
Understanding the Non-Repairability Factors of
Automated Program Repair Techniques

Bo Lin†, Shangwen Wang†∗, Ming Wen?, Zhang Zhang†, Hongjun Wu†, Yihao Qin†, Xiaoguang Mao†
†National University of Defense Technology, Changsha, China

?Huazhong University of Science and Technology, Wuhan, China
{linbo19, wangshangwen13, zhangzhang14, wuhongjun15, qinyihao15, xgmao}@nudt.edu.cn, mwenaa@hust.edu.cn

Abstract—Automated Program Repair (APR) is becoming a
hot topic in Software Engineering community with many ap-
proaches being proposed and experiments being performed over
the years. The results obtained from different experiments can be
used as practical guidance to advance APR techniques. However,
researchers have generally ignored the biases with respect to
the unexpected results generated by various APR techniques,
in which case the repair process cannot be finished normally
and is terminated with unexpected exceptions (referred to as the
non-repairability factors). In this paper, we aim to thoroughly
understand the reasons for such non-repairability factors of
various APR techniques, thus to provide practical insights for
diverse stakeholders to establish an unbiased evaluation of APR
techniques. To achieve so, we performed a systematic study
on the existing execution logs that are ended with unexpected
exceptions collected from different APR studies. Specifically, we
investigated different types of exceptions with their frequencies of
occurrence, the behind reasons of such occurrences, as well as the
impact of such exceptions on the repairability of APR techniques.
Our experimental results reveal that: 1) non-repairability factors
happen in 25.7% of our studied logs and are widespread among
diverse combinations of APR tools with FL strategies; 2) Inherent
defect of APR tools is the most common reason for the occurrence
of the non-repairability factors; 3) the impact of the non-
repairability factors on the performance of APR tools can be
rather significant. Our empirical study indicates that it is of great
importance to eliminate the biases from the non-repairability
factors. We also highlight several implications for actions that
we can take to eliminate such biases.

Index Terms—Program Repair, Logs, Exceptions

I. INTRODUCTION

Automated Program Repair (APR) [1], which aims to gen-
erate patches for software defects automatically, has attracted
widespread attentions in recent years due to its huge potential
in reducing debugging costs. The technique mainly contains
three steps, which include Fault Localization (i.e., to generate
a ranked list of suspicious elements in the program), Patch
Generation (i.e., to drive the generation of a patched version of
the buggy program which meets the desired behavior specified
by the test suite through various kinds of methods such as
heuristics [2] and constraints solving [3]), and Patch Validation
(i.e., to assess whether the generated patches are correct). Over
the years, the state-of-the-art in this field has been advanced

∗ Corresponding author.
This work is supported by the National Natural Science Foundation of

China No.61672529, No.62002125, as well as the Fundamental Research
Funds for the Central Universities (HUST) No.2020kfyXJJS076.

dramatically with numerous test-suite-based techniques being
proposed and evaluated in well-established benchmarks [4].

Each time a new technique is proposed, its authors made
a comprehensive comparison against the studies in the lit-
erature to demonstrate its advances [5], [6]. Besides, there
are also plenty of large-scale empirical studies concerning
certain under-valued aspects such as patch correctness [7],
benchmark overfitting [8], and efficiency [9]. The results of
these comparisons play a significant role since it can guide
the future direction in this field, e.g., if a study reveals certain
factors that contribute most to the effectiveness of existing
APR techniques, future studies may focus on advancing the
parts with respect to such factors.

Generally, researchers only concern on how many bugs a
tool can repair, while often ignore those failures of the fixing
attempts of other bugs. In other words, few attentions has
been paid to the factors that cause the repair process to end
with unexpected results, in which case the fixing attempt is
terminated abnormally and no results are generated (referred
to as the non-repairability factors in this study). Recently, Liu
et al. revealed that two tools (i.e., Nopol and DynaMoth) are
unable to fix some bugs due to the configuration problems
(cf. Table 4 in [9]), which also indicates that APR techniques
may generate no patch for a bug for other reasons rather than
the capability of the tool itself. Such issues indeed bring great
threats to the fair comparisons among various APR techniques.
For example, if a tool fails to fix a bug in an evaluation
due to configuration problems while it can actually fix it
when all the environments have been appropriately handled,
it may achieve a low performance in the comparison and
thus to be underestimated. Therefore, it is of great emergency
to investigate what factors may cause the non-repairability
factors and furthermore, how to avoid such factors to eliminate
potential evaluation bias in the future studies.

To fill this gap, we performed a large-scale study to com-
prehensively understand the factors contributed to the non-
repairability factors. Particularly, we investigated the excep-
tions in the execution logs generated by APR tools targeting
the Java programs. We focus on Java repair systems since
they are dominant in the APR field in recent years [10],
[11]. We choose to investigate the execution logs of APR
tools since the execution results, including those ended with
unexpected results, can be directly reflected by the generated
logs. Specifically, we analyzed all the execution logs generated

by existing studies that are publicly available, which include
in total 11,818 logs. We summarized different types of excep-
tions occurred and deeply analyzed the causes behind them.
Specifically, we classified them into 5 categories. Eventually,
we revisited the performance of existing APR techniques and
compared them without bias after removing all the observed
non-repairability factors. Overall, our primary findings are:
F1: So far, execution logs generated by APR techniques have

not been widely studied. Among numerous studies on
APR, only five have released all their logs.

F2: Exceptions happen in a considerable number of fixing
attempts (25.7% of our studied subjects), among which
IllegalState is the most common one.

F3: The causes of such exceptions are 5-folds while the
inherent defect of APR tools is the dominating one,
accounting for nearly 60% of the total amount.

F4: The impact of such exceptions is widespread and sig-
nificant on some certain APR tools under specific Fault
Localization strategies.

Moreover, based on our in-depth analysis of the behind
reasons of the existing exceptions in the logs, we distilled
several implications for avoiding the influence, including being
careful with the experimental setup of replication studies and
evolving third party libraries continuously.

II. BACKGROUND AND MOTIVATION

In this section, we first present background information
about our study and then provide the motivation of our study
that is other reasons rather than fixing abilities may bring
threats to the validity of APR studies.
A. Background

Automated Program Repair (APR) has become a hot topic
in Software Engineering community in recent years [1]. Given
a buggy program and its corresponding test suite, APR first
utilizes a Fault Localization (FL) technique which is usually
GZoltar [12] to acquire a list of suspicious statements. After
that, it tries to generate patches at these suspicious statements
using either search-based technique [2], [5], [6], [11] (i.e.,
search within a predefined space) or synthesis-based technique
[13] (i.e., use constraints solving strategy to synthesize a
patch). At the end, APR uses specifications (test suites, under
most conditions) to check the correctness of generated patches.
If a generated patch passes all the test cases, it will be
outputted as a plausible patch. Originally, APR techniques
are designed for C language [2], [3]. However, recent years
have witnessed the explosive growth of the number of Java
techniques [6], [13]–[17]. As a result, this paper focuses on
APR techniques for Java.

Over the years, researchers have created some defects
benchmarks to evaluate the performances of APR techniques.
Defects4j [4] contains 395 bugs from 6 open-source Java
projects, namely Chart, Closure, Lang, Math, Mockito, and
Time. With the help of bug tracking system, bugs are extracted
by the identification of bug fixing commits and each buggy
program possesses a fixed version which demonstrates how
developers handle the bug (known as ground-truth). Upon

created, this benchmark has been widely-used in APR studies
[18]. Thus, in our study, we focus on this benchmark.

In this paper, to ease our presentation, we use fixing attempt
to denote the execution of APR tool on a certain bug. Besides,
we use valid fixing attempt to denote fixing attempt which
ends with expected results. Normally, the result of a fixing
attempt is either Success or Fail. The former represents that
APR tools successfully find a patch that can pass all the
test cases, while the latter indicates that APR tools fail to
generate a test-suite-adequate patch in a predefined limitation
(e.g., time budget) or traverse the whole search space but
find nothing, both of which show the disability of the APR
tools for fixing the bug (referred to as repairability factors).
Note that there have already been several studies [8], [19]
analyzing the repairability factors of APR tools. For instance,
the authors of [19] attributed some failures of fixing bugs to
insufficient fix patterns. However, there exists situations where
the fixing attempt is terminated unexpectedly (referred to as
non-repairability factors). To the best of our knowledge,
we are the first to systematically investigate non-repairability
factors.

B. Motivation

We observed that two recent studies (i.e., Liu et al. [9] and
Durieux et al. [8]) both reran Cardumen [20] on the Defects4J
benchmark. However, they reported different numbers of bugs
which could be fixed by this tool (12 vs. 17). What surprises
us is that the number is fewer when utilizing the latest
fault localization framework (i.e., GZoltar-v1.7 in [9]), since
previous study has demonstrated that better fault localization
can enhance the repair performance [21]. We further checked
the fixed bug lists of these two studies and searched for the
differences. We observed that bug Chart-1 can be fixed under
GZoltar-v0.1 (in [8]) while cannot under the same tool with
version 1.7. We then referred to the log of Chart-1 in the
study [9] and found that there exists an exception as shown in
Listing 1 which causes the unexpected exception of this fixing
attempt.
1 Exception in thread "main" java.lang.

UnsupportedOperationException:
PartialSourcePosition only contains a
CompilationUnit at spoon.reflect.cu.position.
NoSourcePosition.getLine(NoSourcePosition.java:49)

2 at fr.inria.astor.core.solutionsearch.population.
ProgramVariantFactory.createModificationPoints(
ProgramVariantFactory.java:257)

3 at fr.inria.astor.core.solutionsearch.population.
ProgramVariantFactory.createProgramInstance(
ProgramVariantFactory.java:121)

4 at

Listing 1: Exception from Cardumen on Chart-1 in study [9]

After carefully checking the stack trace, we found that
Cardumen throws this exception when preparing to search
plausible patches in the search space. When utilizing GZoltar-
v1.7, the returned results are the statements whose suspicious
values are larger than 0. While in GZoltar-v0.1, the suspicious
values of the output statements should be larger than 0.1. This
difference determines that the selected statements by GZoltar-
v1.7 are much more than its earlier version. Cardumen throws

this exception when encountering a specific type of statement
as we will analyze in Section IV-B.

This example is a vivid case demonstrating that the non-
repairability factors may cause exceptions during execution
and thus lead to the failure of fixing attempts.

III. STUDY DESIGN

This section presents the design details of this study.
A. Research Questions

Overall, our investigation to the non-repairability factors of
fixing attempts of different APR techniques aims to answer
for the following research questions (RQs):
1) RQ1. Number of occurrence of each type of exception:

We first investigated the question: what is the number
of occurrence of each type of exception? To answer this
question, we searched for the occurrences of all exceptions
recorded in the logs generated by existing APR tools and
classify them based on the thrown message.

2) RQ2. Reasons behind the unexpected exceptions: Upon
finding out all the exceptions in existing experiments, we
investigated the behind reasons for these unexpected re-
sults: why these unexpected exceptions happen? To seek the
answer, we analyzed the in-depth reasons behind each kind
of exception and further categorized them into different
reasons. Answering such a question can provide practical
guidance to avoid such exceptions in future studies.

3) RQ3. Impact of unexpected exceptions: Finally, given
that a certain number of exceptions being generated in
existing studies, we aim to investigate their impacts on
the experimental results. Specifically, we question what
is the performance of APR tool when discarding those
executions which are affected by non-repairability factors?
We re-calculated the repairability (i.e., effectiveness) of
APR systems by only concerning those executions ended
with normal results and make comparisons with previously
reported results. By doing so, we can gain a clear insight
on the impact of non-repairability factors.

B. Subject Selection

To investigate our research questions, we need to mine the
execution logs in APR studies where the exception information
is recorded. Note that there are mainly two kinds of papers in
APR field: to introduce new APR techniques [5], [6], [13] or to
empirically assess the performance of existing APR techniques
[8], [9], [18]. In this study, to represent each scientific literature
precisely, we use the tool name if the paper proposes an APR
technique or the family name of the first author followed by
the publication year if it is an empirical study.

In the end, APR studies considered for our study need to
satisfy the criterion that logs of all fixing attempts (not only
those which generate plausible patches) should be released.
We consider the living review of APR by Monperrus [1] as
our sources of information to identify Java APR studies. Table
I enumerates all the Java-based APR studies and also provides
the arguments for its inclusion/exclusion in this study.

In total, we included five studies: SimFix [6] is an APR
technique that utilizes code change operations from existing

TABLE I: Included and excluded APR studies for our study
Selected Reason APR Studies

No Not public
PAR [22], xPAR [14], JFix/S3 [23],

ELIXIR [10], Hercules [24], SOFix [25],
SketchFix [26], PraPR [27].

No Do not release logs

HDRepair [14], ACS [17], kPAR [21],
AVATAR [28], TBar [19], FixMiner [29],

ssFix [30], CapGen [5], ARJA [11],
GenProg-A [11], RSRepair-A [11], Kali-A [11],

NPEFix [31], Nopol [13], DynaMoth [16],
DeepRepair [15], LSRepair [32], jGenProg [33],

jKali [33], jMutRepair [33], Cardumen [20],
SequenceR [34], DLFix [35], CoCoNut [36].

No Only release part
of the logs JAID [37].

Yes Open-source
& contain intended logs

SimFix [6], Wang-2019 [18], Liu-2020 [9],
Durieux-2019 [8], Martinez-2016 [7]

TABLE II: Detailed information of included logs in this study
APR Study #Tool #Bug #FL Strategy #Logs
SimFix 1 357 1 357
Wang-2019 2 38 1 76
Liu-2020 10∗ 395 2? 6,368†

Durieux-2019 11 395 1 4,345
Martinez-2016 3 224� 1 672
∗Liu-2020 releases logs from 10 tools. ?Liu-2020 configures each APR tools with two different

FL strategies: utilizing off-the-shelf FL technique, GZoltar-v1.7 and feeding APR tools with

ground-truth points. †This study does not release execution logs of Nopol and DynaMoth on

Closure bugs. �This study does not execute tools on bugs from Closure and Mockito.

patches and similar code to reduce search spaces; Wang-2019
[18] reruns SimFix and CapGen [5] on Mockito bugs; Liu-2020
[9] revisits the efficiency of test suite based program repair
by performing a large-scale experiment on 16 APR tools;
Durieux-2019 [8] concerns benchmark overfitting problem
through a comprehensive comparison of APR tools’ perfor-
mances among five benchmarks; Martinez-2016 [7] reruns
jKali, jGenProg, and Nopol on Defects4j to evaluate their
abilities for fixing real-world defects. All these five studies
have released their execution logs on their online repositories,
which can be utilized for our study. Totally, we collected
11,818 logs in this study. The detailed information of the
involved logs can be found in Table II. Other studies in the
literature are excluded because 1) there is no online resource
of their studies; 2) they do not release experiment logs; or 3)
they only release logs where plausible patches are generated.

C. Experiment Settings

The following presents the experimental details of each
research question.

1) RQ1: To answer RQ1, we need to find out all the fixing
attempts that end with exceptions. To achieve so, we adopted a
strategy, which is based on keyword mapping, to separate valid
fixing attempts from the whole log benchmark. Specifically,
patch found is used to search the success cases and timeout
is used for searching the cases where APR tools fail to
generate a patch within the time budget. For the cases where
APR tools traverse the whole search space but find nothing,
different types of APR tools throw diverse messages in the
logs. For instance, no angelic value is used for constraint-
based tools (e.g., Nopol) while exhaustive navigated is used
for search-based tools (e.g., jMutRepair). Note that these
three situations correspond to the three kinds of normal results
of a fixing attempt as introduced in Section II-A. After filtering
out those valid fixing attempts, we kept the rest as abnormal

ones and categorized them based on the exception types in the
thrown messages.

2) RQ2: To categorize the behind reasons of these un-
expected exceptions, a process based on Thematic Analysis
(TA) [38] was conducted. Following a previous study [39],
we performed this process in six steps: 1) familiarizing with
the log (by re-reading the logs for many times to understand
its content); 2) identifying initial reasons (to understand the
behind reasons for the exception in each log); 3) searching for
themes (reasons re-appearing over many logs were identified);
4) reviewing themes (some themes with similar reasons were
merged); 5) naming themes (some themes were renamed to
better reflect the behind reasons); 6) producing the report (this
paper reflects this step, compiling the main results of this
analysis). This process was manually performed by the first
author and another two authors further validated the result by
reviewing the reason of each case from their comprehension.

3) RQ3: The evaluation of APR tools is usually assessed
with respect to precision and recall [5], [17]. Precision mea-
sures how many bugs can be correctly fixed. On the contrary,
recall measures the proportion of bugs for which a tool can
generate plausible patches that can pass all the tests. The
proportion is usually measured by the number of bugs with
plausible patches generated over the total number of bugs.
However, unexpected results are generated for certain bugs,
in which case we actually cannot determine the capability of
the tool to fix the bug since the fixing attempt terminated
unexpectedly without results being generated. As a result,
the recall such measured might be biased. In this RQ, we
revisited the recall via removing those fixing attempts with
unexpected results. Precision is not revisited since the non-
repairability factors will not influence the precision value (i.e.,
the numbers of the generated patches and correct patches will
not change). In our experiments, we also noted that our log
benchmarks from different APR tools were generated under
different FL strategies. For instance, Durieux-2019 performs
the study under GZoltar-v0.1 while Liu-2020 utilizes two FL
strategies including a new version of this framework which
is GZoltar-v1.7 and directly feeding APR tools with ground-
truth points. Another studied APR tool (i.e., NPEFix) does not
require FL step since it only focuses on the potential crash
point such as method call. We thus calculated the results of
different APR tools under different FL strategies separately for
constructing a baseline involving various FL configurations.

IV. RESULTS AND ANALYSIS

In this section, we present experimental data as well as the
key insights that are relevant to our research questions.
A. RQ1: Number of Occurrences

In total, we identified 3,035 exceptions from Liu-2020 and
Durieux-2019 among our collected log benchmark which can
be classified into 14 types based on the exception messages.
Table III demonstrates the results aggregated by diverse APR
tools as well as different projects in Defects4j.
• [On the significance of this study] We identified 3,035

logs ended with unexpected results, which account for 25.7%

of the logs included by this study (i.e., 11,818 in total).
This result suggests that a large proportion of fixing attempts
suffered from the non-repairability factors during executions
and thus it is of great significance to dissect the reasons for
these non-repairability factors for avoiding identical problems
in future studies.
• [On the occurrences of different types of exceptions] As

indicated by the last column, different types of exceptions pos-
sess diverse numbers of occurrences, ranging from 3 to 1,128.
IllegalState is the most common exception type which has oc-
curred for 1,128 times, accounting for 37.2% (1,128/3,035) of
the total amount, followed by ModelBuilding and Unsupporte-
dOperation which are 463 and 329, respectively. We also noted
that there are three kinds of exceptions (i.e., StackOverflow,
NumberFormat, and IO) that occur infrequently.
• [On the distributions with respect to APR tools] We found

that 11 APR tools suffer from the non-repairability factors
in their evaluations. Specifically, Cardumen witnesses the
largest number of exceptions, which is 782 in total, accounting
for 25.7% (782/3,035) of the entire set. The followings are
jMutRepair and jGenProg whose values are 529 and 478,
respectively. We also noted that there are some tools where
exceptions happen infrequently. For instance, DynaMoth only
contains 25 unexpected results of 2 types of exceptions which
are OutOfMemory and NullPointer.
• [On the distributions with respect to Defects4j projects]

We found that exceptions happen more frequently when re-
pairing the Closure project which includes 1,158 instances
while less frequently in the Chart project which includes
only 65 cases. For the other projects, the numbers range
from 207 to 608. We noted that different projects in the
Defects4j benchmark contain diverse numbers of bugs. From
the perspective of how many exceptions happen for a single
bug on average, the Mockito project achieves the highest
value since it only contains 38 bugs, but 608 exceptions were
generated when repairing those bugs.

Overall, our results reveal that (1) the non-repairability
factors affect a considerable number of fixing attempts
(25.7% of our studied logs); (2) IllegalState is the most
common exception type which accounts for 37.2% of the
whole benchmark; (3) the distributions of these exceptions
vary a lot with respect to different APR tools and Defects4j
projects.

B. RQ2: Internal Reasons

We summarized our identified reasons in Table IV which
can be divided into 5 aspects. Library bugs denotes the
libraries integrated in the APR tools used for program analysis
or fault localization contain certain defects or not being
used appropriately; Inherent defect of APR tools means
the APR tools themselves are defective and contain logic
errors; Improper operation of replication study denotes the
inappropriate operations or settings adopted by researchers
lead to the unexpected results; Low performance of machines
is caused by the limited performance of the utilized machines,

TABLE III: Number of Occurrences of Different Types of Exceptions
Exception Type APR Tool Project TotalNopol DynaMoth NPEFix jGenProg jKali jMutRepair Cardumen ARJA GenProg-A RSRepair-A Kali-A Chart Closure Lang Math Mockito Time
UnsupportedOperation 0 0 0 0 0 0 329 0 0 0 0 31 248 2 11 7 30 329
StackOverflow† 0 0 0 3 0 0 0 0 0 0 0 0 0 0 3 0 0 3
Spoon 0 0 133 43 0 0 0 0 0 0 0 7 135 24 9 0 1 176
OutOfMemory† 109 15 0 0 0 0 0 0 0 0 0 2 30 8 39 24 21 124
NumberFormat 0 0 0 1 1 1 1 1 1 1 1 0 8 0 0 0 0 8
NullPointer 62 10 0 37 17 5 64 14 16 15 15 0 74 30 26 105 20 255
ModelBuilding 0 0 155 91 79 65 73 0 0 0 0 0 0 167 133 136 27 463
IO 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 0 3
IndexOutOfBounds 0 0 0 0 0 0 0 0 75 74 0 0 57 0 0 92 0 149
IllegalState 0 0 1 257 254 342 274 0 0 0 0 25 510 155 308 22 108 1,128
IllegalArgument 68 0 0 0 23 23 23 1 0 0 0 0 43 21 0 74 0 138
FileNotFound 0 0 0 18 18 18 18 18 18 18 18 0 0 0 0 144 0 144
NoClassDefFound† 1 0 0 0 0 0 0 0 0 0 14 0 0 0 14 1 0 15
Cannot allocate memory† 0 0 0 25 0 75 0 0 0 0 0 0 53 43 4 0 0 100
Total 239 25 289 478 392 529 782 34 110 108 48 65 1,158 450 547 608 207 3,035
† In this study, we also consider StackOverflow,OutOfMemory,NoClassDefFound and Cannot allocate memory as exceptions since they also lead to the unexpected end of a fixing attempt.

TABLE IV: Reasons Behind Different Types of Exceptions
Reason Exception Type Number Total

Library bugs

NullPointer#1 182

504 (16.6%)
Spoon 176

IllegalArgument#1 69
ModelBuilding#1 77

Inherent defect of APR
tools

NullPointer#2 73

1,785 (58.8%)
ModelBuilding#2 106

IndexOutOfBounds 149
IllegalState 1,128

UnsupportedOperation 329

Improper operation of
replication study

FileNotFound 144

504 (16.6%)
NumberFormat 8

IO 3
IllegalArgument#2 69
ModelBuilding#3 280

Low performance of
machines

OutofMemory 124
227 (7.5%)StackOverflow 3

Cannot allocate memory 100
Unstable environment NoClassDefFound 15 15 (0.5%)

and Unstable environment denotes the influence from envi-
ronment (e.g., different versions of jdk or Operating System).
Note that our manual analysis shows that several exceptions
(i.e., IllegalArgument, ModelBuilding, and NullPointer) are
caused by diverse root causes. We thus use # to denote
different root causes in the table. Generally speaking, Inherent
defect of APR tools is the most common type, accounting
for nearly 60% of the total amount (1,785/3,035). Due to page
limit, we omit the analysis for three unpopular exception types
(i.e., NumberFormat, IO, and NoClassDefFound) in this paper.
Details can be found in our project page 1.

1) Library Bugs: • [NullPointer exception#1] An example
of NullPointer exception is shown in Listing 2. APR tools rely
on the GZoltar library to obtain the fault localization results
and this type of exception happens at the beginning of the
initialization of GZoltar (line 3). After carefully understanding
the source code, we found that different APR tools invoke
the library APIs in a unified way but this type of exception
occurs when processing the bugs of specific projects (e.g.,
Closure and Mockito). Such finding indicates that it is indeed
caused by the problem in the external library (i.e., unable
to process certain bugs of certain projects normally) rather
than the defect in the APR tools and we thus categorized this
type into Library bugs. We noted that this problem has also
been noticed and discussed by other practitioners.2 We further
confirmed that this case occurred for all the APR tools where
GZoltar has been integrated for FL, which means this library
has affected a wide range of APR tools.

1http://doi.org/10.5281/zenodo.3937198
2https://github.com/SpoonLabs/astor/issues/94#issuecomment-595231021

1 Exception in thread "main" java.lang.
NullPointerException

2 at com.gzoltar.core.GZoltar.run(GZoltar.java:51)
3 at us.msu.cse.repair.core.faultlocalizer.

GZoltarFaultLocalizer.<init>(GZoltarFaultLocalizer.
java:42)

4 at us.msu.cse.repair.core.AbstractRepairProblem.
invokeFaultLocalizer(AbstractRepairProblem.java
:311)

5 at

Listing 2: An Instance of First Type of NullPointer Exception

• [Spoon exception] Spoon 3 is a meta-programming library
to analyze and transform Java source code designed by the
same research group of Astor. Listing 3 gives an example of
this type of exception. Some APR tools utilize this library for
code transformation but will throw this exception under some
circumstances. It is classified into Library bugs since it was
caused by internal bugs of libraries or inappropriate usages
of libraries. For instance, the exception as shown in Listing 3
occurred since the enforced code transformation (i.e., inserting
a statement before a super invocation) is not supported by the
library.
1 spoon.SpoonException: cannot insert a statement before a

super or this invocation.
2 at spoon.support.reflect.code.CtStatementImpl.

insertBefore(CtStatementImpl.java:79)
3 at spoon.support.reflect.code.CtStatementImpl.

insertBefore(CtStatementImpl.java:66)
4 at spoon.support.reflect.code.CtInvocationImpl.

insertBefore(CtInvocationImpl.java:108)
5 at fr.inria.astor.approaches.jgenprog.operators.

InsertBeforeOp.applyChangesInModel(InsertBeforeOp.
java:27)

6 at fr.inria.astor.core.entities.OperatorInstance.
applyModification(OperatorInstance.java:177)

7 at

Listing 3: An Instance of Spoon Exception

• [IllegalArgument exception#1 & ModelBuilding excep-
tion#1] The Astor system executes a command “defects4j
export -p cp.test” to obtain the classpath for compilation.
However, this command will delete the built test files for some
Mockito bugs (i.e., 12-17 and 22-38). As a result, exceptions
as shown in Listing 4 will be thrown. This is a bug from the
Defects4j benchmark and has not been resolved for several
years.4 We thus categorized it into Library bugs.
1 Exception in thread "main" java.lang.

IllegalArgumentException: No suspicious gen for
analyze

2 at fr.inria.astor.core.faultlocalization.gzoltar.
GZoltarFaultLocalization.calculateSuspicious(
GZoltarFaultLocalization.java:93)

3http://spoon.gforge.inria.fr/
4https://github.com/rjust/defects4j/issues/39

http://doi.org/10.5281/zenodo.3937198
https://github.com/SpoonLabs/astor/issues/94#issuecomment-595231021
http://spoon.gforge.inria.fr/
https://github.com/rjust/defects4j/issues/39

3 at fr.inria.astor.core.faultlocalization.gzoltar.
GZoltarFaultLocalization.searchSuspicious(
GZoltarFaultLocalization.java:49)

4 at fr.inria.astor.core.solutionsearch.AstorCoreEngine.
calculateSuspicious(AstorCoreEngine.java:898)

5 at

Listing 4: An Instance of First Type of IllegalArgument Exception

Similar phenomenon happens for Astor on bugs from Math-
100 to 106. The returned classpath misses an imported pack-
age when executing the identical command, leading to the
failure of the build process. As a result, modelbuilding excep-
tion is thrown, which is classified to the same categorization
as the above case. Due to space limit, we do not provide a
concrete example here.

2) Inherent defect of APR Tools: • [ModelBuilding ex-
ception#2] Listing 5 shows another instance of the Mod-
elBuilding exception observed in NPEFix. NPEFix is a
metaprogramming-based tool specially designed for the pro-
gram crashed by null pointer exceptions. It does not require
the FL process, instead, it encapsulates each method call and
field access to assess whether the object is null. If so, it applies
predefined strategies to find a way to avoid the null pointer
exceptions. Listing 6 shows an instance of code transformed
by NPEFix for bug Lang-14 that will throw a ModelBuilding
exception as shown in Listing 5. This piece of code aims
to detect whether the return value of the function getKey is
null. Nevertheless, this code does not declare the type of the
variable npe invocation var, which leads to the compile error
in the model building process. This instance demonstrates that
defects exist in the code transformation process of NPEFix and
we subsequently labeled it as Inherent defect of APR tools.
1 spoon.compiler.ModelBuildingException: Syntax error on

token "final", float expected at /tmp/
NPEFix_Defects4J_Lang_15/Pair.java:133

2 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
report(JDTBasedSpoonCompiler.java:581)

3 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
reportProblems(JDTBasedSpoonCompiler.java:562)

4 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
compile(JDTBasedSpoonCompiler.java:157)

5 at

Listing 5: An Instance of Second Type of ModelBuilding Exception

1 final npe_invocation_var = getKey();
2 if (checkForNull(npe_invocation_var)) {
3

Listing 6: An Instance of Code Transformed by NPEFix

• [IndexOutOfBounds exception] This type of exception
happens in two APR tools (GenProg-A and RSRepair-A) which
are based on the same framework. We thus take GenProg-
A as an example as shown in Listing 7. Upon obtaining the
FL results, this tool tries to generate modification points and
then extract some ingredients in the original buggy program
as the seed to perform transformations to search for possible
solutions (i.e., plausible patches). Specifically, GenProg-A sets
a number of restrictions to filter invalid ingredients for every
modification point, which means a portion of modification
points may not get any valid ingredient. For instance, one of
the restrictions is that the selected ingredients should not be
in the subtree of the modification point from the perspective
of Abstract Syntax Tree (AST). Therefore, it throws up an

IndexOutOfBounds exception as shown in the list when trying
to get ingredient elements but the ingredient list is empty.
According to our analysis, this exception can be avoided by
removing the modification points without any valid ingredient.
Hence, we categorized this type of exception into Inherent
defect of APR tools. We noted that the numbers of occur-
rences of this type of exception are different among GenProg-
A and RSRepair-A, which is due to the different ability for
generating a plausible patch at a certain modification point.
For instance, for Closure-33, GenProg-A does not generate a
patch passing all the tests at the first modification point while
RSRepair-A does and stops searching. Therefore, GenProg-A
keeps searching on the next modification point where it throws
the exception.
1 Exception in thread "main" java.lang.

IndexOutOfBoundsException: Index: 0, Size: 0
2 at java.util.ArrayList.rangeCheck(ArrayList.java:635)
3 at java.util.ArrayList.get(ArrayList.java:411)
4 at us.msu.cse.repair.ec.problems.GenProgProblem.evaluate

(GenProgProblem.java:89)
5 at us.msu.cse.repair.ec.algorithms.GenProgGA.

initPopulation(GenProgGA.java:107)
6 at

Listing 7: An Instance of IndexOutOfBounds Exception

• [IllegalState & UnsupportedOperation exception] Ille-
galState exception happens most frequently and it occurs
majorly among four APR tools based on the Astor framework
according to our investigation as shown in Table III. Listing
8 shows an instance of this type of exception. Similar to
GenProg-A and RSRepair-A, the tools integrated in Astor
system also seek to create modification points after the FL
step. What is different is that the filter process is performed
based on the type of the suspicious code while in GenProg-
A and RSRepair-A it is conducted considering whether there
exists valid ingredients for each point. Originally, these tools
only support statements of certain types such as conditional
statements and loop statements while do not support for the
others (e.g., return statements and assignment statements). As
a result, if all the identified suspicious statements are not sup-
ported, the illustrated exception will be thrown. Take Chart-
10 as an example. From the open access FL results,5 the only
suspicious line under GZoltar-v0.1 for this buggy program is a
return statement. Then, when trying to generate modification
points, the system throws this exception. Note that the four
APR tools integrated in Astor generate different numbers of
such exceptions as shown in Table III. The reason is that each
tool under this framework is implemented independently but
there are some common types of statements that they do not
support. We acknowledge that it is extremely difficult to take
every situation into consideration when implementing such a
large project. Being that said, we still categorized this type
of exception into Inherent defect of APR tools in that some
unsupported statements are extremely common such as return
statements.
1 Exception in thread "main" java.lang.

IllegalStateException: Variant without any
modification point. It must have at least one.

5https://github.com/SerVal-DTF/FL-VS-APR

https://github.com/SerVal-DTF/FL-VS-APR

2 at fr.inria.astor.core.solutionsearch.AstorCoreEngine.
initializePopulation(AstorCoreEngine.java:826)

3 at fr.inria.astor.core.solutionsearch.AstorCoreEngine.
initPopulation(AstorCoreEngine.java:694)

4 at fr.inria.main.evolution.AstorMain.createEngine(
AstorMain.java:127)

5 at

Listing 8: An Instance of IllegalState Exception

We have demonstrated a case of Unsupported exception
in Section II-B. This type of exception is an exclusive one
of Cardumen. Further investigation reveals that it is due to
the inappropriate implementation of this APR tool. Similar to
GenProg-A, if the type of suspicious code is supported, the
tool will retrieve program elements in the program to select
potential ingredients. Specifically, it will record the position
(i.e., the line number) of each program element and later
perform a check to see whether any information is illegal.
Nevertheless, the element’s position attribute will be empty
if the element is the This pointer in the class. Note that
other tools in Astor will skip the check when processing a
This pointer and that is why this exception only occurs in
Cardumen. We thus also categorized this type of exception
into Inherent defect of APR tools.
• [NullPointer exception#2] Listing 9 shows an example

of this case that is exclusive to the Astor system. The tools
try to record the number of valid repair attempts for each
modification point to serve for further debugging. However,
some modification points are unable to get any valid program
element to be used as ingredients for repair due to the
predefined restrictions, similar to the previous analysis of
GenProg-A. In particular, the element should be extracted from
the same file as the modification point. If the modification
points contain no valid repair attempt, the returned object that
records valid repair attempts will be null. Consequently, this
exception will occur if the validity of the returned object is
not checked. We categorized this type into Inherent defect
of APR tools. The information from the log reveals that the
experiment of [8] was performed in December 2018 while this
bug was later fixed in January 2019 6.
1 java.lang.NullPointerException
2 at fr.inria.astor.core.solutionsearch.spaces.ingredients

.ingredientSearch.
RandomSelectionTransformedIngredientStrategy.
getFixIngredient(
RandomSelectionTransformedIngredientStrategy.java
:77)

3 at fr.inria.astor.core.ingredientbased.
IngredientBasedEvolutionaryRepairApproachImpl.
createOperatorInstanceForPoint(
IngredientBasedEvolutionaryRepairApproachImpl.java
:95)

4 at fr.inria.astor.core.solutionsearch.
EvolutionarySearchEngine.modifyProgramVariant(
EvolutionarySearchEngine.java:264)

5 at

Listing 9: An Instance of Second Type of NullPointer Exception

3) Improper Operation of Replication Study: • [FileNot-
Found exception] Listing 10 shows an instance of this kind
of exception. We noted that the latest version of GZoltar-v1.7
does not contain a package that can be called directly similar

6https://github.com/SpoonLabs/astor/commit/
378776c63cf082d29156e3fcb02ef7a3a51fe693

to GZoltar-v0.1. Therefore, researchers choose to first execute
this tool and record the results in a file and then read the FL
results from the corresponding files (we have confirmed this
with the authors of [9]). If the researchers pass a wrong path
to the program or there is no corresponding file under the
patch, the repair tool will expose such an exception. We thus
categorized this type into Improper operation of replication
study since it is caused by the inappropriate operations from
the performers of the study.
1 Exception in thread "main" java.io.FileNotFoundException

: /data/RepairThemAll/location/Defects4J/Mockito_12
.txt (No such file or directory)

2 at java.io.FileInputStream.open(Native Method)
3 at java.io.FileInputStream.<init>(FileInputStream.java

:146)
4 at us.msu.cse.repair.core.AbstractRepairProblem.

invokeFaultLocalizer(AbstractRepairProblem.java
:320)

5 at us.msu.cse.repair.core.AbstractRepairProblem.
invokeModules(AbstractRepairProblem.java:282)

6 at

Listing 10: An Instance of FileNotFound Exception

• [IllegalArgument exception#2] This type of exception
happens in several projects. We illustrate an example of Nopol
on project Closure in Listing 11. Closure project needs a
dependency named rhino.jar during execution. However, due
to the evolution of this project, the name of this dependency
changes to another one from bug Closure-64 to Closure-106.
To find a workaround for this problem, the authors updated the
way of obtaining classpath for several times.7 However, the
execution time in the log is earlier than the submission time
of this commit, which means the authors forgot to rerun the
tool after update (we have confirmed this with the authors
of [8]). Hence, we categorized this type of exception into
Improper operation of replication study. Note that cases
of this type of exception in other projects are related to other
classpath problems. The instance of Closure project here is
just an example. We also noted that the study Martinez-2016
also ran Nopol while we did not identify exception from their
logs. Our further check reveals that their study only included
224 bugs (Closure and Mockito were not included) as shown
in Table II.
1 java.lang.IllegalArgumentException: File does not exist

in: ’/tmp/Nopol_Defects4J_Closure_100/build/lib/
rhino.jar’

2 at xxl.java.library.FileLibrary.fail(FileLibrary.java
:129)

3 at xxl.java.library.FileLibrary.openFrom(FileLibrary.
java:29)

4 at xxl.java.library.FileLibrary.urlFrom(FileLibrary.java
:100)

5 at xxl.java.library.JavaLibrary.classpathFrom(
JavaLibrary.java:84)

6 at fr.inria.lille.repair.Main.parseArguments(Main.java
:161)

7 at

Listing 11: An Instance of Second Type of IllegalArgument
Exception

• [ModelBuilding exception#3] Another case of Model-
Building exception is shown in Listing 12. We found that

7https://github.com/program-repair/RepairThemAll/
commit/4a98bc108cb06b3f894bbb6e70dbd91e96c64601#
diff-a0dddd360955b4f2a6ecb343397ea54e

https://github.com/SpoonLabs/astor/commit/378776c63cf082d29156e3fcb02ef7a3a51fe693
https://github.com/SpoonLabs/astor/commit/378776c63cf082d29156e3fcb02ef7a3a51fe693
https://github.com/program-repair/RepairThemAll/commit/4a98bc108cb06b3f894bbb6e70dbd91e96c64601#diff-a0dddd360955b4f2a6ecb343397ea54e
https://github.com/program-repair/RepairThemAll/commit/4a98bc108cb06b3f894bbb6e70dbd91e96c64601#diff-a0dddd360955b4f2a6ecb343397ea54e
https://github.com/program-repair/RepairThemAll/commit/4a98bc108cb06b3f894bbb6e70dbd91e96c64601#diff-a0dddd360955b4f2a6ecb343397ea54e

the package name of 24 bugs (Lang-42 to 65) contains enum
which can be identified as a keyword by the jdk version later
than 1.5. Normally, these programs are compiled under jdk
1.4 which only throws a warning but does not influence the
execution. However, the used version is 1.7 in the reproduction
experiment (we got this information through the compliance
level in the logs). Consequently, enum is identified as a key-
word and the build process is failed. We thus categorized this
type of cases into Improper operation of replication study.
Bugs from Mockito-1 to 38 suffer the identical exception and
our investigation reveals that those exceptions are also related
with the utilized jdk version. We do not provide a case here
due to space limit.
1 Exception in thread "main" spoon.compiler.

ModelBuildingException: Syntax error on token "enum
", Identifier expected at /tmp/
Cardumen_Defects4J_Lang_59/src/java/org/apache/
commons/lang/enum/EnumUtils.java:17

2 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
report(JDTBasedSpoonCompiler.java:641)

3 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
reportProblems(JDTBasedSpoonCompiler.java:622)

4 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
build(JDTBasedSpoonCompiler.java:131)

5 at spoon.support.compiler.jdt.JDTBasedSpoonCompiler.
build(JDTBasedSpoonCompiler.java:113)

6 at fr.inria.astor.core.manipulation.MutationSupporter.
buildModel(MutationSupporter.java:81)

7 at

Listing 12: An Instance of Third Type of ModelBuilding Exception

4) Low Performance of Machines: • [OutofMemory &
StackOverflow & Cannot allocate memory exception] Exe-
cuting APR tools requires high performance servers since the
search space is generally extremely large. If the computing
performance is not high, some tools may run out of the heap
space and thus cause an error. Listing 13 gives an example for
this situation. Two similar exceptions (i.e., StackOverflow and
Cannot allocate memory) are shown in Listings 14 and 15. The
former happens when the length of stack exceeds a threshold
while the latter occurs when there is not enough memory
assigned. StackOverflow exception is not common and only
occurs for jGenProg, a tool utilizes genetic programming (GP)
for searching for potential patches. This result indicates that
the search space of GP is generally larger than other tech-
niques. If the experiment is performed under machines with
better performance, these exceptions are of great possibility to
be avoided. As a result, we categorized these three types of
exceptions into Low performance of machines.
1 java.util.concurrent.ExecutionException: java.lang.

OutOfMemoryError: Java heap space
2 at java.util.concurrent.FutureTask.report(FutureTask.

java:122)
3 at java.util.concurrent.FutureTask.get(FutureTask.java

:206)
4 at fr.inria.lille.repair.Main.main(Main.java:106)

Listing 13: An Instance of OutOfMemory Exception
1 java.lang.StackOverflowError
2 at java.lang.ThreadLocal.get(ThreadLocal.java:161)
3 at spoon.reflect.factory.FactoryImpl.dedup(FactoryImpl.

java:420)
4 at spoon.support.reflect.reference.CtReferenceImpl.

setSimpleName(CtReferenceImpl.java:62)
5 at

Listing 14: An Instance of StackOverflow Exception

1 Java HotSpot(TM) 64-Bit Server VM warning: INFO: os::
commit_memory(0x00000000d5550000, 715849728, 0)
failed; error=’Cannot allocate memory’ (errno=12)

Listing 15: An Instance of CannotAllocateMemory Exception

Our in-depth analysis reveals that (1) the causes of the
non-repairability factors are diverse, which can be mainly
classified into 5 categories containing divergent types of ex-
ceptions; (2) Inherent defect of APR tools is the dominating
one which accounts for nearly 60% of the total amount.

C. RQ3: Unbiased Evaluation

We re-calculated the recalls of different APR tools under
different Fault Localization strategies without considering the
fixing attempts that ended with unexpected results as intro-
duced in Section III-C3. Table V shows the results. The FL
Strategy column denotes different FL strategies where GZ-0.1
denotes utilizing FL results obtained from GZoltar-v0.1, GZ-
1.7 denotes utilizing FL results obtained from GZoltar-v1.7,
Perfect FL denotes feeding APR tools with ground-truth points
directly, and No FL required only denotes NPEFix.
TABLE V: Performances of APR Tools under Different FL Strategies
when only Considering Valid Fixing Attempts.

FL Strategy APR tool Chart Closure Lang Math Mockito Time Total Recall

GZ-0.1

Nopol 7(26) 70(71) 6(38) 23(68) 0(7) 1(6) 107(216) ↑ 22.44%
DynaMoth 7(25) 45(122) 2(64) 15(105) 1(33) 1(27) 71(376) ↑ 0.9%
jGenProg 7(26) 4(129) 0(40) 20(92) 0(0) 0(27) 31(314) ↑ 2.02%
jKali 5(26) 12(133) 0(53) 10(99) 0(8) 0(27) 27(346) ↑ 0.96%
jMutRepair 3(26) 7(128) 0(53) 10(90) 0(10) 0(27) 20(334) ↑ 0.92%
Cardumen 5(13) 0(8) 0(36) 12(84) 0(0) 0(4) 17(145) ↑ 7.42%
Arja 9(26) 37(133) 16(65) 23(106) 1(33) 0(27) 86(390) ↑ 0.27%
GenProg 6(26) 22(116) 2(65) 15(105) 0(28) 0(27) 45(367) ↑ 0.86%
RSRepair 8(26) 27(116) 4(65) 23(106) 0(28) 0(27) 62(368) ↑ 1.15%
Kali 6(26) 51(133) 2(65) 12(92) 1(33) 0(27) 72(376) ↑ 0.92%

GZ-1.7

Nopol 6(26) 0(78) 6(65) 18(106) 0(38) 1(27) 31(340) ↑ 1.26%
DynaMoth 6(26) 0(133) 2(65) 13(106) 0(38) 1(27) 22(395) →
jGenProg 5(20) 2(131) 2(18) 11(84) 0(18) 0(26) 20(297) ↑ 1.67%
jKali 4(26) 8(122) 4(53) 13(98) 0(18) 0(27) 29(344) ↑ 1.08%
jMutRepair 4(25) 5(79) 2(44) 11(96) 0(18) 0(27) 22(289) ↑ 2.04%
Cardumen 4(9) 2(6) 0(51) 6(99) 0(9) 0(0) 12(174) ↑ 3.85%
Arja 10(26) 29(133) 3(65) 15(106) 1(15) 0(27) 58(372) ↑ 0.9%
GenProg 5(26) 15(129) 1(65) 9(106) 0(0) 0(27) 30(353) ↑ 0.9%
RSRepair 5(26) 22(130) 3(65) 12(106) 0(0) 0(27) 42(354) ↑ 1.23%
Kali 6(26) 48(133) 0(65) 10(106) 1(15) 0(27) 65(372) ↑ 1.01%

Perfect FL

Nopol 1(26) 0(133) 3(64) 5(106) 0(33) 0(27) 9(389) ↑ 0.03%
DynaMoth 1(25) 0(133) 4(65) 8(106) 0(33) 0(27) 13(389) ↑ 0.05%
jGenProg 2(23) 2(4) 0(17) 12(35) 0(17) 0(0) 16(96) ↑ 12.61%
jKali 1(24) 2(13) 0(17) 5(29) 0(20) 0(0) 8(103) ↑ 5.74%
jMutRepair 1(7) 4(6) 0(6) 6(13) 0(1) 0(0) 11(33) ↑ 30.54%
Cardumen 6(24) 0(1) 1(18) 9(23) 0(18) 0(0) 16(84) ↑ 14.99%
Arja 2(26) 16(132) 5(65) 13(106) 0(33) 0(27) 36(389) ↑ 0.14%
GenProg 3(26) 16(124) 3(65) 7(106) 0(7) 0(27) 29(355) ↑ 0.82%
RSRepair 2(26) 16(124) 4(65) 12(106) 0(7) 0(27) 34(355) ↑ 0.96%
Kali 1(26) 30(132) 3(65) 8(106) 0(33) 0(27) 42(389) ↑ 0.16%

No FL required NPEFix 5(26) 0(0) 0(18) 3(43) 1(19) 0(0) 9(106) ↑ 6.21%
x(y) means that under this project and FL strategy, the APR tool performs y valid fixing attempts and generates patches
that can pass all the tests for x bugs. The column Recall demonstrates the variations of recall w.r.t results from previous
studies where the bold ones indicate the change of the recall value is larger than 10%. → means the recall value does
not change.

• [On the broad impact of non-repairability factors] Table
V lists the results for 31 experiments via considering different
APR tools and FL strategies. We found that the results of 30 of
them have been affected by the non-repairability factors (i.e.,
the recall value is changed when revisited). The only result
remains unchanged is obtained when executing DynaMoth
under GZoltar-v1.7 where the 395 original fixing attempts
are all valid. Such results reveal that non-repairability factors
bring broad impact on various APR tools under diverse FL
configurations.
• [On the changes of recalls] We found that the change

of recall value under most of the experiments is less than 2%
(21/31) which means the impact of non-repairability factors
is limited. However, there are also 4 experiments in which
the values changed significantly (i.e., more than 10%) as

emphasized in the table. Generally speaking, the changes
under GZoltar-v1.7 are limited where the maximum variance
only reaches 3.85%. As a comparison, the changes under the
setting of Perfect FL are generally more significant since the
number of valid fixing attempts of a tool is sometimes even
less than 100. For instance, the number of valid fixing attempts
of jMutRepair is 33, much less than the total number of bugs
in Defects4j benchmark which is 395. As a result, its recall
has increased by 30.54%.

Our revisiting reveals that (1) non-repairability factors are
widespread among evaluations on diverse combinations of
APR tools and FL strategies; (2) the changes of recalls vary
for different experiments. Although the changes are limited
under most of the experiments, the maximum value can reach
over 30%.

V. DISCUSSION
A. Implications

To recap, we have gained insights into the behind reasons
of the existing exceptions in the execution logs of APR tools,
which can be mainly divided into 5 categories. Based on these
insights, we provide several implications for avoiding such
exceptions as follows.
Execution logs of APR tools should be made publicly avail-
able to the community.

We are grateful for the authors of [6]–[9], [18] to release
their execution logs. We believe that considerable efforts have
been made by the original authors to ensure the quality of
their experiments. Nevertheless, we still found over a quarter
of these fixing attempts ended with unexpected results. Our
findings here (e.g., the types of the exceptions and the behind
reasons) may not generalize to the logs which have not been
released publicly. Therefore, we encourage future APR studies
to release their data for public inspection. The community can
then gain more insights on the exceptions occurred during
the experiments and to better avoid the impacts of such non-
repairability factors.
Developers of APR tools should ensure the quality of their
products.

From our analysis, several types of exceptions occurred due
to the inappropriate implementation of the APR tools. Our in-
depth analysis revealed that the majority of such exceptions
could be avoided. For instance, the example of IllegalState
exception as shown in Listing 8 can be resolved by considering
more situations and the example of Unsupported exception
in Listing 1 can be avoided by carefully checking the code.
We thus recommend the developers of APR tools to carefully
check the repair process and fix bugs before releasing the tool
publicly.
Third party libraries should be evolved continuously.

Our results revealed that several integrated libraries may
affect the evaluation results of APR tools (e.g., the widely-
used GZoltar and Spoon). We thus encourage the developers of
these third party libraries to pay more attention to the exposed
problems. We believe it is difficult to ensure the quality of such

a large library under undetermined execution environments.
Nonetheless, the library should be evolved if a certain defect
has been reported. From this perspective, we thank the efforts
of authors of Astor [33] for recently fixing a situation of the
IllegalState exception8 as we introduced in Section IV-B.
Replication studies should make great efforts to ensure the
reliability of the performed experiments.

We also pointed out that several types of exceptions are
related to the inappropriate settings of the experiments such
as not providing corresponding input files (FileNotFound ex-
ception) or not preparing the correct content (NumberFormat
exception). We thus encourage future replication studies to en-
sure the reliability of the performed experiments via adopting
appropriate settings. Besides, we also recommend researchers
to pay attention to the configurations of their machines to avoid
exceptions such as OutOfMemory. According to the project
page of RepairThemAll, their studies were performed on a
server whose maximum memory is 4G but we still detected
OutOfMemory exception in their logs. This implicates that high
performance machines might be needed when running certain
APR tools.
B. Threats to Validity

External validity. The main lack of this study is that we
only select 5 existing researches as our study subjects, which
is a small part compared with existing studies on Java repair
systems in the literature. Nevertheless, this is mitigated by
our literature review that these studies are the only ones that
release execution logs of all fixing attempts. Furthermore, as
demonstrated in IV-C, our study subjects include 11 APR tools
under diverse FL strategies, which strengthens the generality
of our findings.

Internal validity. The taxonomy of internal reasons of the
studied exceptions is the result from our manual analysis of
logs. As any manual work, it is a difficult and time-consuming
process and extremely error-prone. Nonetheless, we mitigate
this by stopping the annotation process only if the three
involved authors reached a consensus. We have also reported
some of our findings to the authors of [8], [9] and got positive
feedback. Besides, we have mined evolution information from
the repositories of studied subjects to back up our analysis
(shown as the links in the footnote). Furthermore, we make
our data publicly available to ease future investigation and
check for the whole repair community.

VI. RELATED WORK

Each time an APR tool was proposed, its developers per-
formed considerable experiments to evaluate its effectiveness,
from which the repairability factors of the tool were dis-
cussed. To name a list, TBar suffers from insufficient fix
patterns and ineffective search of fix ingredients [19], SimFix
can be improved by considering the dependency between
variables and statements [6], and incorrect fault localization
and multiple fault locations significantly hamper the state-of-
the-art APR tools [8]. On the contrary, our study is the first to

8https://github.com/SpoonLabs/astor/commit/
5f9b69c7d5bef0814a0f7a9182e1de03de102815

https://github.com/SpoonLabs/astor/commit/5f9b69c7d5bef0814a0f7a9182e1de03de102815
https://github.com/SpoonLabs/astor/commit/5f9b69c7d5bef0814a0f7a9182e1de03de102815

deeply understand the non-repairability factors of APR tools,
aiming to eliminate the potential biases in the evaluations.

There are many other studies concerning the biases in APR
tasks. Durieux et al. [8] and Wang et al. [18] focused on the
benchmark overfitting problem. Long et al. [40] concerned the
patch overfitting problem while a number of studies followed
[41], [42]. Liu et al. [21] first pointed out that different APR
tools integrate different FL strategies. They thus designed a
baseline tool kPAR and demonstrated that different FL results
can significantly influence the number of generated patches,
which is further confirmed by [9] where 16 APR tools are
systematically considered.

VII. CONCLUSION

This paper reports a large-scale empirical study on the
exceptions in the execution logs of APR techniques. We
dissected the frequencies of occurrence, behind reasons of
such occurrences, as well as the impact on the repairability
of APR techniques of non-repairability factors. We further
discussed several implications for eliminating biases caused by
such exceptions. All data in this study are publicly available
at: http://doi.org/10.5281/zenodo.3937198.

REFERENCES

[1] M. Monperrus, “The living review on automated program repair,” 2018.
[2] C. Le Goues and et al., “GenProg: A generic method for automatic

software repair,” IEEE Transactions on Software Engineering, 2012.
[3] H. D. T. Nguyen and et al., “Semfix: Program repair via semantic

analysis,” in International Conference on Software Engineering, 2013.
[4] R. Just and et al., “Defects4J: A database of existing faults to enable

controlled testing studies for java programs,” in Proceedings of the 23rd
International Symposium on Software Testing and Analysis. ACM.

[5] M. Wen and et al., “Context-aware patch generation for better automated
program repair,” in International Conference on Software Engineering,
2018.

[6] J. Jiang and et al., “Shaping program repair space with existing patches
and similar code,” in Proceedings of the 27th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis. ACM, 2018.

[7] M. Martinez and et al., “Automatic repair of real bugs in java,” Empirical
Software Engineering, vol. 22, no. 4, pp. 1936–1964, 2017.

[8] T. Durieux and et al., “Empirical review of Java program repair tools,”
in Proceedings of the Symposium on the Foundations of Software
Engineering. ACM, 2019, pp. 302–313.

[9] K. Liu and et al., “On the efficiency of test suite based program repair,”
in International Conference on Software Engineering, 2020.

[10] R. K. Saha and et al., “Elixir: Effective object-oriented program repair,”
in Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering. IEEE, 2017, pp. 648–659.

[11] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on Software
Engineering, 2018.

[12] J. Campos and et al., “Gzoltar: an eclipse plug-in for testing and debug-
ging,” in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering. IEEE, 2012, pp. 378–381.

[13] J. Xuan and et al., “Nopol: Automatic repair of conditional statement
bugs in java programs,” IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 34–55, 2017.

[14] X. B. D. Le and et al., “History driven program repair,” in Proceed-
ings of the 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 2016, pp. 213–224.

[15] M. White and et al., “Sorting and transforming program repair ingre-
dients via deep learning code similarities,” in International Conference
on Software Analysis, Evolution and Reengineering, 2019.

[16] T. Durieux and M. Monperrus, “Dynamoth: dynamic code synthesis
for automatic program repair,” in Proceedings of the 11th IEEE/ACM
International Workshop in Automation of Software Test. IEEE, 2016.

[17] Y. Xiong and et al., “Precise condition synthesis for program repair,”
in Proceedings of the 39th IEEE/ACM International Conference on
Software Engineering. IEEE, 2017, pp. 416–426.

[18] S. Wang and et al., “Attention please: Consider mockito when evaluating
newly proposed automated program repair techniques,” in Proceedings
of the 23rd Evaluation and Assessment on Software Engineering. ACM.

[19] K. Liu and et al., “TBar: Revisiting template-based automated program
repair,” in Proceedings of the International Symposium on Software
Testing and Analysis. ACM, 2019, pp. 31–42.

[20] M. Martinez and M. Monperrus, “Ultra-large repair search space with
automatically mined templates,” in International Symposium on Search
Based Software Engineering. Springer, 2018, pp. 65–86.

[21] K. Liu and et al., “You Cannot Fix What You Cannot Find!” in Pro-
ceedings of the 12th IEEE Conference on Software Testing, Validation
and Verification, 2019, pp. 102–113.

[22] D. Kim and et al., “Automatic patch generation learned from human-
written patches,” in Proceedings of the 35th International Conference
on Software Engineering. IEEE, 2013, pp. 802–811.

[23] X.-B. D. Le and et al., “S3: syntax-and semantic-guided repair synthesis
via programming by examples,” in Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering. ACM, 2017, pp. 593–604.

[24] S. Saha and et al., “Harnessing evolution for multi-hunk program
repair,” in Proceedings of the 41st International Conference on Software
Engineering. IEEE, 2019, pp. 13–24.

[25] X. Liu and H. Zhong, “Mining stackoverflow for program repair,” in
Proceedings of the 25th IEEE International Conference on Software
Analysis, Evolution and Reengineering. IEEE, 2018, pp. 118–129.

[26] J. Hua and et al., “Towards practical program repair with on-demand
candidate generation,” in Proceedings of the 40th International Confer-
ence on Software Engineering. ACM, 2018, pp. 12–23.

[27] A. Ghanbari and et al., “Practical program repair via bytecode mutation,”
in International Symposium on Software Testing and Analysis, 2019.

[28] K. Liu and et al., “Avatar: Fixing semantic bugs with fix patterns of static
analysis violations,” in Proceedings of the International Conference on
Software Analysis, Evolution and Reengineering. IEEE, 2019.

[29] A. Koyuncu and et al., “Fixminer: Mining relevant fix patterns for
automated program repair,” arXiv preprint arXiv:1810.01791, 2018.

[30] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated
program repair,” in Proceedings of the International Conference on
Automated Software Engineering. IEEE, 2017, pp. 660–670.

[31] T. Durieux and et al., “Dynamic patch generation for null pointer
exceptions using metaprogramming,” in the International Conference
on Software Analysis, Evolution and Reengineering, 2017.

[32] K. Liu and et al., “LSRepair: Live Search of Fix Ingredients for
Automated Program Repair,” in Proceedings of the 25th Asia-Pacific
Software Engineering Conference, 2018, pp. 658–662.

[33] M. Martinez and M. Monperrus, “Astor: A program repair library for
java,” in International Symposium on Software Testing and Analysis,
2016.

[34] Z. Chen and et al., “Sequencer: Sequence-to-sequence learning for end-
to-end program repair,” IEEE Transactions on Software Engineering.

[35] Y. Li and et al., “Dlfix: Context-based code transformation learning for
automated program repair,” in Proceedings of the 42nd International
Conference on Software Engineering. ACM, 2020.

[36] T. Lutellier and et al., “Coconut: Combining context-aware neural
translation models using ensemble for program repair,” in Proceedings
of the International Symposium on Software Testing and Analysis, 2020.

[37] L. Chen and et al., “Contract-based program repair without the con-
tracts,” in Proceedings of the International Conference on Automated
Software Engineering. IEEE, 2017, pp. 637–647.

[38] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.

[39] V. Sobreira and et al., “Dissection of a bug dataset,” in the International
Conference on Software Analysis, Evolution and Reengineering, 2018.

[40] F. Long and M. Rinard, “An Analysis of the Search Spaces for Generate
and Validate Patch Generation Systems,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016.

[41] X.-B. D. Le and et al., “On reliability of patch correctness assessment,”
in Proceedings of the International Conference on Software Engineering.
IEEE, 2019, pp. 524–535.

[42] S. Wang and et al., “How different is it between machine-generated
and developer-provided patches?” in the International Symposium on
Empirical Software Engineering and Measurement, 2019.

http://doi.org/10.5281/zenodo.3937198

