reports and patch
descriptions, we first need to convert the text into a numerical rep-
resentations. Though there exist various techniques [3, 6, 20, 39]
for transforming texts into numerical vectors, selecting the proper
embedding technique is crucial, as it influences how precisely the
vectors represent the text. Compared with popular embedding mod-
els such as Word2Vec [35], which uses a fixed representation for
each word regardless of the context within which the word appears,
BERT [7] has more advantages for representing texts: it produces
word representations that are dynamically informed by the words
around them. Thus, we employ BERT [7] as our initial embedding
model for both bug reports and patch tokenized texts. The used
model is a pre-trained large model with 24 layers and 1024 embed-
ding dimension trained on cased English text. After representing
texts into a vector space, we can readily perform numerical com-
parisons. For example, compute text similarity/correlation metrics.

3.5 Training of the Neural QA-Model

QA-Models are widely applied in Natural Language Processing
(NLP) and Software Engineering (SE) communities. Existing litera-
ture on QA has addressed various tasks [12, 36, 41], among which,
the task of answer selection shares fundamental similarities with
our bug report-patch description matching problem, i.e., select a
correct answer (patch) for a question (bug report). Tan et al. [44]s’
approach exhibits powerful performance on this task by extending
basic bidirectional long short-term memory (BiLSTM) model with
an efficient attention mechanism. Thus, in the fifth step of Qua-
train, we propose to adapt the extended QA model from Tan et al.

to learn the correlation between bug reports and patch descriptions.
We present the architecture of our adapted QA model in Figure 5.

The QA model requires two inputs: bug report and patch de-
scription, in their vectorized format (as per Section 3.4). Then, the
BiLSTM layer takes the inputs to learn the correlation between the
bug report and the patch description. Assuming input vectors are
vector𝑏 and vector𝑐 , we present the BiLSTM in Equation 1.

𝑒𝑏 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑣𝑒𝑐𝑡𝑜𝑟𝑏 ) = [𝑥𝑏1, 𝑥𝑏2, ..., 𝑥𝑏𝑁 ] ∈ R𝑁×𝑑𝑖𝑚,

𝑒𝑐 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑣𝑒𝑐𝑡𝑜𝑟𝑐 ) = [𝑥𝑐1, 𝑥𝑐2, ..., 𝑥𝑐𝑁 ] ∈ R𝑁×𝑑𝑖𝑚,
(1)

where e𝑏 and e𝑐 represent BiLSTM embeddings of one bug report b
and one associated patch description c. N is the length of the input

Patch DescriptionBug Report

BiLSTM

Attention

DenseCosine

Candidate Answer 
Correct (Y/N)

Score

probabilityprobability

Sigmoid

Output

Sigmoid
&

Cosine
&

Attention

Q

BiLSTM

A
vectorize vectorize

Share parameters

Figure 5: Architecture of the neural QA model.

sequence and dim refers to the dimension size of each sequence.
xb𝑖 and xc𝑗 are the embeddings of i-th word in b and c.

To better distinguish the correct patch from other patches based
on the bug report, we employ an attention mechanism on the patch
description to combine the most relevant information according to
the bug report, similar to Tan et al. [44].

To this end, for each word embedding xc𝑗 in patch description,
we compute the matrix product 𝑒𝑏 (𝑥𝑐 𝑗 )𝑇 . We then propagate the
resulting vector through a softmax operator to obtain the impact
weight 𝛼𝑥𝑐 𝑗 of each word of bug report to xc𝑗 .

𝛼𝑥𝑐 𝑗 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑒𝑏 (𝑥𝑐 𝑗 )𝑇 ) ∈ R𝑁 , (2)
where Softmax(x) = 𝑒𝑥𝑝 (𝑥)

Σ𝑖𝑒𝑥𝑝 (𝑥) , and exp(x) is the element-wise expo-
nentiation of the vector x. Afterwards, we map the impact weight
𝛼𝑥𝑐 𝑗 back to each bug report word embedding xb𝑖 to obtain atten-
tion representation 𝑎𝑡𝑡𝑥𝑐 𝑗 ,

𝑎𝑡𝑡𝑥𝑐 𝑗 = Σ𝑁𝑛 𝛼𝑥𝑐 𝑗 ,𝑛𝑥𝑏𝑖 ∈ R𝑑𝑖𝑚, (3)
where 𝛼𝑥𝑐 𝑗 ,𝑛 means the n-th value of 𝛼𝑥𝑐 𝑗 . Then, we flatten e𝑏 and
𝑎𝑡𝑡𝑥𝑐 𝑗 to one-dimensional vectors re𝑏 and re𝑐 representing the bug
report and patch description (with attention), respectively.

Finally, we compute cosine similarity between bug report vector
re𝑏 and associated patch description vector re𝑐 and use the sigmoid
activation function to normalize the output value of cosine layer to
the value range of 0 and 1.

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑐𝑜𝑠𝑖𝑛𝑒 (𝑟𝑒𝑏 , 𝑟𝑒𝑐 )) (4)

where Sigmoid(x) = 1
1+𝑒𝑥𝑝 (−𝑥) . The Score is the prediction prob-

ability of patch correctness.
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[Hyper-parameters]: The employed QA model is mainly based
on BiLSTM. We set the max sequence length to 64 and the hidden
state dimension size to 16 for the BiLSTM layer. During the training
period, we iterate themodel parameters by using anAdamoptimizer
with a leaning rate of 0.01. Considering the data size, we execute 10
training epochs to ensure the convergence of the model. The batch
size at each epoch is 128.

3.6 Classification of the Correlation between

the bug report and the patch description

For a given buggy program and its APR-generated patch,Quatrain
classifies the pair as being correlated or not by first extracting
the bug description, generating a textual description of the patch,
vectorizing the pair of texts, and finally querying the trained QA
model. A prediction probability is a value between 0 (incorrect) and
1 (correct).Quatrain labels a patch as being correct or not based
on a threshold on the prediction output (Section 5.1).

4 EXPERIMENTAL SETUP

We first enumerate the research questions that we investigate to
assess the effectiveness of our approach. Then, we describe the
dataset used for answering the questions. Finally, we present the
evaluation metrics used in our study.

4.1 Research Questions

• RQ-1:What is the effectiveness of Quatrain in patch correctness

identification based on correlating bug and patch descriptions?

We evaluateQuatrain on a large dataset consisting of ground
truth correct and incorrect patches.

• RQ-2: To what extent does the quality of the bug report and of the

patch description influence the effectiveness of Quatrain?

We perform two separate experiments: in the first, we consider
the size of texts (i.e., number of words) as a proxy for quality,
and we investigate whether there is a difference in quality mea-
surement across correct and incorrect predictions. In the second
experiment, given the original bug report and developer patch
description pairs, we replace them alternatively with a random
bug report or a tool-generated patch description and observe
changes in performance measurements.

• RQ-3: How does Quatrain perform in comparison with the state

of the art techniques for patch correctness identification?

We propose to compare our approach against static and dynamic
approaches proposed in the literature for APR patch assessment.

4.2 Datasets

In this paper, we leverage benchmarks that are widely used in the
program repair community and on which several APR tools have
been applied to generate a large number of patches: Defects4J [21],
Bugs.jar [42] and Bears [32]. Table 1 summarizes the patch dataset
that we use for our experiments. First, we mainly collect the la-
belled patches (including developer patches) from the studies of
Tian et al. [46] and Ye et al. [56]. We then supplement the dataset
with the patches generated by AVATAR [28] and DLFix [25], which
were not considered in these prior works. Considering that different
APR tools may generate the same patches for the same bug, we use
a simple string-based comparison script to deduplicate our patch

dataset. Overall, we obtain a large duplicated patch assessment
dataset of 11,352 patches consisting of 2,260 correct and 9,092 incor-
rect patches. Nevertheless, although we removed some duplicated
patches, there are some semantically equivalent patches that could
not be detected with our script. For instance, the two conditional
statements ‘if (dataset == null)‘ and ‘if ((dataset)
== null)‘ in Java are equivalent, although the extra parenthe-
ses make their raw strings mismatch. To reduce the bias of these
duplications in our experiments, we design a specific dataset split
scheme in Section 5.1.

Table 1: Datasets of labelled patches.

Benchmark Subjects Correct Incorrect All

Defects4J [21]
Tian et al. [46] 1344 1017 2361
Ye et al.[56] 0 5493 5493
AVATAR[28], DLFix[25] 59 38 97

Bugs.jar [42] Ye et al.[56] 930 2254 3184
Bears [32] 251 531 782
Total 2,584 9,333 11,917
Total (deduplicated) 2,260 9,092 11,352
Total (experiment) 1,591 7,544 9,135

In our experiment: We recall that our approach relies on mea-
suring the correlation between the bug report (BR) and the patch de-
scription to predict patch correctness. The collected patches above
involve 1,932 unique bugs To obtain the associated bug reports,
we mined their code repositories. Unfortunately, 631 bugs do not
contain associated bug reports. Eventually, we were able to leverage
1,301 (1,932-631) bug reports. Finally, for the 1,301 unique bugs, we
obtain 9,135 available patches consisting of 1,591 correct and 7,544
incorrect patches for our experimental evaluation.

4.3 Metrics

Our objective in patch correctness identification is to ensure that
the proposed approaches can recall many correct patches while
filtering out as many incorrect patches as possible. Thus, we follow
the definitions of Recall proposed by Tian et al. for the evaluation
of their BATS [46] systems:

• +Recall measures to what extent correct patches are identi-
fied, i.e., the percentage of correct patches that are identified
from all correct patches.

• -Recall measures to what extent incorrect patches are fil-
tered out, i.e., the percentage of incorrect patches that are
filtered out from all incorrect patches.

+ 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(5) − 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(6)

where 𝑇𝑃 represents true positive, 𝐹𝑁 represents false negative,
𝐹𝑃 represents false positive, 𝑇𝑁 represents true negative.

AreaUnderCurve (AUC) and F1.We construct a deep learning-
based NLP classifier to identify the correctness of the patch. There-
fore, we use the two most common metrics, AUC and F1 score (har-
monic mean between precision and recall for identifying correct
patches), to evaluate the overall performance of our approach [16] .

5 EXPERIMENTS & RESULTS

We conduct several experiments to answer our research questions.
In Sections 5.1 and 5.2, we focus on the evaluation of approach
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performance and analysis of approach input to performance. In
Section 5.3, we compare against the state of the art.

5.1 Effectiveness of Quatrain

[Experiment Goal]: We answer RQ-1 by investigating to what
extent theQuatrain approach, which predicts patch correctness
by correlating bug and patch descriptions, is effective.
[Experiment Design]: In the literature, ML-based approaches to
patch correctness identification are commonly evaluated using 10-
fold cross validation (i.e., patch set is divided into 90% for training
and 10% for test) [47]. However, as we noted in the analysis of
our datasets, there are semantically equivalent patches. Thus the
training and testing set may contain duplicate samples, which could
lead to biased2 experimental results due to data leakage (i.e., the
model already sees some same test samples in the training phase).

Given the challenge to fully deduplicate the dataset, we propose
to limit the bias via a new split scheme, referred to as 10-group cross
validation. A first manual analysis has shown that the duplicated
patches are typically generated by different APR tools while target-
ting the same buggy program. Therefore, we first randomly distrib-
ute 1,301 unique bugs (including 9135 patches) into 10 groups: and
every group contains unique bugs and their corresponding patches.
Then, 9 groups are used as train data and the remaining one group
is used as the test data. Finally, we repeat the selection of train
and test groups for ten rounds and average the metrics obtained
across the different experimental rounds. Through this 10-group
cross validation scheme, each patch is able to be leveraged as train
data and test data once, which fits the objective of cross-validation.
Additionally though, during each train-test process, the unique
bugs along with their sets of semantically equivalent patches are
exclusively assigned to either train or test group. We trust that such
a scheme will provide a realistic evaluation of the performance of
learning-based approaches for patch correctness assessment.

Figure 6 presents the distribution of the number of patches as-
signed to train and test data at each round of 10-group cross valida-
tion. The overall ratio of train data size and test data size is around
10:1. This ratio is close to typical 10-fold cross validation (9:1) and
thus is appropriate to evaluate the performance of train-test based
approaches.

Figure 6: Distribution of Patches in Train and Test Data.

[Experiment Results]:Using the presented 10-group cross valida-
tion, we provide the overall confusion matrix as well as the average
+Recall (recall of correct patches) and -Recall (recall of incorrect
patches) of Quatrain in Table 2.

Quatrain achieves high AUC at 0.886, demonstrating the over-
all effectiveness of the QA model for patch correctness prediction.
We note however that the F1 score (0.628) is relatively low. This

2We discuss this threat in Section 6

metric is known to yield low values when the test data is imbal-
anced [18]: in our setting, the ratio is around 5:1 between the in-
correct patch set and the correct patch set. We indeed confirm that
that better F1 can be obtained by re-balancing the test data: with
a ratio of 1:1 (1591:1591) at each round, the same trained classi-
fier achieves a F1 score of 0.793. Later, in our experiments, we
mitigate the potential imbalance bias by comparing against state
of the art approaches on the same experimental settings (cf. Sec-
tion 5.3). We found that +Recall and -Recall are sensitive to the
selection of thresholds. When setting the threshold at a low value (
e.g., 0.1), we are able to identify all correct patches (+Recall=100%)
but conversely none of the incorrect patches can be filtered out
(-Recall=0%). Similarly, at the threshold value of 0.9, we filter out all
incorrect patches but cannot recall any correct patch. Nonetheless,
we see thatQuatrain achieves promising results balanced between
+Recall and -Recall when an adequate threshold is selected. For in-
stance,Quatrain can recall 92.7% correct patches while filtering
out 61.7% incorrect patches at a threshold value of 0.4 or +Recall of
73.9% and -Recall of 87.0% respectively at a threshold of 0.5. The
results demonstrate our approach is effective on identifying correct
and incorrect patches.

Table 2: Confusion matrix of Quatrain prediction.

AUC F1

Thresholds

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.886 0.628

#TP 1591 1582 1551 1475 1175 583 189 0 0
#TN 0 2388 3010 4653 6566 7261 7522 7544 7544
#FP 7544 5156 4534 2891 978 283 22 0 0
#FN 0 9 40 116 416 1008 1402 1591 1591

+Recall(%) 100 99.4 97.5 92.7 73.9 36.6 11.9 0 0
-Recall(%) 0 31.7 39.9 61.7 87.0 96.2 99.7 100 100

✍ RQ-1 ▶ Experimental validation on our collected ground truth

demonstrates the effectiveness of Quatrain in identifying correct

patches and filtering out incorrect patches: our implementation

achieves a +Recall of 92.7% and -Recall of 61.7% when the decision

threshold is set at 0.4. ◀

5.2 Analysis of the Impact of Input Quality on

Quatrain

[Experiment Goal]:Quatrain relies on specific steps to extract
bug and patch descriptions once a patch candidate is generated to be
applied for a buggy program. The quality of these descriptions may
thus influence the performance of our approach. We investigate
such an influence by attempting to answer three sub-questions:

• RQ-2.1 To what extent does the length of bug reports and patch

descriptions influence the prediction performance? We hypothe-
size that good descriptions should have more distinct words,
and explore whether correct predictions are made on patch/bug
descriptions of larger size.

• RQ-2.2 Does the NLP-based QA classifier actually correlate the

bug report and the patch description?We introduce noise in the
test data and evaluate whether the classifier is actually looking
at the correlation that we seek to check with the QA.

• RQ-2.3 Do generated patch descriptions provide the same learning

value as developer-written commit messages? We perform experi-
ments where ground truth patch descriptions in the training set
are alternatively switched between developer-written (assumed
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of high quality) and automatically generated (assumed of lower
quality) commit messages.

[Experiment Design (RQ-2.1)]:We first define the length of in-
put sentence as the number of distinct words included in the bug
reports. Our assumption is that the presence of more distinct words
in a textual description may indicate higher quality. Then, for each
evaluation round of the 10-group cross validation scheme, we com-
pute the boxplot distribution of length of bug and patch description
for correct and incorrect predictions made by our model respec-
tively. Finally, we calculate Mann Whitney Wilcoxon (MWW) to
evaluate whether the difference of length is significant across the
distributions. The analysis is made on both the length of bug report
and patch description.
[Experiment Results (RQ-2.1)]: Figure 7 presents the distribu-
tions of patch description lengths for each round of prediction. We
can observe that, overall in most groups, the length of patch de-
scription are bigger in the correct predictions than in the incorrect
predictions: the model is effective when the patch description has
larger size. The Mann–Whitney–Wilcoxon test (p-value: 4.1e-16)
further confirms that the difference of length is statistically signifi-
cant. In contrast, the difference for the case of bug reports was not
found to be statistically significant.

Figure 7: Impact of length of patch description to prediction.

✍ RQ-2.1 ▶ The higher the quality of patch description (i.e., in

terms of text length), the more Quatrain is accurate in predicting

patch correctness.◀

[Experiment Design (RQ-2.2)]: We recall that our NLP model
is designed to correlate the bug report and patch description to
predict the patch correctness. To validate that some correlation is
indeed learned by the devised model, we investigate the influence
of associating wrong bug reports to some patches in the test set.
We consider the dataset of 1,301 developer-written patches in this
experiment since the developer patch description and associated
bug report are known to be indeed related by construction. We first
compute the performance achieved by Quatrain in the prediction
of correct patches. Then, for the patches that Quatrain can cor-
rectly predict (recall), we re-run the classification test where we
replace the original bug reports with other randomly selected bug
reports among the test data. We investigate whether this break-
down of the correlation between bug report and patch description
is reflected in the prediction performance of NLP model.
[Experiment Results (RQ-2.2)]: Figure 8 presents the distribu-
tion of prediction probability of Quatrain for the 1,073 correct
patches when the classifier is applied on the ground truth pairs (i.e.,

original pairs) and when the classifier is applied on pairs where
the patch is associated to a random bug report (i.e., random pairs)
. As we can see from the boxplot, the lowest value of the distri-
bution of original pairs (white box) is around 0.5. This is normal
by construction: we set 0.5 as the threshold probability for de-
ciding correctness, and our data is focused on cases where the
prediction was correct. After breaking the correlation of bug re-
port and patch description pairs, we found thatQuatrain yields
some prediction probability values smaller than 0.5 (i.e., they will
be wrongly-classified as incorrect) although the patches are correct.
The Mann–Whitney–Wilcoxon test (p-value:4.0e-35) confirms that
the difference of median probability values is statistically signifi-
cant between the two distributions. Concretely, 22% (241/1073) of
developer patches, which were previously predicted as correct, are
no longer recalled by Quatrain after they have been associated to
a random bug report. These results suggest that the QA learner in
Quatrain indeed assesses the correlation between the bug report
and the patch description for predicting correctness.

Figure 8: The distribution of probability of patch correctness

on original and random bug report.

✍ RQ-2.2 ▶ After assigning developer patches with random bug

reports, we note that Quatrain is no longer able to predict over

20% of them correctly. The results suggest that the QA learner in

Quatrain indeed assesses the correlation between the bug report

and the patch description for predicting correctness. ◀

[Experiment Design (RQ-2.3)]: Commit messages are generally
accepted as high-quality descriptions of changes since they are
manually written by Developers. While CodeTrans is a state of the
art, its generated-descriptions should be lesser quality. Neverthe-
less, because developer-written commit messages are unavailable
in practice for APR-generated patches, we must resort to automatic
patch summarization tools such as CodeTrans. We evaluate the
impact of the quality of patch description (developer-written vs.
CodeTrans-generated) on the prediction performance. Our exper-
iments focus on the developer patches only as in RQ-2.2. In the
dataset, each patch has two kinds of descriptions, i.e., written by
developer and generated by Codetrans. We first evaluate our ap-
proach based on developer-written descriptions. Then, we replace
the developer descriptions with CodeTrans-generated descriptions
to assess the performance evolution.

Besides, we speculate that Quatrain is more likely to correctly
predict a correct patch if the generated description is similar to
developer-written descriptions used in the training set, we conduct
experiments to validate this hypothesis. Note however that the
semantics of developer-written and generated descriptions should
be equivalent as they describe the same developer patch. To mea-
sure the differences in the descriptions, we adopt the Levenshtein
distance3 and compute their textual similarity.

3A classic metric for measuring the distance between two strings by calculating
the minimal edit operations required.
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Figure 9: Impact of distance between generated patch de-

scription to ground truth on prediction performance

[Experiment Results (RQ-2.3)]: The experimental results show
that Quatrain can achieve a +Recall of 82% (1,073/1,301) when
the input for test data uses developer-written descriptions as in
RQ-2.2. However, that metric (+Recall) drops by 37 percentage
points to 45% when the developer-written descriptions are replaced
with CodeTrans-generated descriptions. This demonstrates that the
quality of patch description considerably impacts the prediction
performance of Quatrain. Figure 9 displays the boxplot distribu-
tion of Levenshtein distance between developer description and
generated description on correct and incorrect predictions respec-
tively. In most of the groups, the white box (correct predictions)
presents the shorter Levenshtein distance value, i.e., higher sim-
ilarity. This result suggests that if a generated description has a
quality that is as high as that of the developer description, Qua-
train prediction ability will benefit from it. Finally, note that in
Section 5.1, we evaluatedQuatrain in a setting where all developer
commit messages were replaced with generated descriptions: the
AUC metric dropped by 11 percentage points to 0.774, confirming
our findings.

✍ RQ-2.3 ▶ Patch descriptions generated by CodeTrans are often

of different quality than ground-truth descriptions. Yet, good patch

descriptions help Quatrain identify more correct patches. ◀

5.3 Comparison Against the State of the Art

[Experiment Goal]: While previous RQs have shown that Qua-
train is reasonably effective, we propose to assess it in comparison
to prior approaches in the literature. We consider both state of
the art static and dynamic approaches. Finally, we investigate the
complementarity of our approach to other approaches.

5.3.1 Comparing against StaticApproaches. We compareQua-
train against two state of the art approaches: (i) A pure classifica-
tion approach based on patch embeddings [47] and (ii) BATS which
leverages the embedding of test cases to compute similarity among
failing test cases and among associated patches [46].

Quatrain vs. (supervised) DL-based PatchClassifier. InQua-
train, we first leverage pre-trained Bert model to embed the natural
language text of bug report and patch description of patch. Then,
we build a deep learning classifier to capture the QA relationship be-
tween these descriptions to predict patch correctness. Since Tian et

al.’s approach also use BERT and construct a classifier for patch

correctness validation, we compare our approach against theirs.
For a fair comparison, we reproduce their evaluation on our dataset.
Concretely, when we train or test our model with divided-by-group
patches, we consistently use the same patches for the training and
testing of Tian et al.’s classifiers of Logistic Regression (LR) and
Random Forrest (RF), following their experimental setup.

Table 3 presents the comparison results: Tian et al.’s best classi-
fier (RF) achieves +Recall of 89.4% while filtering out 59.8% incorrect
patches. Meanwhile, Quatrain achieves a better +Recall of 92.7%,
and filters out slightly more incorrect patches (-Recall of 61.7%).
Regarding the overall performance metrics AUC and F1,Quatrain
outperforms the approach of Tian et al.. We finally investigate the
complementarity of our approach. Among 9135 patches, our ap-
proach identifies 7842 patches, of which 2735 patches cannot be
identified by Tian et al.’s approach (RF).

Table 3:Quatrain vs a DL-based patch classifier [47].

Classifier Incorrect:Correct AUC F1 +Recall -Recall

Tian et al. (LR) 7544:1591 (5:1) 0.719 0.449 0.833 0.605
Tian et al. (RF) 7544:1591 (5:1) 0.746 0.470 0.894 0.598

Quatrain 7544:1591 (5:1) 0.886 0.628 0.927 0.617

Quatrain vs. (unsupervised) BATS. BATS[46] is the most re-
cent patch correctness assessment approach proposed by Tian et

al.. It is devised based on a simple but novel hypothesis that when
different defective programs fail to pass similar test cases, it’s likely
that the programs can be repaired by similar code changes. Given
a buggy program, failing test cases and a plausible patch, BATS
first searches the most similar failing test cases from other oracle
programs. Afterwards, the associated correct patches that fix these
similar test cases are extracted to compute their similarity with
the generated plausible patch. BATS labels the plausible patch as
correct if that similarity is beyond an inferred threshold, otherwise
it is predicted as incorrect.

According to the authors’ open-source artifacts, BATS is cur-
rently able to be evaluated on Defects4J and is not adapted for Bears
and Bugs.jar. We thus conduct the comparison on the benchmark
of Defects4J. Although Tian et al. demonstrated that BATS shows
promising results on identifying patch correctness, its scalability
is limited due to the lack of enough test cases in the search space
to compute similarity. They thus added a cut-off on the similarity
computation of test cases to focus on a subset of patches where
BATS is applicable.We follow their experimental setup to reproduce
BATS evaluation on our dataset with the cut-off of 0.0 (non-specific
scenario) and 0.8 (the best performance in their evaluation). We
compare our approach on the same available dataset.

As shown in Table 4, the configuration of cut-off incurs the reduc-
tion of patch set that can be evaluated. Our approach comprehen-
sively outperforms BATS whether they filter dissimilar programs
or not (cut-off: 0.0 and 0.8). Note that BATS is not able to scale its
performance, in this scenario, to the entire dataset due to the lack
of similar test cases. In addition, in this scenario, 180 out of 345
patches are exclusively identified byQuatrain.

5.3.2 Comparing against a Dynamic Approach. We consider
a dynamic approach where execution traces are also leveraged in
the prediction of correctness. PATCH-SIM [53] is a state of the
art tool for dynamic assessment of patch correctness: it compares
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Table 4:Quatrain vs BATS [46].

Classifier Incorrect:Correct AUC F1 +Recall -Recall

BATS (cut-off: 0.0) 4930:385 (13:1) 0.549 0.149 0.647 0.452
Quatrain 4930:385 (13:1) 0.824 0.350 0.803 0.662

BATS (cut-off: 0.8) 367:41 (9:1) 0.620 0.235 0.805 0.436
Quatrain 367:41 (9:1) 0.832 0.462 0.902 0.453

test execution information before and after patching a buggy pro-
gram. The hypothesis they proposed is that correct patches tend to
change the behaviour of execution of failing test cases and retain
the behaviour of passing test cases consistent. Due to the failure
of prediction for part of the patches4 and limitation of timeout,
we finally can apply PATCH-SIM to 3,546 patches. The results in
Table 5 show that our approach filters out more incorrect patches
while reaching same +Recall compared to PATCH-SIM. Most of the
patches (1856/3149) that we identify are not correctly predicted by
PATCH-SIM. Note that the low values of F1 score (both for PATCH-
SIM andQuatrain) are due to the extremely imbalanced ratio of
44:1 in incorrect:correct sets.
Table 5:Quatrain vs (execution-based) PATCH-SIM [53].

Classifier Incorrect:Correct AUC F1 +Recall -Recall

PATCH-SIM 3468:78 (44:1) 0.581 0.053 0.769 0.392
Quatrain 3468:78 (44:1) 0.792 0.127 0.769 0.667

✍ RQ-3▶ Comparing against state of the art static and dynamic

approaches, our approach achieves competitive (and sometimes

better) performance on predicting patch correctness. ◀

6 DISCUSSIONS

We enumerate a few insights from our results and discuss the threats
to the validity of our study.

6.1 Experimental insights

[Insufficient deduplication of semantically-equivalent patches may

lead to biased prediction performance.] As we mentioned in the
experimental design in Section 5.1, the traditional 10-fold cross
validation scheme may assign the same semantically-equivalent
patches simultaneously into both train and test datasets. In practice,
this setup violates the principles in machine/deep learning-based
evaluations since it’s equivalent to letting the models cheat by
learning knowledge from test data during the training process[1,
17, 61]. To showcase this bias in the results, we propose to focus on
a straightforward classifier using RandomForest on the embeddings
of the bug report and the patch: when using 10-fold cross validation
scheme on our ground truth dataset, the achieved AUC is as high
as 0.978 (with F1 at 0.860); however, when using our deduplication
scheme (10-group cross validation based on bug ID), the AUC drops
to 0.780 (and F1 at 0.344).
[Generating high quality code change description can help identify

patch correctness] We found that the quality of code change de-
scription influences the prediction performance of Quatrain. In
RQ-2.1 and RQ-2.3, the experimental results show the model makes
more correct predictions when addressing longer or more devel-
oper written-similar code change description. Our experiments

4We reported the problem to the PATCH-SIM authors and we are still waiting for
their response.

offer some evidence to encourage the community to design ad-
vanced patch summarization approaches. Quatrain indeed can
become a prime candidate for leveraging such research output to
further increase the practicality towards adoption of automated
program repair.

6.2 Case study

Figure 10 presents an example correct patch generated by DLFix, an
APR tool, for Defects4J bug Lang-7.Quatrain successfully predicts
its correctness while BATS fails to do so.
--- ./src/main/.../NumberUtils.java
+++ ./src/main/.../NumberUtils.java
@@ -449,9 +449,7 @@

if (StringUtils.isBlank(str)) {
throw new NumberFormatException("A blank string is

not a valid number");
}

- if (str.startsWith("--")) {
- return null;
- }
+

if (str.startsWith("0x") || str.startsWith("-0x") || str.
startsWith("0X") || str.startsWith("-0X")) {

Figure 10: A correct generated patch for Defects4J Lang-7.

The associated bug5 is reported as follows:
Title: NumberUtils\#createNumber - bad behaviour for leading "--".
Description: NumberUtils\#createNumber checks for a leading "--"
in the string, and returns null if found. This is documented ...

The hypothesis of BATS is that similar buggy programs may
require similar patches to fix. To predict the generated patch cor-
rectness, BATS searches for a buggy program that fails on similar
failing test cases with Lang-7. The retrieved program is the bug
Lang-166 in Defects4J. BATS predicts the generated patch is correct
if it’s similar with the developer patch addressing bug Lang-16.
However, the retrieved bug Lang-16 is not related with bug Lang-7
even though they have similar test cases and require a dissimi-
lar patch to fix. Thus, BATS fail to predict the generated patch
correctness.

Consider however the NL description of the patch as it is gener-
ated by CodeTrans:

removed the unnecessary "" -- "" from NumberUtils . startsWith ( ) ,
it was restricting our.

The syntactic and semantic correlation between the bug and
patch description is obvious, which supports the fact thatQuatrain
predicts the patch as correct.

6.3 Threats to validity

The implementation of Quatrain uses a pre-trained BERT to em-
bed bug and patch descriptions before feeding them into the QA
learner. We further use CodeTrans for patch description generation.
These choices may have influenced greatly our results. The associ-
ated threat is nevertheless limited since these constitute the state
of the art in their respective domains.

Our evaluation dataset includes 9 135 patches, although it is
highly imbalanced (83% incorrect patches vs 17% correct patches).
This imbalance may bias our performance estimation. We mitigate
this bias by stressing more on AUC metric, rather than F1 score and
by performing comparison experiments against the state of the art.

5https://issues.apache.org/jira/browse/LANG-822
6An upper-case hex bug in https://issues.apache.org/jira/browse/LANG-746
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Our patch correctness labels have beenmanually decided in prior
work [47]. The accuracy of the labels constitutes a threat to validity,
which is mitigated in part by our comparison against the state of
the art on the same datasets.

Our experimental evaluation does not perform any fine-tuning
of the hyper-parameters of the QA model or even the initial BERT
model used for embedding bug and patch descriptions. The yielded
performancemay thus not be representative of what can be achieved.

7 CONCLUSION

In this paper, we propose a novel perspective to the pass correctness
assessment problem in automated program repair. Given a plausi-
ble patch, which is validated by an imperfect oracle, the need for
correctness identification is acute, as several studies have revealed
that state of the art repair tools generate overfitting patches. Our
idea is that a correct patch is the one that answers to the problem
revealed by the execution failure (bug). We therefore designQua-
train a neural network architecture that leverages NLP to learn
to correlate bug and patch description and produce a Question-
Answering based classifier. Given a buggy program, we consider
its bug report and leverage CodeTrans to generate descriptions
for all APR-generate candidates targeting the bug. Then, we use
these NL descriptions of bugs and patches to feed the QA classifier
of Quatrain. The classification decision serves as a prediction of
patch correctness. The experimental results show that our approach
is able to identify 92.7% correct patches and filter 61.7% incorrect
patches with an AUC of 0.886. We then investigate and discuss the
influence of the quality of the input (bug report and code change
description) on the effectiveness of Quatrain. We also perform ex-
periments to demonstrate that Quatrain indeed learns and builds
on the correlation between the bug report and the patch to make
the predictions. Finally, we reproduce recent state of the art static
and dynamic patch assessment tools on our dataset and show that
Quatrain exhibits competitive or better effectiveness in recalling
correct patches and filtering out incorrect patches. Insights from
our work open new research direction in patch assessment, but
also provide a novel use case for a large body of the literature that
is focused on code summarization.
Availability. Our artifact, which will be made public, is available
at: https://github.com/Trustworthy-Software/Quatrain.
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